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1 Executive summary

In the Two!Ears project, we have developed an intelligent, active computational
model of auditory perception and experience, which is capable of operating in a
multi-modal context. The resulting Two!Ears system is described in this report,
which has three core components.

Firstly, this deliverable provides an overview of the entire software architecture, and
it gives specifications of the pertinent knowledge sources that have been developed
as part of the Two!Ears software. The emphasis is on abstract specifications of
the knowledge sources, rather than implementation details or numerical evaluation
results. The reader is referred to Deliverable D3.5 for details on the implementation
and evaluation of specific knowledge sources.

Secondly, it gives a number of application examples for its use within the proof-of-
concept application of the search-and-rescue scenario.

Finally, this document contains three appendices, covering the relevant parts of the
online documentation of the system:

• the software specifications that are pertinent to the auditory front end

• the specification of the core blackboard architecture

• and usage guides for a wide range of applications of the system.
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2 Introduction

2.1 Overview

The Two!Ears software has been developed over the entire course of the Two!Ears
project. It is available online at https://github.com/TWOEARS/ in the form of
a public github repository. At its core, it is a probabilistic blackboard system,
designed to process incoming acoustic, visual and proprioceptive signals, make sense
of its surroundings by creating a probabilistic representation of its environment at
multiple levels of abstraction, and to plan its next action on the basis of its current
understanding of the environment. In this decision, it is additionally guided by a set of
rules that help it in understanding its current task—assessing the quality-of-experience
of an auditory scene or provide assistance to a search-and-rescue operation in an
emergency situation.

The system is available in two versions. A development system can be used within a
simulated environment, without needing access to a robotic platform, and a deployment
system is capable of real-time operation within the final robotic architecture. Both
versions of the system share a common principal architecture to allow for easy
deployability of new algorithms designed within the development system, and they are
hence described jointly within this report, making distinctions only where specifically
necessary.

In addition, the use of the system for a range of tasks has been considered in detail
within a scenario-based approach. In order to facilitate the application of the system,
we will hence exemplarily describe some of the use cases that have been developed in
the course of the Two!Ears project.

2.2 Structure of this report

This document first describes the software specification of the Two!Ears system.
This description is composed of two main parts – the specification of the overall
blackboard architecture in Section 3.1, and of the knowledge sources in Section
3.4. The evaluation approach is described in Chapter 4, with examples of evaluated
applications of the system to tasks that are pertinent within the search-and-rescue
scenario.

The document is concluded by a discussion of the software release and an outlook on
future work that it enables in Chapter 5.
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3 Specification of software framework
This chapter describes the software framework, with a focus on abstract specifications,
rather than implementation details. The implementation of the knowledge sources is
described in Deliverables D3.4 and D3.5 and an extensive evaluation is provided as
well in Deliverables D3.5 and D 4.3.

3.1 Blackboard architecture

The blackboard system is based on the architectural considerations that were presented
in Deliverable D3.2. It has been designed to support a great variety of applications,
by integrating a rich set of modules which can work either independently or in
collaboration, and which can be called sequentially to realize both bottom-up and
top-down processing. The system is also easily modifiable, through the exchange
and/or extension of modules.

In principle, the system contains four fundamental building blocks, as detailed in
D6.1.2:

Peripheral processing The incoming acoustic and visual signals are preprocessed,
with visual processing carried out by one module, whereas acoustic preprocessing
is achieved in a physiologically inspired multistage approach.

Blackboard The blackboard is the central data repository of the platform, which also
keeps track of the history of this data in order to enable working on time series
data. An associated blackboard monitor provides a view of the blackboard’s
state of information to the scheduler.

Knowledge Sources (KSs) are modules that define their own functionality, to be
executed in the blackboard system. They define for themselves, which data they
need for execution and which data they produce, but they do not need to know,
how or where the data is stored. The blackboard system, in contrast, provides
the tools for requesting and storing this data, but it does not care about its
actual content.

Scheduler The scheduler executes the KSs in the appropriate, dynamic order. The
order in which KSs get executed is initially computed (or scheduled) in a task-
specific manner. It is then re-scheduled after every execution of a KS, since the
conditions determining the order may have changed, or new, more urgent, KSs
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3 Specification of software framework

may be waiting for execution.

In the deployment system, the robot interface constitutes another significant com-
ponent.

An overview of the Two!Ears software architecture including the connection of the
blackboard system to all other software modules is shown in Fig. 3.1. The blackboard
system has been released as part of the Two!Ears system with the corresponding
documentation1 of all its software components.

In the following, we will specify the components of the system, beginning with a
brief review of the available documentation of the preprocessing modules in Sec-
tion 3.2, followed by the scheduler in Section 3.3, specifying the knowledge sources
(Sec. 3.4), and concluding with the specification of the robot interface in Section
3.5.

1 http://docs.twoears.eu/en/latest/blackboard/
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3.1 Blackboard architecture
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Figure 3.1: Overview of the general Two!Ears software architecture.
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3 Specification of software framework

3.2 Peripheral processing

The peripheral processing block contains many alternative processing modules and
processing paths. It is only mentioned here for the sake of giving a complete overview
of the system, but it is not within the focus of the present deliverable. Instead, it
has been introduced in detail in the WP2 deliverables and it is described under http:
//docs.twoears.eu/en/latest/afe/. Hence, we attach the complete documentation
in Appendix A in order to make this deliverable comprehensive, but we do not introduce
the components here.

Instead, we assume in the following that the features derived by peripheral processing
block, shown at the bottom of Fig. 3.1, are provided as input values to the blackboard
system.

3.3 Scheduler

The scheduler is the component of the blackboard system that actually executes the
knowledge sources – but first, it schedules them, that is, it decides the order in which
knowledge sources waiting in the agenda get executed. This order is rescheduled after
every execution of a knowledge source, since the conditions determining the order
may have changed, or new knowledge sources may be present in the agenda that are
more urgent.

The implementation of the scheduler within the Two!Ears framework comprises a
dynamic scheduling scheme, where the order of knowledge source execution can either
be fixed or depend on a dynamically exchangeable priority value. This allows for the
design of flexible processing schedules, which can be adapted to specific requirements
during run-time. Furthermore, designated knowledge sources can be declared as
periodically called instances, which are not scheduled according to priority values, but
are executed after specified time intervals. This is especially helpful for repeated tasks
like localisation or source identification, which need to be frequently updated, rather
than be called on demand. In contrast, knowledge sources that deal with decision
making or actuator control of the robotic platform are required to be executed after
specific hypotheses on the blackboard have emerged. This behavior can be handled
by the current scheduler implementation through its dynamic nature. A detailed
overview of the implementation details and application programming interface of the
scheduler can be found under http://docs.twoears.eu/en/latest/blackboard/
architecture/scheduler/ and in Appendix B.
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3.4 Knowledge sources

3.4 Knowledge sources

3.4.1 Localisation

A number of knowledge sources (KSs) are developed to work together for estimation
of source location.

Sound localisation from binaural cues

We describe KSs related to source localisation when the robot is assumed to be
stationary. However, robot head movements can be triggered in case of front-back
confusions.

DnnLocationKS

• Description:
Computes posterior probabilities of source azimuths for a chunk of signals using
deep neural networks (DNNs). The probabilities are computed independently
for each signal chunk.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKSs → ‘KsFiredEvent’
– FactorialSourceModelKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ → LocalisationDecisionKS

• Writes:
– ‘sourcesAzimuthsDistributionHypotheses’

• Reads:
– ‘interauralCrossCorrelation’
– ‘interauralLevelDifferences’
– ‘sourceSegregationHypothesis’

9



3 Specification of software framework

GmmLocationKS

• Description:
Computes posterior probabilities of source azimuths for a chunk of signals using
Gaussian mixture models (GMMs). The probabilities are computed indepen-
dently for each signal chunk. The KS is interchangeable with DnnLocationKS.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKSs → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ → LocalisationDecisionKS

• Writes:
– ‘sourcesAzimuthsDistributionHypotheses’

• Reads:
– ‘interauralTimeCorrelation’
– ‘interauralLevelDifferences’

LocalisationDecisionKS

• Description:
Examines source azimuth hypotheses in order to predict a source location. In
the case of a confusion, a head rotation can be triggered. Azimuth hypotheses
for each signal chunk are integrated across time with a leaky integrator.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– DnnLocationKS → ‘KsFiredEvent’
– GmmLocationKS → ‘KsFiredEvent’

• Emits:
– ‘RotateHead’ → HeadRotationKS
– ‘KsFiredEvent’ → SegmentationKS

• Writes:
– ‘locationHypothesis’

• Reads:
– ‘sourcesAzimuthsDistributionHypotheses’
– ‘locationHypothesis’
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3.4 Knowledge sources

HeadRotationKS

• Description:
Decides how to rotate the robot head and performs head rotation

• Interfaces:
– BlackboardSystem.robotConnect

• Receives:
– LocalisationDecisionKS → ‘RotateHead’

• Emits:

• Writes:

• Reads:
– ‘locationHypothesis’

Sound source localisation using sensorimotor flow

The below knowledge sources are applicable for dynamic scene exploration with the
actual robotic system.

SensorimotorLocalisationKS

• Description:
Computes the most likely azimuths (relative to the binaural head) of 1+ sources
on the basis of the binaural signal. Computes a Gaussian mixture representation
of the posterior pdf of the position (azimuth and range) of a single active
source by incorporating the motion of the binaural head. Note that the above
component runs on the robot, not directly in the blackboard system. Hence, it
is only available in the deployment system.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– Scheduler → ‘AgendaEmpty’

• Emits:
– ‘KsFiredEvent’

• Writes:
– ‘locationHypothesis’

• Reads:
– binaural signal
– sensor velocity

11



3 Specification of software framework

MostInformativeLocalMotionKS

• Description:
Computes the direction of the velocity vector of a binaural head which would
locally improve the quality of the audiomotor localization of a single source.
Note that the above component runs on the robot, not directly in the blackboard
system. Hence, it is only available in the deployment system.

• Interfaces:
– BlackboardSystem.robotConnect

• Receives:
– ReactToStimulusKS → ‘AuditoryObjectFormed’

• Emits:
– No emission

• Writes:
– No information written

• Reads:
– ‘locationHypothesis’

Forming audio-visual objects

The formation of audio-visual objects is computed by the HeadTurningModulationKS 2

(HTMKS), and in particular through one of its two modules: the MultimodalFusion&
Inference module. This process of making the robot interpret its environment through
the notion of objects is a part of the more global computation of the head movements
triggered by the HTMKS.

2 see Deliverable 4.3, Section c1, c2 & c6
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3.4 Knowledge sources

HeadTurningModulationKS

• Description:
The HTMKS generates the composition of all the audio-visual objects the robot
has observed so far in the current environment. This is achieved through the
MFImod mainly but relies on many other KSs.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– ObjectDetectionKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘ObservedObjectsHypotheses’

• Reads:
– identityHypotheses
– sourcesAzimuthsDistributionHypotheses
– visualIdentityHypotheses
– objectDetectionHypotheses
– audiovisualHypotheses

ObjectDetectionKS

• Description:
The ObjectDetectionKS generates an hypothesis of whether the current audio
and/or visual frame belongs to a new object or to an object that has already
been observed.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– VisualIdentityKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘objectDetectionHypotheses’

• Reads:
– sourcesAzimuthsDistributionHypotheses: ’sourcesDistribution’, ’azimuth’.
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3 Specification of software framework

FocusComputationKS

• Description:
The FocusComputationKS generates the object to be focused by the robot based
on both the DynamicWeighting module and the MultimodalFusion&Inference
module.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– HeadTurningModulationKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘FocusedObject’

• Reads:
– Nothing

AudioVisualFusionKS

• Description:
The AudioVisualFusionKS generates hypothesis about the visual stream that is
the most likely to be related to the audio stream momentarily perceived.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– visualLocationKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘audiovisualHypotheses’

• Reads:
– visualStreamsHypotheses: ‘present_objects’
– visualLocationHypotheses: ‘theta’
– sourcesAzimuthsDistributionHypotheses

3.4.2 Segmentation

Based on a given or estimated number of sources/objects, the incoming signals
(acoustic or visual) are segmented into the signal components related to the relevant
sources/objects.

14



3.4 Knowledge sources

Identifying the number of sound sources

NumberOfSourcesKS

• Description:
Each instance of NumberOfSourcesKS incorporates a model that generates
hypotheses about whether and how many sound sources are present in the audio
stream in particular time span (extracted block from earsignals’ streams).

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘NumberOfSourcesHypotheses’

• Reads:
– AFE features – depending on the actual model plugged in. Currently

the models commonly use: ‘ratemap’, ‘amsFeatures’, ‘spectralFeatures’,
‘onsetStrength’, ’ild’, ’itd’.

– SourcesAzimuthsDistributionHypothesis – Source localization estimates.

Source Segregation

FactorialSourceModelKS

• Description:
Uses factorial source models to jointly estimate a segregation mask for the
target source

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKSs → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ → DnnLocationKS

• Writes:
– ‘sourceSegregationHypothesis’

• Reads:
– ‘ratemap’

15



3 Specification of software framework

StreamSegregationKS

• Description:
The StreamSegregationKS generates several streams of acoustic features, cor-
responding to individual sound sources that are present in the scene. This is
achieved via a probabilistic masking approach, where masks are generated using
estimated source azimuths from DnnLocationKS and the predicted number of
sources from NumberOfSourcesKS.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’
– DnnLocationKS → ‘KsFiredEvent’
– NumberOfSourcesKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘SegregationHypotheses’

• Reads:
– AFE features: ’ild’, ’itd’.
– SourcesAzimuthsDistributionHypothesis – Source localization estimates.
– NumberOfSourcesHypothesis – Predicted number of sources.

VisualStreamSegregationKS

• Description:
The VisualStreamSegregationKS processes data from the robot’s vision and
generates the number of objects present in its field of view.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryIdentityKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘visualStreamsHypotheses’

• Reads:
– Nothing

16



3.4 Knowledge sources

3.4.3 Source classification

Sound classification

IdentityKS

• Description:
Each instance of IdentityKS incorporates a model that generates hypotheses
about the presence of a certain source-type in particular time span (extracted
block from earsignals’ streams). Many IdentityKSs can be instantiated – one
for each type to be identified.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘identityHypotheses’

• Reads:
– AFE features – depending on the actual model plugged in. Currently

the models commonly use: ‘ratemap’, ‘amsFeatures’, ‘spectralFeatures’,
‘onsetStrength’.

IntegrateFullstreamIdentitiesKS

• Description:
An instance of IntegrateFullstreamIdentitiesKS collects all available identityHy-
potheses produced for a particular time span and integrates those of each sound
type over time. A single IntegrateFullstreamIdentitiesKS collects hypotheses
for all instantiated IdentityKSs.

• Receives:
– IdentityKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘integratedIdentityHypotheses’

• Reads:
– ‘identityHypotheses’ produced by all instantiated IdentityKSs

17



3 Specification of software framework

SegmentIdentityKS

• Description:
Each instance of SegmentIdentityKS incorporates a model that generates hy-
potheses about the presence of a certain source-type given a set of masks
produced by source segregation in a particular time span (extracted block from
earsignals’ streams). Many SegmentIdentityKSs can be instantiated – one for
each type to be identified.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘segIdentityHypotheses’

• Reads:
– AFE features – depending on the actual model plugged in. Currently

the models commonly use: ‘ratemap’, ‘amsFeatures’, ‘spectralFeatures’,
‘onsetStrength’.

– masks produced by source segregation to apply on the AFE features.

IntegrateSegregatedIdentitiesKS

• Description:
An instance of IntegrateSegregatedIdentitiesKS collects all available hyptheses
produced by SegmentIdentityKSs for a particular time span and integrates
the hypotheses of each sound type over time and azimuth neighborhood. A
hypothesis is produced for each present sound type indicating its location. A
single IntegrateSegregatedIdentitiesKS collects hypotheses for all instantiated
SegmentIdentityKSs.

• Receives:
– SegmentIdentityKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘singleBlockObjectHypotheses’

• Reads:
– ‘segIdentityHypotheses’ produced by all instantiated SegmentIdentityKSs

18



3.4 Knowledge sources

IdentityLocationKS

• Description:
Each instance of IdentityLocationKS drives a model that generates hypothe-
ses about the presence of source-types their respective azimuth location in a
particular time span (extracted block from earsignals’ streams).

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘identityHypotheses’
– ‘sourcesAzimuthsDistributionHypotheses’

• Reads:
– AFE features – depending on the actual model plugged in. Currently

the models commonly use: ‘ratemap’, ‘amsFeatures’, ‘spectralFeatures’,
‘onsetStrength’, ’ild’.

IdentityLocationDecisionKS

• Description:
An instance of IdentityLocationDecisionKS collects hypotheses on the joint
identity and location of sound types produced for a particular time span. A
decision is made regarding whether the sound type is at all present in the scene
and decides on its most likely azimuth locations.

• Receives:
– IdentityLocationKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘segIdentityHypotheses’

• Reads:
– ‘identityLocationHypotheses’

19



3 Specification of software framework

Gender classification

GenderRecognitionKS

• Description:
Recognizes the speakers’ gender from speech audio data.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘GenderHypotheses’

• Reads:
– AFE features: ’ratemap’, ’pitch’, ’spectralFeatures’.

Speaker identification

SpeakerRecognitionKS

• Description:
Recognises the speaker identity from speech audio data.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘speakerIdentityHypotheses’

• Reads:
– ‘ratemap’

20



3.4 Knowledge sources

Keyword recognition

KeywordRecognitionKS

• Description:
Recognises a spoken keyword from speech audio data.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘keywordHypotheses’

• Reads:
– ‘ratemap’

Musical genre recognition

MusicalGenreKS

• Description:
Predicts the musical genre from a stream of audio signals containing music. A
fixed set of genres, namely ’blues’, ’classic’, ’country’, ’disco’, ’hiphop’, ’jazz’,
’metal’, ’pop’, ’reggae’ and ’rock’ can be classified.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AuditoryFrontEndKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘MusicalGenreHypotheses’

• Reads:
– AFE features: ’ratemap’, ’pitch’, ’spectralFeatures’, ’onsetStrength’, ’off-

setStrength’.

21



3 Specification of software framework

Turning to a perceived stimulus

This task is also handled by two modules of the HTMKS: the DynamicWeighting
module and theMultimodalFusion&Inference module. The KSs on which it relies on are
the same as in Sec. 3.4.1. Hence, here we just describe the KS responsible for computing
the motor order on the basis of the FocusComputationKS.

MotorOrderKS

• Description:
The MotorOrderKS generates an hypothesis about the angle the head has to
turn, according to the computations made by the HeadTurningModulationKS.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– FocusComputationKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘motorOrder’

• Reads:
– FocusedObject: ’focus’.
– headOrientation.

22



3.4 Knowledge sources

3.4.4 Cognitive Functions

BindingKS

• Description:
The BindingKS generates a set of binding hypotheses: each hypothesis in this
set relates the location (head-centric azimuth) of a detected sound source to
the source’s identity. Note: this KS is specifically designed for emulation in the
BEFT (cf. D4.3).

• Interfaces:
– BEFT emulator

• Receives:
– UpdateEnvironmentKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘bindingHypotheses’

• Reads:
– from BEFT: emulated reference position (x,y,heading).

AuditoryMetaTaggingKS

• Description:
The AuditoryMetaTaggingKS assigns emulated ‘meta tags’ to all auditory object
hypotheses created by the AuditoryObjectFormationKS. Meta tags include source
characteristics like category, role, gender, stress level, loudness level, age. Note:
the AuditoryObjectFormationKS is specifically designed for emulation in the
BEFT (s. D4.3).

• Interfaces:
– BEFT emulator

• Receives:
– AuditoryObjectFormation → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon modification of the processed hypotheses)

• Writes:
– ‘auditoryObjectHypotheses’

• Reads:
– ‘auditoryObjectHypotheses’
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3 Specification of software framework

AuditoryObjectFormation

• Description:
The emulated identity information stored in each binding hypothesis allows the
AuditoryObjectFormationKS to create a unique auditoryObjectHypothesis for
each perceived sound source, and enables straightforward triangulation of the
latter on a per-source basis. This approach results in a robust, least-squares
estimate of all sources’ positions in the azimuthal plane. In addition, the Audi-
toryObjectFormationKS places the globalLocalizationInstability hypothesis on
the blackboard, for later use in the PlanningKS. Note: the AuditoryObjectFor-
mationKS is specifically designed for emulation in the BEFT (s. D4.3).

• Interfaces:
– BEFT emulator

• Receives:
– BindingKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon modification of the processed hypotheses)

• Writes:
– ‘auditoryObjectHypotheses’
– ‘globalLocalizationInstability’

• Reads:
– ‘bindingHypotheses’
– ‘auditoryObjectHypotheses’
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3.4 Knowledge sources

Relevance Detection

HazardAssessmentKS

• Description:
The HazardAssessmentKS augments the auditoryObjectHypotheses stored in
blackboard memory with individual hazard scores. To that end, the KS in-
tegrates meta information provided for each scenario entity by the Audito-
ryMetaTaggingKS. The individual hazard scores are accumulated, and constitute
the globalHazardHypothesis which is pushed to the blackboard memory. Note:
the HazardAssessmentKS is specifically designed for emulation in BEFT (D4.3).

• Interfaces:
– BEFT emulator

• Receives:
– AuditoryMetaTaggingKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon modification of the processed hypotheses)

• Writes:
– ‘auditoryObjectHypotheses’
– ‘globalHazardHypothesis’

• Reads:
– ‘auditoryObjectHypotheses’
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3 Specification of software framework

Task Detection (S&R vs. QoE)

EmergencyDetectionKS

• Description:
This knowledge sources uses the IdentityKS to detect whether the current
situation contains sound sources indicating an emergency situation. To increase
the robustness of the emergency detection and combat possible false alarms,
the hypotheses generated by the IdentityKS are accumulated over a longer
time-frame and an emergency is only triggered, if the probability of sounds
indicative of danger (like fire or alarm) exceed a specified threshold.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– IdentityKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘emergencyHypotheses’

• Reads:
– ‘identityHypotheses’
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3.4 Knowledge sources

PlanningKS

• Description:
The PlanningKS constitutes the cognitive controller employed to drive emulation
in the BEFT: this KS implements a task stack together with basic decision
rules which allow for active exploration, and the active localization of potential
victims in a catastrophe scenario. The cognitive functionality encoded in the
PlanningKS has to be adapted to novel situations (cf. D4.3), and yields a
sequence of tasks and sub-tasks for the robot to follow. Note: the PlanningKS
is specifically designed for emulation in the BEFT (see D4.3).

• Interfaces:
– BEFT emulator

• Receives:
– HazardAssessmentKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon modification of the processed hypotheses)

• Writes:
– ‘auditoryObjectHypotheses’
– ‘currentSuperTask’
– ‘currentSubTask’

• Reads:
– ‘auditoryObjectHypotheses’
– ‘globalHazardHypothesis’
– ‘currentSuperTask’
– ‘currentSubTask’
– ‘globalLocalizationInstability’
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3 Specification of software framework

3.5 Robot Interface

In this section, we describe the Robot Interface, which provides basic communication
between the blackboard system and the robot.

RobotInterface (abstract)

• [sig, durSec, durSamples] = getSignal(durSec) returns an audio signal
of durSec seconds

• rotateHead(angleDeg, mode) rotates the robot head by angleDeg degrees,
in either ‘absolute’ or ‘relative’ mode

• azimuth = getCurrentHeadOrientation returns the current head orienta-
tion relative to the torso orientation

• [maxLeft, maxRight] = getHeadTurnLimits returns the maximum head
orientation relative to the torso orientation

• moveRobot(posX, posY, theta, mode) moves the robot to a new position

• [posX, posY, theta] = getCurrentRobotPosition returns the current
robot position

• b = isActive returns true if robot is active

The robot simulator class and the interface class for a real robot are subclasses of this
robot interface. Such a subclass has been written to interface the blackboard system
with the mobile platform from WP 5.

3.5.1 Audio acquisition

The getSignal() method of the robot interface retrieves a block of audio signal
of chosen duration from the binaural sensor. It returns the latest available data.
The implementation on the mobile platform from WP 5 uses the Binaural Au-
dio Stream Server, accessed by the robot interface through a genomix client (cf.
D 5.3).

3.5.2 Movement Control and Mapping

The robot is a mobile base moving in a pre-learned map of the environment using
Simultaneous Localisation And Mapping (SLAM) techniques. A frame is attached to
this map, denoted as the world frame, defining the origin and the (x,y) directions.
The moveRobot() method of the robot interface allows to send a new target position
to the navigation system implemented on the platform. This target can be either
absolute coordinates in the world frame, or in coordinates relative to the previous
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3.5 Robot Interface

position of the mobile base.

The navigation system then computes a path to the target, given obstacles in the map.
Using odometry and sensors such as lasers, the mobile base keeps track of its position as
motor commands are applied to follow the computed trajectory.

At any moment, the getCurrentRobotPosition() method of the robot interface
can be called to obtain the current coordinates of the mobile base in the world
frame.

Independently from the movements of the mobile base, the embedded binaural
sensor can be controlled in rotation. Typically, on a KEMAR Head-And-Torso
Simulator (HATS) with a motorised neck, the head can rotate relatively to the torso.
The rotateHead() method allows to turn the head to a targeted angle, either in
absolute or relative mode. The getCurrentHeadOrientation() method returns the
current angle.

The implementation of movement control on the mobile platform from WP 5 relies
on various robotic components, accessed by the robot interface through a genomix
client (cf. D 5.3).

3.5.3 Identifying and localizing visual objects

The methods available for identification and localization of visual objects may depend
on the implementation on the robotic platform. On the platform from WP 5 for
instance, object detection is performed on a dedicated CPU, and Knowledge Sources
can access the results of the detection directly from the robot interface through a
dedicated method. This led to the creation of the following KSs:
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3 Specification of software framework

VisualLocationKS

• Description:
The VisualLocationKS generates hypotheses about the locations of detected
visual objects, with respect to the head position.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– VisualStreamSegregationKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘visualLocationHypotheses’

• Reads:
– ‘visualStreamsHypotheses’: ‘present_objects’

VisualIdentityKS

• Description:
The VisualIdentityKS generates hypotheses about the identity of visual objects
detected within the robot’s field of view.

• Interfaces:
– BlackboardSystem.dataConnect

• Receives:
– AudioVisualFusionKS → ‘KsFiredEvent’

• Emits:
– ‘KsFiredEvent’ (upon generation of a new hypothesis)

• Writes:
– ‘visualIdentityHypotheses’

• Reads:
– visualStreamsHypotheses: ’present_objects’

Similar features for human detection are functional on the platform from WP5, but
they are not used in the blackboard system.
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4 Scenario-based implementation and
evaluation

All project phases have been carried out in adherence to a scenario-based development
paradigm. As this approach has proven valuable throughout all phases, supporting
decision making and design, we will also give the following applications guide in the
form of the description of a small number of valuable scenarios. A larger number
of scenarios is being addressed in detail in the online documentation. To make this
document complete independently, we also show all of these examples in Appendix
C.

4.1 General aspects of implementation and evaluation

Controlled by the scheduler in the blackboard system1, the appropriate knowledge
sources for each of the respective tasks are called in an appropriate order, which may
be determined either by a task-dependent recipe, or by calling knowledge sources in
response to the current blackboard state.

4.2 Application of the system in search-and-rescue
scenarios

There are a wide range of possible and of available applications of the system. Many
of them are described online at http://docs.twoears.eu/en/latest/examples/,
which can also be found in the attachment, cf. Appendix C.

We therefore focus on two relevant, exemplary applications in the following: we
describe the use of the system for multi-speaker localisation, for keyword recognition
and for the localisation and characterisation of sources in a multi-room apartment.
All of these are pertinent to the search-and-rescue scenario. Applications to the QoE
scenario are discussed in the concurrent Deliverable 6.2.3.

1 http://docs.twoears.eu/en/1.3/blackboard/
http://docs.twoears.eu/en/1.3/blackboard/architecture/#dynamic-blackboard-scheduler
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4 Scenario-based implementation and evaluation

4.2.1 Application to multi-source speaker localisation

Overview: This demonstrates the use of head movement in sound localisation when
the robot position is fixed. The robot does not restrict localisation of sound sources
to the frontal hemifield. Due to the similarity of binaural cues in the frontal and rear
hemifields, front-back confusions often occur. To address this, the robot employs a
hypothesis-driven feedback stage that triggers a head movement whenever the source
location cannot be unambiguously estimated. One or more sound sources can be
present about the robot. When a front-back confusion occurs, the robot actively
rotates the head by a few degrees. Information before and after the head rotation is
combined to help reduce front-back errors and to decide on the “true” positions of the
sound sources.

Tasks: Find the location of all sound sources present, using head movement if
necessary.

Measure of success: root mean square (RMS) error of the target azimuth

Application of the blackboard system: For this scenario, the following knowledge
sources are used:

KSs involved: multi-source speaker localisation

• AuditoryFrontEndKS: receives audio signals from the robot and extracts
auditory features

• DnnLocationKS: estimates posterior probabilities of all source azimuths given
a block of signal

• LocalisationDecisionKS: combines the previous location hypothesis with the
newly estimated azimuth posterior probabilities to make a localisation decision,
and head rotation is triggered in case of a confusion

• HeadRotationKS: analyses a location hypothesis to decide how to rotate the
head in order to solve a confusion

The interaction of all KSs involved is illustrated in Fig. 4.1.

Evaluation: The scenario is fully evaluated in simulated experimental settings as
well as demonstrated on the robot in real environments. Fig. 4.2 shows a screenshot of
the blackboard system running when applied to this scenario. In the upper-right panel
knowledge source activities are displayed to show the state of the blackboard system,
and the size of the bubbles reflects execution time of each knowledge source. The lower-
right panel shows the output of the auditory front-end for this scenario. Finally in the
lower-left panel the reference source azimuth is shown as the green dot. The estimated
posterior probabilities for all azimuths around the head are displayed as bars with
the tallest bar indicating the most likely source azimuth. Head rotation is triggered
in this case which turns toward the mostly likely azimuth.
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4.2 Application of the system in search-and-rescue scenarios

Figure 4.1: Interaction of various knowledge sources (KSs) in the blackboard applied to a
sound localisation scenario that triggers a head movement in case of front-back confusions.

4.2.2 Application to keyword recognition

Overview: Recognition of spoken keywords in the presence of noise and rever-
beration. The database that is used for the evaluation is the CHiME challenge
data (Barker et al., 2013), where recordings of domestic noise in a living room
(e.g. vacuum cleaners, children playing, music) are superimposed on binaural speech
recordings.

Tasks: Identify the keyword that was spoken.

Measure of success: Keyword recognition accuracy.

Application of the blackboard system Knowledge sources for source segregation,
source identification and keyword recognition, can be employed. Alternatively, it is
possible to use only the keyword recognition KS. This is a viable approach, as long
as the noise level is not excessive, and as long as the model has been trained on the
respective noise condition, as shown below.

KSs involved

• AuditoryFrontEndKS: receives audio signals from the robot and extracts
auditory features

• KeywordRecognitionKS: carries out keyword recognition, using a deep-
neural-network-based approach
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4 Scenario-based implementation and evaluation

Figure 4.2: Application of the blackboard in the sound localisation scenario.

Evaluation: The keyword recognition has been evaluated on binaural speech in noise
from the CHiME corpus. Table 4.1 shows the keyword accuracies that were achieved
on ratemap features from the auditory front end, when models were trained on noisy
data at all SNRs, without any additional application of source separation or signal
enhancement.

Features -6 dB -3 dB 0dB 3dB 6dB 9dB Avg.
Gammatone FB 73.04 77.72 83.42 87.16 89.97 92.26 83.93
Ratemap 73.38 79.68 84.86 88.86 91.58 93.28 85.27

Table 4.1: Keyword accuracies (%) in household noise, using acoustic gammatone or ratemap
features.

The results were achieved using deep neural networks, as described in Deliverable 3.5,
Section 4.10.1. More details on the training of the recognition model can be found in
Meutzner et al. (2017).
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4.2 Application of the system in search-and-rescue scenarios

4.2.3 Application to localisation and characterisation of sources in a
multi-room apartment

Overview:

Running in emulation mode, the Bochum Experimental Feedback Testbed (BEFT) al-
lows active exploration in search-and-rescue scenarios of moderate complexity. To that
end, it integrates with the blackboard architecture, and relies on a set of specifically de-
signed knowledge sources including the BindingKS, the AuditoryObjectFormationKS,
the AuditoryMetaTaggingKS, the HazardAssessmentKS, and the PlanningKS (cf.
above). With these, the blackboard driving the BEFT is enabled to locate multiple
victims through active search in an emulated indoor scene. For more details, refer to
Deliverable D4.3, Section 5.

Tasks:

As indicated above, the primary goal of the emulated robot is to rescue several victims
in a multi-compartment building. More concretely, the rescue scenario is located in a
synthetic replication of the ADREAM lab in Toulouse, France (cf. D4.3, Section 5.4).
The entities found in the scene are enumerated in Table 4.2.

Entity category pre event role post event role gender age
Source001 human employee victim male 25
Source002 animal dog victim male 2
Source003 human employee rescuer female 30
Source004 human employee victim male 40
Source005 alert siren siren NA NA
Source006 threat fire fire NA NA
Source007 human employee victim female 20

Table 4.2: Meta characteristics of the entities found in the evaluation scenario described in
D4.3, Section 5.

The scenario starts in normal lab conditions, then, after Tevent = 60 seconds, the
situation evolves into a catastrophy scenario, namely, after an assumed explosion,
attendant lab employees become victims or rescuers, and a fire starts in one corner
of the lab. Table 4.2 subsumes the meta characteristics of all entities present in the
scenario, including their roles before and after Tevent’ [see D4.3, Section 5.4]. Note that
the robot will only save animate entities, thus the rescue attempt ends when sources
{‘Source001’,‘Source002’,‘Source003’,‘Source004’,‘Source007’} have successfully been
evacuated.

Measure of success and evaluation:

BEFT allows us to automatically generate a range of different scenarios with vary-
ing characteristics, thus allowing for quantitative assessment of the performance of
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4 Scenario-based implementation and evaluation

Figure 4.3: A typical S-&-R scenario solved within the Bochum Experimental Feedback
Testbed.

search and rescue (S-&-R) schemes encoded in the PlanningKS. Focusing on the
S-&-R strategy discussed in [... D4.3, Section 5 ...], NR = 30 scenarios [...] are
generated by randomly altering the x/y-positions of all animate entities [D4.3, Section
5.4].

Now, let TA
r represent the time required to localize all present entities with sufficient

precision in scenario r, using emulated acoustic cues, and employing baseline trian-
gulation techniques (s. D4.3, Section 5 for details). Further, let TB

r be the time it
takes to evacuate all animate beings, and to achieve a successful solution in scenario
r. This allows to define the arithmetic means

µA =
1

NR

NR∑
r=1

TA
r , µB =

1

NR

NR∑
r=1

TB
r (4.1)

and the corresponding standard deviations

σA =

√√√√ 1

NR

NR∑
r=1

(TA
r − µA)

2 , σB =

√√√√ 1

NR

NR∑
r=1

(TB
r − µB)

2 . (4.2)
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4.3 Concluding Remarks

In the current experiment, the obtained values are µA = 36.8609 s, σA = 6.1922 s, and
µB = 248.6996 s, σB = 31.6340 s. In upcoming experiments, these values will have to
be compared with results from trials where human assessors guide the robotic agent
manually through numerous emulated rescue attempts. This would also set the pace
for perceptual evaluation in addition to the instrumental one applied so far [D4.3,
Section 5].

Application of the blackboard system: For the DASA-4 scenario, knowledge
sources for visual person detection, planning head rotations, planning robot movements,
source segregation, source identification are employed, with provisions for identification
of distressed speech and identification of alarm sounds, gender recognition, and keyword
recognition.

Scheduling is determined dynamically, corresponding to the status of the blackboard.
The PlanningKS reacts to changing environmental conditions (e.g., positions of sources,
room geometries), and enables purposeful behavior of the virtual robot in scenarios
of moderate complexity.

4.3 Concluding Remarks

The scenario-based approach to developing our system has proven valuable throughout
all project phases. It has allowed us to simultaneously focus our effort on the most
relevant application scenarios, while identifying building blocks and components that
are of importance through multiple use cases. This has always informed the design of
the system components, as specified in Chapter 3. Here, we have focused on exemplary
applications that show the range of possibilities within the search-and-rescue context.
A larger set of applications of the Two!Ears system is described in Appendix C
below.
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5 Conclusions

Over the course of the Two!Ears project, we have implemented a dynamic and flexible
architecture for the cognitive analysis of acoustic and multi-modal scenes, which has
been evaluated in depth in a number of recent publications, e.g. Schymura et al. (2014),
Ma et al. (2015b), Schymura et al. (2015), Ma et al. (2015a).

This deliverable contains the software specification of the Two!Ears software, with
the exception of the preprocessing modules that have already been defined in D2.1,
D2.2, D2.3, and D2.4 and that are hence only referenced here. After giving an
overview of the software architecture, it specifies all necessary knowledge sources for
the blackboard architecture as well as the robot interface.

The deliverable concludes with a brief application guide, discussing three applications.
Appendices contain the complete software documentation of the preprocessing modules,
the blackboard architecture, and a wider set of application examples, as available
online at http://docs.twoears.eu/en/latest/.

It is envisaged that this software system, which is fully available under an open-source
license, will allow for a wide range of research works in the area of auditory and
audio-visual scene understanding, in modeling cognition for perceptual processing, and
in utilizing complex world models for the assessment of audio signal and reproduction
quality.
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Acronyms

HATS Head-And-Torso Simulator

KEMAR Knowles Electronics manikin for acoustic research

KS Knowledge Source

RMS root mean square

SLAM Simultaneous Localisation And Mapping
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Docs  » Auditory front-end

Auditory front-end
Overview
Technical description
Available processors
Add your own processors

The goal of the Two!Ears project is to develop an intelligent, active computational model of

auditory perception and experience in a multi-modal context. The Auditory front-end

represents the Örst stage of the system architecture and concerns bottom-up auditory

signal processing, which transforms binaural signals into multi-dimensional auditory

representations. The output provided by this consists of several transformed versions of

ear signals enriched by perception-based descriptors which form the input to the higher

model stages. SpeciÖc emphasis is given on the modularity of the software framework,

making this more than just a collection of models documented in the literature. Bottom-up

signal processing is implemented as a collection of processor modules, which are

instantiated and routed by a manager object. A variety of processor modules is provided to

compute auditory cues such as rate-maps, interaural time and level differences, interaural

coherence, onsets and offsets. An object-oriented approach is used throughout, giving

beneÖts of reusability, encapsulation and extensibility. This affords great ×exibility, and

allows modiÖcation of bottom-up processing in response to feedback from higher levels of

the system during run time. Such top-down feedback could, for instance, lead to on-the-×y

changes in parameter values of peripheral modules, like the Ölter bandwidths of the

basilar-membrane Ölters. In addition, the object-oriented  framework allows direct

switching between alternative peripheral Ölter modules, while keeping all other

components unchanged, allowing for a systematic comparison of alternative processors.

Finally, the framework supports online processing of the two-channel ear signals.

Credits

The Auditory front-end is developed by Remi Decorsière and Tobias May from DTU, and

the rest of the Two!Ears team.

The Auditory front-end includes the following contributions from publicly available

Matlab toolboxes or classes:

Auditory Modeling Toolbox
LTFAT   v: latest 



Voicebox
circVBuf

  v: latest 



Docs  » Auditory front-end  » Overview

Overview
Getting started
Computation of an auditory representation
Chunk-based processing
Feedback inclusion
List of commands

The purpose of the Auditory front-end is to extract a subset of common auditory

representations from a binaural recording or from a stream of binaural audio data. These

representations are to be used later by higher modelling or decision stages. This short

description of the role of the Auditory front-end highlights its three fundamental

properties:

The framework operates on a request-based mechanism and extracts
the subset of all available representations which has been requested
by the user. Most of the available representations are computed from
other representations, i.e., they depend on other representations.
Because different representations can have a common dependency,
the available representations are organised following a “dependency
tree”. The framework is built such as to respect this structure and
limit redundancy. For example, if a user requests A and B, both
depending on a representation C, the software will not compute C
twice but will instead reuse it. As will be presented later, to achieve
this, the processing is shared among processors. Each processor is
responsible for one individual step in the extraction of a given
representation. The framework then instantiates only the necessary
processors at a given time.
It can operate on a stream of input data. In other words, the
framework can operate on consecutive chunks of input signal, each of
arbitrary length, while returning the same output(s) as if the whole
signal (i.e., the concatenated chunks) was used as input.
The user request can be modiÖed at run time, i.e., during the
execution of the framework. New representations can be requested,
or the parameters of existing representations can be changed in
between two blocks of input signal. This mechanism is particularly
designed to allow higher stages of the whole Two!Ears framework to
provide feedback, requesting adjustments to the computation of
auditory representations. In connection to the Örst point above, when

  v: latest 



the user requests such a change, the framework will identify where in
the dependency tree the requested change starts affecting the
processing and will only compute the steps affected.

  v: latest 
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Getting started
The Auditory front-end was developed entirely using Matlab version 8.3.0.532 (R2014a).

It was tested for backward compatibility down to Matlab version 8.0.0.783 (R2012b). The

source code, test and demo scripts are all available from the public repository at

https://github.com/TWOEARS/auditory-front-end.

All Öles are divided in three folders, /doc , /src  and /test  containing respectively the

documentation of the framework, the source code, and various test scripts. Once Matlab

opened, the source code (and if needed the other folders) should be added to the Matlab

path. This can be done by executing the script startAuditoryFrontEnd  in the main folder:

>> startAuditoryFrontEnd 

 

As will be seen in the following subsection, the framework is request-based: the user

places one or more requests, and then informs the framework that it should perform the

processing. Each request corresponds to a given auditory representation, which is

associated with a short nametag. The command requestList  can be used to get a summary

of all supported auditory representations:

  v: latest 



>> requestList 
 
  Request name       Label                            Processor 
  ‐‐‐‐‐‐‐‐‐‐‐‐       ‐‐‐‐‐                            ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  adaptation        Adaptation loop output            adaptationProc 
  amsFeatures       Amplitude modulation spectrogram  modulationProc 
  autocorrelation   Autocorrelation computation       autocorrelationProc 
  crosscorrelation  Crosscorrelation computation      crosscorrelationProc 
  filterbank        DRNL output                       drnlProc 
  filterbank        Gammatone filterbank output       gammatoneProc 
  gabor             Gabor features extraction         gaborProc 
  ic                Inter‐aural coherence             icProc 
  ild               Inter‐aural level difference      ildProc 
  innerhaircell     Inner hair‐cell envelope          ihcProc 
  itd               Inter‐aural time difference       itdProc 
  moc               Medial Olivo‐Cochlear feedback    mocProc 
  myNewRequest      A description of my new request   templateProc 
  offsetMap         Offset map                        offsetMapProc 
  offsetStrength    Offset strength                   offsetProc 
  onsetMap          Onset map                         onsetMapProc 
  onsetStrength     Onset strength                    onsetProc 
  pitch             Pitch estimation                  pitchProc 
  precedence        Precedence effect                 precedenceProc 
  ratemap           Ratemap extraction                ratemapProc 
  spectralFeatures  Spectral features                 spectralFeaturesProc 
  time              Time domain signal                preProc 

 

A detailed description of the individual processors used to obtain these auditory

representations will be given in Available processors.

The implementation of the Auditory front-end is object-oriented, and two objects are

needed to extract any representation:

A data object, in which the input signal, the requested representation,
and also the dependent representations that were computed in the
process are all stored.
A manager object which takes care of creating the necessary
processors as well as managing the processing.

In the following sections, examples of increasing complexity are given to demonstrate how

to create these two objects, and which functionalities they offer.
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Computation of an auditory
representation

Using default parameters
Input/output signals dimensions
Change parameters used for computation
Compute multiple auditory representations
How to plot the result

The following sections describe how the Auditory front-end can be used to compute an

auditory representation with default parameters of a given input signal. We will start with

a simple example, and gradually explain how the user can gain more control over the

respective parameters. It is assumed that the entire input signal - for which the auditory

representation should be computed - is available. Therefore, this operation is referred to

as batch processing. As stated before, the framework is also compatible with chunk-based

processing (i.e., when the input signal is acquired continuously over time, but the auditory

representation is computed for smaller signal chunks). The chunk-based processing will be

explained in a later section.

Using default parameters

As an example, extracting the interaural level difference ’ild’  for a stereo signal sIn

(e.g., obtained from a ’ .wav ’ Öle through Matlab´s wavread ) sampled at a frequency fsHz

(in Hz) can be done in the following steps:

1 
2 
3 
4 
5 
6 
7 
8 
9

% Instantiation of data and manager objects 
dataObj = dataObject(sIn,fsHz); 
managerObj = manager(dataObj); 
 
% Request the computation of ILDs 
sOut = managerObj.addProcessor('ild'); 
 
% Request the processing 
managerObj.processSignal; 
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Line 2 and 3 show the instantiation of the two fundamental objects: the data object and

the manager. Note that the data object is always instantiated Örst, as the manager needs a

data object instance as input argument to be constructed. The manager instance in line 3 is

however an “empty” instance of the manager  class, in the sense that it will not perform any

processing. Hence a processing needs to be requested, as done in line 6. This particular

example will request the computation of the inter-aural level difference ’ild’ . This step is

conÖguring the manager instance managerObj  to perform that type of processing, but the

processing itself is performed at line 9 by calling the processSignal  method of the manager

class.

The request of an auditory representation via the addProcessor  method of the manager

class on line 6 returns as an output argument a cell array containing a handle to the

requested signal, here named sOut . In the Auditory front-end, signals are also objects. For

example, for the output signal just generated:

>> sOut{1} 
 
ans = 
 
  TimeFrequencySignal with properties: 
 
          cfHz: [1x31 double] 
         Label: 'Interaural level difference' 
          Name: 'ild' 
    Dimensions: 'nSamples x nFilters' 
          FsHz: 100 
       Channel: 'mono' 
          Data: [267x31 circVBufArrayInterface] 

 

This shows the various properties of the signal object sOut . These properties will be

described in detail in the Technical description. To access the computed representation,

e.g., for further processing, one can create a copy of the data contained in the signal into a

variable, say myILDs :

>> myILDs = sOut{1}.Data(:); 

 

Note

Note the use of the column operator (:) . That is because the property .Data  of signal

objects is not a conventional Matlab array and one needs this syntax to access all the

values it stores.

The nature of the .Data  property is further described in Circular buffer.
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Input/output signals dimensions

The input signal sIn , for which a given auditory representation needs be computed, is a

simple array. Its Örst dimension (lines) should span time. Its Örst column should correspond

to the left channel (or mono channel, if it is not a stereo signal) and the second column to

the right channel. This is typically the format returned by Matlab´s embedded functions

audioread  and wavread .

The input signal can be either mono or stereo/binaural. The framework can operate on

both. However, some representations, such as the as the ILD as requested in the previous

example, are based on a comparison between the left and the right ear signals. If a mono

signal was provided instead of a binaural signal, the request of computing the ILD

representation would produce the following warning and the request would not be

computed:

Warning: Cannot instantiate a binaural processor with a mono input signal! 
> In manager>manager.addProcessor at 1127 

 

The dimensions of the output signal from the addProcessor  method will depend on the

representation requested. In the previous example, the ’ild’  request returns a single

output for a stereo input. However, when the request is based on a single channel and the

input is stereo, the processing will be performed for left and right channel, and both left

and right outputs are returned. In such cases, the output from the method addProcessor

will be a cell array of dimensions 1 x 2  containing output signals for the left channel (Örst

column) and right channel (second column). For example, the returned sOut  could take the

form:

>> sOut 
 
sOut = 
 
    [1x1 TimeFrequencySignal]    [1x1 TimeFrequencySignal] 

 

The left-channel output can be accessed using sOut{1} , and similarly, sOut{2}  for the

right-channel output.

Change parameters used for computation

For the requested representation
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Each individual processors that is supported by the Auditory front-end can be controlled

by a set of parameters. Each parameter can be accessed by a unique nametag and has a

default value. A summary of all parameter names and default values for the individual

processors can be listed by the command  parameterHelper :

>> parameterHelper 
 
Parameter handling in the TWO!EARS Auditory Front‐End 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
The extraction of various auditory representations performed by the TWO!EARS Auditory 
Front‐End software involves many parameters. Each parameter is given a unique name and a 
default value. When placing a request for TWO!EARS auditory front‐end processing that uses 
one or more non‐default parameters, a specific structure of non‐default parameters needs to 
be provided as input. Such structure can be generated from |genParStruct|, using pairs of 
parameter name and chosen value as inputs. 
 
Parameters names for each processor are listed below: 
            Amplitude modulation| 
            Auto‐correlation| 
            Cross‐correlation| 
            DRNL filterbank| 
            Gabor features extractor| 
            Gammatone filterbank| 
            IC Extractor| 
            ILD Extractor| 
            ITD Extractor| 
            Medial Olivo‐Cochlear feedback processor| 
            Inner hair‐cell envelope extraction| 
            Neural adaptation model| 
            Offset detection| 
            Offset mapping| 
            Onset detection| 
            Onset mapping| 
            Pitch| 
            Pre‐processing stage| 
            Precedence effect| 
            Ratemap| 
            Spectral features| 
            Plotting parameters| 

 

Each element in the list is a hyperlink, which will reveal the list of parameters for a given

element, e.g.,

Inter‐aural Level Difference Extractor parameters:: 
 
  Name            Default   Description 
  ‐‐‐‐            ‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐ 
  ild_wname       'hann'    Window name 
  ild_wSizeSec    0.02      Window duration (s) 
  ild_hSizeSec    0.01      Window step size (s) 
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It can be seen that the ILD processor can be controlled by three parameters, namely

ild_wname , ild_wSizeSec  and ild_hSizeSec . A particular parameter can be changed by

creating a parameter structure which contains the parameter name (nametags) and the

corresponding value. The function genParStruct  can be used to create such a parameter

structure. For instance:

>> parameters = genParStruct('ild_wSizeSec',0.04,'ild_hSizeSec',0.02) 
 
parameters = 
 
  Parameters with properties: 
 
    ild_hSizeSec: 0.0200 
    ild_wSizeSec: 0.0400 

 

will generate a suitable parameter structure parameters  to request the computation of ILD

with a window duration of 40 ms and a step size of 20 ms. This parameter structure is then

passed as a second input argument in the addProcessor  method of a manager object. The

previous example can be rewritten considering the change in parameter values as follows:

% Instantiation of data and manager objects 
dataObj = dataObject(sIn,fsHz); 
managerObj = manager(dataObj); 
 
% Non‐default parameter values 
parameters = genParStruct('ild_wSizeSec',0.04,'ild_hSizeSec',0.02); 
 
% Place a request for the computation of ILDs 
sOut = managerObj.addProcessor('ild',parameters); 
 
% Perform processing 
managerObj.processSignal; 

 

For a dependency of the request

The previous example showed that the processor extracting ILDs was accepting three

parameters. However, the representation it returns, the ILDs, will depend on more than

these three parameters. For instance, it includes a certain number of frequency channels,

but there is no parameter to control these in the ILD processor. That is because such

parameters are from other processors that were used in intermediate steps to obtain the

ILD. Controlling these parameters therefore requires knowledge of the individual steps in

the processing.
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Most auditory representations will depend on another representation, itself being derived

from yet another one. Thus, there is a chain of dependencies between different

representations, and multiple processing stages will be required to compute a particular

output. The list of dependencies for a given processor can be visualised using the function

Processor.getDependencyList(’processorName’) , e.g.

>> Processor.getDependencyList('ildProc') 
 
ans = 
 
    'innerhaircell'    'filterbank'    'time' 

 

shows that the ILD depends on the inner hair-cell representation ( ’innerhaircell’ ), which

itself is obtained from the output of a gammatone Ölter bank ( ’filterbank’ ). The Ölter

bank is derived from the time-domain signal, which itself has no further dependency as it is

directly derived from the input signal.

When placing a request to the manager, the user can also request a change in parameters

of any of the request’s dependencies. For example, the number of frequency channels in

the ILD representation is a property of the Ölter bank, controlled by the parameter

’fb_nChannels’ . (which name can be found using parameterHelper.m ). This parameter can

also be requested to have a non-default value, although it is not a parameter of the

processor in charge of computing the ILD. This is done in the same way as previously

shown:

% Non‐default parameter values 
parameters = genParStruct('fb_nChannels',16); 
 
% Place a request for the computation of ILDs 
sOut = managerObj.addProcessor('ild',parameters); 
 
% Perform processing 
managerObj.processSignal; 

 

The resulting ILD representation stored in sOut{1}  will be based on 16 channels, instead

of 31.

Compute multiple auditory representations

Place multiple requests
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Multiple requests are supported in the framework, and can be carried out by consecutive

calls to the addProcessor  method of an instance of the manager with a single request

argument. It is also possible to have a single call to the addProcessor  method with a cell

array of requests, e.g.:

% Place a request for the computation of ILDs AND autocorrelation 
[sOut1 sOut2] = managerObj.addProcessor({'ild','autocorrelation'}) 

 

This way, the manager set up in the previous example will extract an ILD and an auto-

correlation representation, and provide handles to the three signals, in sOut1{1}  for the

ILD (it is a mono representation), sOut2{1}  and sOut2{2}  for the autocorrelations of

respectively left and right channels.

To use non-default parameter values, three syntax are possible:

If there are several requests, but all use the same set of parameter values p :

managerObj.addProcessor({'name1', .. ,'nameN'},p) 

 

If there is only one request ( name ), but with different sets of parameter values

( p1 ,..., pN ), e.g., for investigating the in×uence of a given parameter

managerObj.addProcessor('name',{p1, .. ,pN}) 

 

If there are several requests and some, or all, of them use a different set of parameter

values, then it is necessary to have a set of parameter ( p1 ,..., pN ) for each request

(possibly by duplicating the common ones) and place them in a cell array as follows:

managerObj.addProcessor({'name1', .. ,'nameN'},{p1, .. ,pN}) 

 

Note that in the two examples above, no output is speciÖed for the addProcessor  method,

but the representations will be computed nonetheless. The output of addProcessor  is there

for convenience and the following subsection will explain how to get a hang on the

computed signals without an explicit output from addProcessor .

Requests can also be placed directly as optional arguments in the manager constructor,

e.g., to reproduce the previous script example:
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% Instantiation of data and manager objects 
dataObj = dataObject(sIn,fsHz); 
managerObj = manager(dataObj,{'ild','autocorrelation'}); 

 

The three possibilities described above can also be used in this syntax form.

Computing the signals

This is done in the exact same way as for a single request, by calling the processSignal

method of the manager:

% Perform processing 
managerObj.processSignal; 

 

Access internal signals

The optional output of the addProcessor  method is provided for convenience. It is actually

a pointer (or handle, in Matlab´s terms) to the actual signal object which is hosted by the

data object on which the manager is based. Once the processing is carried out, the

properties of the data object can be inspected:

>> dataObj 
 
dataObj = 
 
  dataObject with properties: 
 
   bufferSize_s: 10 
       isStereo: 1 
            ild: {[1x1 TimeFrequencySignal]} 
  innerhaircell: {[1x1 TimeFrequencySignal]  [1x1 TimeFrequencySignal]} 
          input: {[1x1 TimeDomainSignal]  [1x1 TimeDomainSignal]} 
           time: {[1x1 TimeDomainSignal]  [1x1 TimeDomainSignal]} 
     filterbank: {[1x1 TimeFrequencySignal]  [1x1 TimeFrequencySignal]} 
autocorrelation: {[1x1 CorrelationSignal]  [1x1 CorrelationSignal]} 

 

Apart from the properties bufferSize_s  and isStereo  which are inherent properties of the

data object (and discussed later in the Technical description), the remaining properties

each correspond to one of the representations computed to achieve the user’s request(s).

They are each arranged in cell arrays, with Örst column being the left, or mono channel, and

the second column the right channel. For instance, to get a handle sGammaR  to the right

channel of the gammatone Ölter bank output, type:   v: latest 



>> sGammaR = dataObj.filterbank{2} 
 
sGammaR = 
 
  TimeFrequencySignal with properties: 
 
      cfHz: [1x31 double] 
     Label: 'Gammatone filterbank output' 
      Name: 'filterbank' 
Dimensions: 'nSamples x nFilters' 
      FsHz: 44100 
   Channel: 'right' 
      Data: [118299x31 circVBufArrayInterface] 

 

How to plot the result

Plotting auditory representations is made very easy in the Auditory front-end. As

explained before, each representation that was computed during a session is stored as a

signal object, which each are individual properties of the data object. Signal objects of each

type have a plot  method. Called without any input arguments, signal.plot  will

adequately plot the representation stored in signal  in a new Ögure, and returns as output

a handle to said Ögure. The plotting method for all signals can accept at least one optional

argument, which is a handle to an already existing Ögure or subplot in a Ögure. This way the

representation can be included in an existing plot. A second optional argument is a

structure of non-default plot parameters. The parameterHelper  script also lists plotting

options, and they can be modiÖed in the same way as processor parameters, via the script

genParStruct . These concepts can be summed up in the following example lines, that

follows right after the demo code from the previous subsection:
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21

% Request the processing 
managerObj.processSignal; 
 
% Plot the ILDs in a separate figure 
sOut{1}.plot; 
 
% Create an empty figure with subplots 
figure; 
h1 = subplot(2,2,1); 
h2 = subplot(2,2,2); 
h3 = subplot(2,2,3); 
h4 = subplot(2,2,4); 
 
% Change plotting options to remove colorbar and reduce title size 
p = genParStruct('bColorbar',0,'fsize_title',12); 
 
% Plot additional representations 
dataObj.innerhaircell{1}.plot(h1,p); 
dataObj.innerhaircell{2}.plot(h2,p); 
dataObj.filterbank{1}.plot(h3,p); 
dataObj.filterbank{2}.plot(h4,p); 

 

This script will produce the two Ögure windows displayed in Fig. 6. Line 22 of the script

creates the window “Figure 1”, while lines 35 to 38 populate the window “Figure 2” which

was created earlier (in lines 25 to 29).

Fig. 6 The two example Ögures generated by the demo script.
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Chunk-based processing
As mentioned in the previous section, the framework is designed to be compatible with

chunk-based processing. As opposed to “batch processing”, where the entire input signal is

known a priori, this means working with consecutive chunks of input signals of arbitrary

size. In practice the chunk size will often be the same from one chunk to another. However,

this is not a requirement here, and the framework can accept input chunks of varying size.

The main constraint behind working with an input that is segmented into chunks is that the

returned output should be exactly the same as if the whole input signal (i.e., the

concatenated chunks) was used as input. In other terms, the transition from one chunk to

the next needs to be taken into account in the processing. For example, concatenating the

outputs obtained from a simple Ölter applied separately to two consecutive chunks will not

provide the same output as if the concatenated chunks were used as input. To obtain the

same output, one should for example use methods such as overlap-add or overlap-save.

This is not trivial, particularly in the context of the Auditory front-end where more

complex operations than simple Öltering are involved. A general description of the method

used to ensure chunk-based processing is given in processChunk method and chunk-based

compatibility.

Handling segmented input in practice is done mostly the same way as for a whole input

signal. The available demo script DEMO_ChunkBased.m  provides an example of chunk-based

processing by simulating a chunk-based acquisition of the input signal with variable chunk

size and computing the corresponding ILDs.

In this script, one can note the two differences in using the Auditory front-end in a chunk-

based scenario, in comparison to a batch scenario:

21 
22 
23

% Instantiation of data and manager objects 
dataObj = dataObject([],fsHz,10,2); 
managerObj = manager(dataObj); 

 

Because the signal is not known before the processing is carried out, the data object

cannot be initialised from the input signal. Hence, as is seen on line 22, one needs to

instantiate an empty data object, by leaving the Örst input argument blank. The sampling

frequency is still necessary however. The third argument (here set to 10 ) is a global signal

buffer size in seconds. Because in an online scenario, the framework could be operating  v: latest 



over a long period of time, internal representations cannot be stored over the whole

duration and are instead kept for the duration mentioned there. The last argument ( 2 )

indicates the number of channel that the framework should expect from the input (a mono

input would have been indicated by 1 ). Again, it is necessary to know the number of

channels in the input signal, to instantiate the necessary objects in the data object and the

manager.

43 
44

% Request the processing of the chunk 
managerObj.processChunk(sIn(chunkStart:chunkStop,:),1); 

 

The processing is carried out on line 44 by calling the processChunk  method of the manager.

This method takes as input argument the new chunk of input signal. The additional

argument, 1 , indicates that the results should be appended to the internal

representations already computed. This can be set to 0  in cases where keeping track of

the output for the previous chunks is unnecessary, for instance if the output of the current

chunk is used by a higher-level function. The difference with the processSignal  method is

important. Although processSignal  actually calls internally processChunk , it also resets

internal states of the framework (what ensures continuity between chunks) before

processing.

The script DEMO_ChunkBased.m  will also compute the of×ine result and will plot the difference

in output for the two computations. This plot is shown in Fig. 7. Note the magnitude on the

order of , which is in the range of Matlab numerical precision, suggesting that the

representations computed online or of×ine are the same up to some round-off errors.

10
−15
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Fig. 7 Difference in ILDs obtained with online and of×ine processing
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Feedback inclusion
Placing a new request
Modifying a processor parameter
Deleting a processor

A key concept of the Auditory front-end is its ability to respond to feedback from the user

or from external, higher stage models. Conceptually, feedback at the stage of auditory

feature extraction is realised by allowing changes in parameters and/or changes in which

features are extracted at run time, i.e., in between two chunks of input signal in a chunk-

based processing scenario.

In practice, three types of feedback can be identiÖed: - A new request is placed - One or

more parameters of an existing request is changed - A processor has become obsolete and

is deleted

Placing a new request

Placing a new request at run time, i.e., online, is done exactly is it is done of×ine, by calling

the .addProcessor  method of an existing manager instance.

Modifying a processor parameter

Warning

Some parameters are blacklisted for modiÖcations as they would imply a change in

dimension in the output signal of the processor. If you need to perform this change

anyway, consider placing a new request instead of modifying an existing one.

Modifying a processor parameter can be done by calling the modifyParameter  method of

that processor in between two calls to the processChunk  of the manager instance.
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Fig. 8 Sharpening the frequency selectivity of the ear by means of
feedback

Fig. 8 illustrates feedback capability of the Auditory front-end. This is a rate-map

representation of a speech signal that is extracted online. The bandwidth of auditory

Ölters, controlled by the parameter fb_bwERBs  in the original request was set to 3 ERBs , an

abnormally large value in comparison to a normal-hearing frequency selectivity.

Throughout the processing, the bandwidth is reduced to 1.5 ERBs  by calling:

mObj.Processors{2}.modifyParameter('fb_bwERBs',1.5); 

 

in between two calls to the processChunk  method of the manager mObj , at around 0.9s.

Here, mObj.Processors{2}  points to the auditory Ölterbank processor, an instance of a

gammatone processor. The bandwidth is later (at 1.75s) reduced even further (to about

0.25). Fig. 8 illustrates how narrower auditory Ölters will reveal the harmonic structure of

speech.

Note
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If a processor is modiÖed in response to feedback, subsequent processors need to reset

themselves, in order not to carry on incorrect internal states. This is done automatically

inside the framework. For example, in the Ögure above, internal Ölters of the inner hair-

cell envelope extraction and the ratemap computation are reset accordingly when the

bandwidth parameter is changed

Deleting a processor

Deleting a processor is simply done by calling its remove  method. Like for parameter

modiÖcations, this affects subsequent processors, as they will also become obsolete.

Hence they will also be automatically deleted.

Deleting processors will leave empty entries in the manager.Processors  cell array. To clean

up the list of processor, call the cleanup()  method of your manager instance.
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List of commands
Signal objects sObj

This section sums up the commands that could be relevant to a standard user of the

Auditory front-end. It does not describe each action extensively, nor does it give a full list

of corresponding parameters. A more detailed description can be obtained through calling

the help script of a given method from Matlab´s command window. Note that one can get

help on a speciÖc method of a given class. For example

>> help manager.processChunk 

 

will return help related to the processChunk  method of the manager class. The following

aims at being concise, hence optional inputs are marked as “ ... ” and can be reviewed

from the speciÖc method help.

Signal objects sObj

sObj.Data(:) Returns all the data in the signal

sObj.Data(n1:n2) Returns the data in the time interval [n1,n2]  (samples)

sObj.findProcessor(mObj) Finds processor that computed the signal

sObj.getParameters(mObj) Parameter summary for that signal

sObj.getSignalBlock(T,...) Returns last T  seconds of the signal

sObj.play Plays back the signal (time-domain signals only)

sObj.plot(...) Plots the signal

Data objects dObj

dataObject(s,fs,bufSize,nChannels) Constructor
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dObj.addSignal(sObj) Adds a signal object

dObj.clearData Clears all signals in dObj

dObj.getParameterSummary(mObj) Lists parameter used for each signal

dObj.play Plays back the containing audio signal

Processors pObj

pObj.LowerDependencies List of processors pObj  depends on

pObj.UpperDependencies List of processors depending on pObj

pObj.getCurrentParameters Parameter summary for that processor

pObj.getDependentParameter(parName) Value of a parameter from pObj  or its dependencies

pObj.hasParameters(parStruct) True if pObj  used the exact values in parStruct

pObj.Input Handle to input signal object

pObj.Output Handle to output signal object

pObj.modifyParameter Change a parameter value

pObj.remove Removes a processor (and its subsequent processors)

Manager mObj

manager(dObj) Constructor

manager(dObj,name,param) Constructor with initial request

mObj.addProcessor(name,param) Adds a processor (including eventual dependencies)

mObj.Data Handle to the associated data object

mObj.processChunk(input,...) Process a new chunk

mObj.Processors Lists instantiated processors

mObj.processSignal Process a signal of×ine

mObj.reset Resets all processors

mObj.cleanup Cleans up the list of processors
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Technical description
Data handling
Processors
Manager

Many different auditory models are available that can transform an input signal into an

auditory representation. The actual design challenges behind the Auditory front-end arise

from the multiplicity of supported representations, the requirement to process continuous

signal in a chunk-based manner, and the ability to change what is being computed at run-

time, which will allow the incorporation of feedback from higher processing stages. In

addition to these three constraints, the framework will be subject to frequent updates in

the future of the Two!Ears project (e.g., adding new processors), so the expandability and

maintainability of its implementation should be optimal. For these reasons, the framework

is implemented using a modular object-oriented approach.

This chapter exposes the architecture and interactions of all the objects involved in the

Auditory front-end and how the main constraints were tackled conceptually. In an effort to

respect encapsulation and the hierarchical organisation of the objects, the sections are

arranged in a “bottom-up” way: from the most fundamental objects to the more global

processes.

All classes involved in the Auditory front-end implementation are inheriting the Matlab

handle  master class. This allows every created object to be of the handle  type, and

simulates a “call-by-reference” when manipulating the objects. Given an object obj

inheriting the handle class, doing obj2 = obj  will not copy the object, but only obtain a

pointer to it. If obj  is modiÖed, then so is obj2 . This avoids unnecessary copies of objects,

limiting memory use, as well as providing user friendly handles to objects included under

many levels of class hierarchy. The user can manipulate a simple short-named handle

instead of tediously accessing the object.
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Data handling
Circular buffer
Signal objects
Data objects

Circular buffer

Memory pre-allocation of large arrays in Matlab is well known to be a critical operation for

optimising computation time. The Auditory front-end, particularly in an online scenario,

will be confronted with this problem. For each new chunk of the input signal, chunks of

output are computed for each internal representation and are appended to the already

existing output. Computation time will be strongly affected if the arrays containing the

data are not initialised appropriately (i.e., the memory it occupies is pre-allocated) to Öt the

input signal duration.

The issue in a real-time scenario is that the signal duration is unknown. To overcome this

problem, data for each signal is stored in a buffer of Öxed duration which is itself pre-

allocated. Buffers are updated following a FIFO rule: once the buffer is full, the oldest

samples in the buffer are overwritten by the new signal samples.

The circVBuf  class

A conceptual way of implementing a FIFO rule is to use circular (or ring) buffers. The

inconvenience of a traditional linear buffer is that once it is full and new input overwrites

old samples (i.e., it is in its “steady-state”), reading the data from it implies reaching the end

of the buffer and continuing reading from its beginning. The data read will be in two

fragments, because of the linear buffer having a physical beginning and end which do not

match to the oldest and newest data samples. This is eliminated in circular buffers which

do not have a beginning or end, and a contiguous segment is always obtained upon reading.

Circular buffers were implemented for the Auditory front-end based on the third-party

class provided by [Goebbert2014], which has been slightly modiÖed to account for multi-

dimensional data (instead of vector-only).

Circular buffer interface
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The circVBuf  class provides a buffer that is conceptually circular, in the sense that it allows

continuous reading of the data. However in practice it still stores data in a linear array in

Matlab (the size of which is, however, twice the size of the actual data). Accessing stored

data requires knowledge about this class and can be tedious to a naive user. To eliminate

confusion and make the buffer transparent to the user, the interface

circVBuffArrayInterface  was implemented, with the aim of allowing the buffer to use most

basic array operations.

Given a circular buffer circBuffer , the interface is obtained by

buffer = circVBufArrayInterface(circBuffer) 

 

It will allow the following operations:

buffer(n1:n2)  returns stored data between positions n1  and n2 ,
where position 1  is the oldest sample in the buffer (but not
necessarily the Örst one in the actual array storing data, due to
circularity). For multiple dimensions, these indices always refer to the
Örst dimension. To return stored data up to the most recent sample,
use buffer(n1:end) .
buffer(:)  returns all data stored in the buffer (ignoring “empty”

sections of the buffer, if said buffer was never Ölled).
buffer(’new’)  returns the latest chunk of data that was added to the

buffer.
length(buffer)  returns the effective (i.e., ignoring empty sections)

buffer length across its Örst dimension.
size(buffer)  returns the effective size of the buffer (including other

dimensions).
numel(buffer)  returns the total number of elements stored

(calculated as product of the effective dimensions).
isempty(buffer)  returns true  when no data is stored, false

otherwise.

This provides an array behaviour to the buffers, simplifying greatly their use.

Note

Note that the only limitation is the need of the column operator :  to access all data, as

in buffer(:) . Without it, buffer  will return a handle to the circVBufArrayInterface

object.
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Signal objects

Signals are implemented as objects in the Auditory front-end. To avoid code repetition and

make better use of object-oriented concepts, signals are grouped according to their

dimensions, as they then share the same properties. The following classes are

implemented:

TimeDomainSignal  for one-dimensional (time) signals.
TimeFrequencySignal  which stores two-dimensional signals where the

Örst dimension relates to time (but can be, e.g., a frame index) and the
second to the frequency channel. These signals include as an
additional property a vector of channel centre frequencies cfHz .
Signals of such form are obtained from requesting, for example,
’filterbank’ , ’innerhaircell’ , ’ild’ ,... In addition, time-frequency

signals containing binary data (used e.g., in onset or offset mapping)
have their own BinaryMask  signal class.
CorrelationSignal  for three-dimensional signals where the third

dimension is a lag position. These include also the cfHz  property as
well as a vector of lags ( lags ).
ModulationSignal  for three-dimensional signals where the third

dimension is a modulation frequency. These include cfHz  and
modCfHz  (vector of centre modulation frequencies) as properties.
FeatureSignal  used to store a collection of time-domain signals, each

associated to a speciÖc name. Each feature is a single vector, and all of
them are arranged as columns of a same matrix. Hence they include
an ordered list of features names fList  that labels each column.

All these classes inherit the parent Signal  class. Hence they all share the following

common “read-only” properties:

Label , which is a “formal” description of the signal, e.g.,
’Inner hair‐cell envelope’ , used for example when plotting the signal.
Name , which is a name tag unique to each signal type, e.g.,
’innerhaircell’ . This name corresponds to the name used for a

request to the manager.
Dimensions , which describes in a short string how dimensions are

arranged in the signal, e.g., ’nSamples x nFilters’
FsHz , the sampling frequency of this speciÖc signal. If the signal is

framed or down-sampled (e.g., like a rate-map or an ILD) this value
will be different from the input signal’s sampling frequency.
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Channel , which states ’left’ , ’right’  or ’mono’ , depending on which
channel from the input signal this signal was derived.
Data , an interface object ( circVBufArrayInterface  described earlier) to

the circular buffer containing all data. The actual buffer, Buf  is a
circVBuf  object and a protected property of the signal (not visible to

the user).

The Signal  class deÖnes the following methods that are then shared among children

objects:

A super constructor, which sets up the internal buffer according to
the signal dimensions. Each children signal class is calling this super
constructor before populating its other properties.
An appendChunk  method used to Öll the internal buffer.
A setData  method used for initialising the internal buffer given some
data.
A clearData  method for re-initialisation.
The getSignalBlock  method returning a segment of data of chosen
duration, starting from the newest elements.
The findProcessor  method which, given a handle to a manager object,
will retrieve which processor has computed this speciÖc signal (by
comparing it with the Output  property of each processor, described in
General considerations).
A getParameters  method which, given a handle to a manager object,
will retrieve the list of parameters used in the processing to obtain
that signal.

In addition, the Signal  class deÖnes an abstract plot  method, which each children should

implement. This cannot be deÖned in the parent class as the plotting routines will be

drastically different depending on children signal dimensions. Children classes therefore

only implement their own constructor (which still calls the super-constructor) and their

respective plotting routines.

Data objects

Description

Many signal objects are instantiated by the Auditory front-end (one per representation

involved and per channel). To organise and keep track of them, they are collected in a

dataObject  class. This class inherits the dynamicprops  Matlab class (itself inheriting the

handle ) class. This allows to dynamically deÖne properties of the class.
  v: latest 



This way, each signal involved in a given session of the Auditory front-end will be grouped

according to its class in a distinct property of the dataObject , with name given by the signal

signal.Name  unique name tag. Extra properties of the data object include:

bufferSize_s  which is the common duration of all circVBuf  objects in
the signals.
A ×ag isStereo , which if true will indicate to the data object that all
signals come as pairs of left/right channels.

Data objects are constructed by providing an input signal (which can be empty in online

scenarios), a mandatory sampling frequency in Hz, a global buffer size (10 s by default), and

the number of channels of the input (1 or 2). This number of channel is not necessary if an

input signal is used as argument in the constructor but needs to be provided otherwise.

The dataObject  deÖnition includes the following, self-explanatory methods:

addSignal(signalToAdd)

clearData

getParameterSummary  returning a list of all parameters used for the
computation of all included signal (given a handle to the
corresponding manager).
play , provided for user convenience.

Signal organisation

As mentioned before, data objects store signal objects. Each class of signal occupies a

property in the data object named after the signal .Name  property. Multiple signals of the

same class will be stored as a cell array in that property. In the cell array, the Örst column is

always for the left channel (or mono signal), and the second column for the right channel. If

multiple signals of the same type are present (e.g., if the user requested the same

representation twice but with a change of parameters), then the corresponding signals are

stored in different lines of the array. For instance, for a session where the user requested

the inner hair-cell envelope twice, with the second request changing only the way of

extracting the envelope (i.e., the parameter ’ihc_method’ ), the following data object is

created:
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>> dataObj 
 
dataObj = 
 
  dataObject with properties: 
 
     bufferSize_s: 10 
         isStereo: 1 
             time: {[1x1 TimeDomainSignal]  [1x1 TimeDomainSignal]} 
            input: {[1x1 TimeDomainSignal]  [1x1 TimeDomainSignal]} 
        gammatone: {[1x1 TimeFrequencySignal]  [1x1 TimeFrequencySignal]} 
    innerhaircell: {2x2 cell} 

 

Each signal-related Öeld except innerhaircell  is a cell array of a single line (one signal), and

two columns (for left and right channel). Because the second request from the user

included only a change in parameter for the inner hair-cell computation, the same initial

gammatone  signal is used for both, but there are two output innerhaircell  signals (hence a

cell array of two lines) for each channel (hence two columns).

In that case, to distinguish between the two signals and know which one was computed

with which set of parameter, one can call the signal’s getParameters  method. Given a

handle to the manager object, it will return a list of all parameters used to obtain that

signal (including parameters used in intermediate processing steps).
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Processors
General considerations
processChunk  method and chunk-based compatibility

Processors are at the core of the Auditory front-end. Each processor is responsible for an

individual step in the processing, i.e., going from representation A to representation B.

They are adapted from existing models documented in the literature such as to allow for

block-based (online) processing. This is made possible by keeping track of the information

necessary to transition adequately between two chunks of input. The nature of this

“information” varies depending on the processor, and we use in the following the term

“internal state” of the processor to refer to it. Internal states and online processing

compatibility are then assessed in processChunk method and chunk-based compatibility.

A detailed overview of all processors, with a list of all parameters they accept, is given in

Available processors. Hence this section will focus on the properties and methods shared

among every processors, as well as the techniques employed to make processing

compatible with chunk-based inputs.

General considerations

As for signal objects, processors make use of inheritance, with a parent Processor  class.

The parent class deÖnes shared properties of the processor, abstract classes that each

children must implement, and a couple of methods shared among children.

The motivation behind the implementation of these methods is probably not clear at this

stage, but should appear in the following sections. Many of these methods are used in the

manager object described later for organising and routing the processing such as to always

perform as few operations as needed.

Properties

Each processor shares the properties:

Type  - describes formally the processing performed
Input  - list of input signal object handles
Output  - list of output signal object handles   v: latest 



isBinaural  - Flag indicating the need of left and right channel as input
FsHzIn  - Input signal sampling frequency (Hz)
FsHzOut  - Output signal sampling frequency (Hz)
UpperDependencies  - List of processors that directly depend on this

processor
LowerDependencies  - List of processors this processor directly depends

on
Channel  - Audio channel this processor operates on
parameters  - Parameter object instance that contains parameter

values for this processor

These properties are populated automatically when using the Auditory front-end by the

manager class which is described later in Manager. All of them, apart from Type  are

implemented as Hidden  properties as they should not be relevant to the user but still need

public access by other classes.

In addition, three private properties are implemented:

bHidden  - A ×ag indicating that the processor should be hidden from
the framework. This is used for example for “sub-processors” such as
downSamplerProc

listenToModify  - An event listener for modiÖcations in any lower
dependent processor
listenToDelete  - An event listener for deletion of any lower

dependent processor

Feedback handling

To these two listeners mentioned above correspond two events, hasChanged  and

isDeleted . These events are used in connection to feedback as a mean to communicate

between processors. When parameters of a processor are modiÖed, it will broadcast a

message that will be picked up by its upper dependencies which will then “know” they have

to react accordingly (usually by resetting). Connecting events and listeners is done

automatically when instantiating a “processing tree”. Modifying a parameter is done via the

modifyParameter  method which will broadcast the hasChanged  message to upper

dependencies.

Abstract and shared methods

The parent Processor  class deÖnes the following abstract methods. Because these

methods are children dependent, each processor sub-class pObj  should then implement

them:
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out = pObj.processChunk(in) , the core processing method. Returns an
output out  given the input in . It will, if necessary, use the internal
states of the processor (derived from previous chunk(s) of input) to
calculate the output. These internal states should be accordingly
updated in this method after the processing was performed. Next
sub-section provides more details regarding these internal states.
pObj.reset , that clears the internal states of the processor. To be used

e.g., in an of×ine scenario in between two different input signals.

Some methods are then identical across all processors and are therefore implemented in

the parent Processor  class:

getDependentParameter  and getDependentProperty  recursively recovers
the value of a speciÖc parameter (or property) used by pObj  or by one
of its dependencies
hasParameters  check that the processor uses a speciÖc set of

parameter values
getCurrentParameters  returns a structure of the parameter values

currently used by the processor.

Potentially overridden methods

Most processors behave in similar ways with regard to how many inputs and outputs they

have, as well as how they connect with their dependencies. However, there can always be

exceptions. To provide sufÖcient code modularity to easily handle these exceptions

without changing existing code, heavy use of methods overriding was made. This means

that general behaviour for a given method is implemented in the Processor  super-class,

and any children which needs to handle things differently will override this speciÖc

method. These methods susceptible to being overridden are the following, in order in

which they are called:

prepareForProcessing : Finalise processor initialisation or re-initialise
after receiving feedback
addInput : Populate the Input  property
addOutput : Populate the Output  property
instantiateOutput : Instantiate an output signal and add it to the data

object
initiateProcessing : Calls the processing method, appropriately

routing inputs and output signals to the input and output arguments
of the processChunk  method.

Any of these method are then overridden in children that do not behave “normally” (e.g.,

processors with multiple input or outputs)
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processChunk  method and chunk-based
compatibility

General approach

As brie×y exposed above, exact computation performed by each processors are taken from

published models, and are described individually in Available processors. However, most of

the available implementations are for batch processing, i.e., using one whole input signal at

once. To be included in the Auditory front-end, these implementations need to be adapted

to account for chunk-based processing, i.e., when the input signal is fed to the system in

non-overlapping contiguous blocks, or chunks.

Some processors rely on the input only at time t to generate the output at time t. These

processors are then compatible as such with chunk-based processing. This is the case for

instance for the itdProc  which given cross-correlation deduces the . That is because the

processor, at time t, is provided a cross-correlation value as input (which is a function of

frequency and lag), and only locates for each frequency the lag value for which the cross-

correlation is maximal. There is no in×uence of past (or future) inputs to provide the output

at time t. This is unfortunately not the case for most processors, which output at a given

time will be in×uenced, to different extent, by older input. However, so far, all the

processing involved in the Auditory front-end is causal, i.e., might depend on past input,

but will not depend on future input.

Adapting of×ine implementations to online is of course case-dependent, and how it was

done for each individual processors will not be described here. However the same concept

is used for each, and can be related to the overlap-save method traditionally used for

Öltering long signals (or a stream of input signal) with a FIR Ölter. This concept revolves

around using an internal buffer to store the input samples of a given chunk that will

in×uence the processing of the next chunk. Because of the causality, these samples will

always be at the end of the present chunk. Considering a processor which is in “steady-

state” (i.e., has a populated internal buffer) and a new incoming chunk of input signal, the

following steps are performed:

1. The buffer is appended in the beginning of the new input chunk.
Conceptually, this provides also a chunk of the input signal, but a
longer one that starts at an earlier point in time.

2. The input extended in this way is processed following the
computations described in literature. If the input is required to have
speciÖc dimensions in time (e.g., when windowing is performed), then
it is virtually truncated to these dimensions (i.e., input samples falling
outside the required dimensions are discarded). The goal is for the
output to be as long as possible while still being “valid”, i.e., not being
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in×uenced by the boundary with the next input chunks. If additional
output was generated due to the appended buffer, it is discarded.

3. The buffer is updated to prepare for the next input chunk. This step
can vary between processors but the idea is to store in the buffer the
end of the current chunk which did not generate output, or which will
in×uence the output of next chunk.

An example: rate-map

A practical example to better illustrate the concepts described above is given in the

following. The rate-map is conceptually a “framed” version of an IHC multi-channel

envelope. The IHC envelope is a two-dimensional representation (time versus frequency),

and the rate-map extraction is the same procedure repeated for every frequency channel.

Hence the following is described for a single channel. To extract the rate-map, the

envelope is windowed by a set of overlapping windows, and its magnitude averaged in each

window. This process is adapted to online processing as illustrated in Fig. 9.

Fig. 9 Three steps for simple online windowing, given a chunk of input
and an internal buffer.

The three above-mentioned steps are followed:

1. The internal buffer (which can be empty, e.g., if Örst chunk) is
appended to the input chunk.
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2. This “extended” input is then processed. In that case, it is windowed
and the average is taken in each window.

3. The “valid” outputs form the output chunk. Note that the right-most
window (dashed line) is not fully covering the signal. Hence the output
it would provide is not “valid”, since it would also partly depend on the
content of the next input chunk. Therefore the section of the signal
corresponding to this incomplete window forms the new buffer.

Note that the output chunk could in theory be empty. If the duration of the “extended”

input in step 1 is shorter than the duration of the window, then no valid output is produced

for this chunk, and the whole extended input will be transferred to the internal buffer. This

is unlikely to happen in practice however.

Particular case for Ülters

The processing performed by the Auditory front-end often involves Öltering (e.g., in

auditory Ölter bank processing, inner hair cell envelope detection, or amplitude

modulation detection). While Öltering by FIR Ölters could in principle be made compatible

with chunk-based processing using the principle described above, it will be impractical for

Ölters with long impulse response, and in theory impossible for IIR Ölters.

For this reason, chunk-based compatibility is managed differently for Öltering. In Matlab’s

filter  function, the user can specify initial conditions and can get as optional output the

Önal conditions of the Ölter delays. These take the form of a vector, of dimension equal to

the Ölter order.

In the Auditory front-end, Ölters are implemented as objects, and encapsulate a private

states  property. This property simply contains the Önal conditions of the Ölter delays, i.e.,

its internal states after the last processing it performed. If applied to a new input chunk,

these states are used as initial condition and are updated after the processing. This will

provide a continuous output given a fragmented input.
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Manager
Processors and signals instantiation
Carrying out the processing

The manager  class is fundamental in the Auditory front-end. It is responsible for, from a

user request, instantiating the correct processors and signal objects, and linking these

signals as inputs/outputs of each processor. In a standard session of the Auditory front-

end, only a single instance of this class is created. It is with this object that the user

interacts.

Processors and signals instantiation

Single request

A standard call to the manager constructor, i.e., with no other argument than a handle to

an already created data object dataObj  will produce an “empty” manager:

>> mObj = manager(dataObj) 
 
mObj = 
 
manager with properties: 
 
    Processors: [] 
     InputList: [] 
    OutputList: [] 
           Map: [] 
          Data: [1x1 dataObject] 

 

Empty properties include a list of processors, of input signals, output signals, and a

mapping vector that provides a processing order. The Data  property is simply a handle to

the dataObj  object provided for convenience.

Populating these properties is made via the addProcessor  method already described in

Computation of an auditory representation. From a given request and an empty manager,

instantiating the adequate processors and signals is done following these steps:
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1. Get the list of signals needed to compute the user request, using the
getDependencies  function.

2. Flip this list around such as to have the list starting with ’time’ , and
ending up with the requested signal. The list then provides the
needed signals in the order they should be computed.

3. Loop over the elements of the list. For each signal on the list:
1. Instantiate a corresponding processor (two if stereo signal)
2. Instantiate the signal that will contain the output of the processor

(two if stereo)
3. Add the signal(s) to dataObj
4. A handle to the output signal of the previous processor on the list

is stored as the current processor’s input (in mObj.InputList  as well
as in the processor’s Input  property). If it is the Örst element of the
list, this will link to the original time domain signal.

5. A handle to the newly instantiated signal is stored similarly as
output. This handle is stored further for the next element in the
loop.

6. A handle to the previously instantiated processor is stored in the
current processor’s Dependencies  property (possibly empty if Örst
element of the list).

4. Generate a linear mapping (vector of indexes of the processors
ordered in increasing processing order).

5. Return a handle to the requested signal to the user.

Once addProcessor  called, the properties of the manager will have been populated, e.g.:

>> mObj 
 
mObj = 
 
  manager with properties: 
 
    Processors: {3x2 cell} 
     InputList: {3x2 cell} 
    OutputList: {3x2 cell} 
           Map: [1 2 3] 
          Data: [1x1 dataObject] 

 

Processors are arranged with the same convention as for signals in a data objects: they are

stored in a cell array, where the Örst column is for left (or mono) channel, and second

column for right channel. Different lines are for different processors, e.g.:
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>> mObj.Processors 
 
ans = 
 
    [1x1 preProc      ]    [1x1 preProc      ] 
    [1x1 gammatoneProc]    [1x1 gammatoneProc] 
    [1x1 ihcProc      ]    [1x1 ihcProc      ] 

 

InputList  and OutputList  are cell arrays of handles to signal objects. An element in one of

them will correspond to the input/output of the processor at the same position in the cell

array.

Handling of multiple requests

The above-described process gets more complicated when a request is placed in a non-

empty manager (i.e., when multiple requests have been placed). The same steps could be

used, and would result in a functioning result. However, this would likely be sub-optimal in

terms of computations. If the new request has common elements with representations

that are already computed, one need not recompute them.

If correctly implemented, a manager should be able to “branch” the processing, such that

only new representations, or representations where a parameter has been changed, are

recomputed. Achieving this relies on the findInitProc  method of the manager, which is

described in more details in the next subsection. This method is passed the same

arguments as the addProcessor  method, i.e., a request name and a structure of parameters.

It will return a handle to an already existing processor in the manager that is exactly

computing one of the steps needed for that request. It will return the “highest” already

existing step. In other terms, it Önds the point in the already existing ordered list of

processors where the processing should “branch out” to obtain the newly requested

feature. Knowing the processor to start from and updating accordingly the list of

signals/processors that need to be instantiated, the same procedure as before can then be

used in the addProcessor  method.

The findInitProc  method

To Önd an initial processor suitable in a request, this method calls the hasProcessor  method

of the manager and the hasParameters  method of each processor. From a given request, it

can obtain a list of necessary processing steps from getDependencies  and run the list

backwards. For each element of the list, findInitProc  “asks” the manager if it has such a

processor via its hasProcessor  method. If yes, it calls this processor hasParameters  method

to verify that what the processor computes corresponds to the request. If yes, then it

found a suitable initial step. If no, it moves on to the next element in the list and repeats.
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Carrying out the processing

As of the current Auditory front-end implementation, the processing is linear and the

processChunk  methods of each individual processor are called one after the other when

asking the manager to start processing (via its initiateProcessing  method). The order in

which the processors are called is important, as some will take as input what was other’s

output. This order is stored in the property Map  of the manager. Map  is a vector of indexes

corresponding to the lines in the Processors  cell array property of the manager. It is

constructed at instantiation of the processors. Conceptually, if there are N  instantiated

processors, the processChunk  method of the manager mObj  will call the initiateProcessing

methods of each processor following this loop:

for ii = 1:n_proc 
        % Get index of current processor 
        jj = mObj.Map(ii); 
 
        % Perform the processing by calling initiateProcessing 
        mObj.Processors{jj,1}.initiateProcessing; 
 
        if size(mObj.Processors,2) == 2 && ~isempty(mObj.Processors{jj,2}) 
        mObj.Processors{jj,2}.initiateProcessing; 
        end 
end 

 

Note

Note the difference between indexes ii  which relate to the processing order

(processing Örst ii=1  and last ii=n_proc ) and jj = mObj.Map(ii)  which relate the

processing order with the actual position of the processors in the cell array

mObj.Processors .

[Goebbert2014] Göbbert, J. H. (2014), “Circular double buffered vector buffer
( circVBuf.m ),” Matlab Öle exchange:
http://www.mathworks.com/matlabcentral/Öleexchange/47025-
circvbuf, accessed: 2014-10-30.
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Available processors
Pre-processing ( preProc.m )
Auditory Ölter bank
Inner hair-cell ( ihcProc.m )
Adaptation ( adaptationProc.m )
Auto-correlation ( autocorrelationProc.m )
Rate-map ( ratemapProc.m )
Spectral features ( spectralFeaturesProc.m )
Onset strength ( onsetProc.m )
Offset strength ( offsetProc.m )
Binary onset and offset maps ( transientMapProc.m )
Pitch ( pitchProc.m )
Medial Olivo-Cochlear (MOC) feedback ( mocProc.m )
Amplitude modulation spectrogram ( modulationProc.m )
Spectro-temporal modulation spectrogram
Cross-correlation ( crosscorrelationProc.m )
Interaural time differences ( itdProc.m )
Interaural level differences ( ildProc.m )
Interaural coherence ( icProc.m )
Precedence effect ( precedenceProc.m )

This section presents a detailed description of all processors that are currently supported

by the Auditory front-end framework. Each processor can be controlled by a set of

parameters, which will be explained and all default settings will be listed. Finally, a

demonstration will be given, showing the functionality of each processor. The

corresponding Matlab Öles are contained in the Auditory front-end folder /test  and can

be used to reproduce the individual plots. A full list of available processors can be

displayed by using the command requestList . An overview of the commands for

instantiating processors is given in Computation of an auditory representation.
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Pre-processing ( preProc.m )
Prior to computing any of the supported auditory representations, the input signal stored

in the data object can be pre-processed with one of the following elements:

DC removal Ölter
Pre-emphasis
RMS normalisation
Level reference and scaling
Middle ear Öltering

The order of processing is Öxed. However, individual stages can be activated or

deactivated, depending on the requirement of the user. The output is a time domain signal

representation that is used as input to the next processors. Moreover, a list of adjustable

parameters is listed in Table 5.

Table 5 List of parameters related to the auditory representation ’time’.

Parameter Default Description

pp_bRemoveDC false Activate DC removal Ölter

pp_cutoffHzDC 20 Cut-off frequency in Hz of the high-pass Ölter

pp_bPreEmphasis false Activate pre-emphasis Ölter

pp_coefPreEmphasis 0.97 CoefÖcient of Örst-order high-pass Ölter

pp_bNormalizeRMS false Activate RMS normalisation

pp_intTimeSecRMS 2 Time constant in s used for RMS estimation

pp_bBinauralRMS true Link RMS normalisation across both ear signals

pp_bLevelScaling false Apply level scaling to the given reference

pp_refSPLdB 100 Reference dB SPL to correspond to the input 

pp_bMiddleEarFiltering false Apply middle ear Öltering

pp_middleEarModel 'jepsen' Middle ear Ölter model
  v: latest 



The in×uence of each individual pre-processing stage except for the level scaling is

illustrated in Fig. 10, which can be reproduced by running the script DEMO_PreProcessing.m .

Panel 1 shows the left and the right ears signals of two sentences at two different levels.

The ear signals are then mixed with a sinusoid at 0.5 Hz to simulate an interfering

humming noise. This humming can be effectively removed by the DC removal Ölter, as

shown in panel 3. Panel 4 shows the in×uence of the pre-emphasis stage. The AGC can be

used to equalise the long-term RMS level difference between the two sentences. However,

if the level difference between both ear signals should be preserved, it is important to

synchronise the AGC across both channels, as illustrated in panel 5 and 6. Panel 7 shows

the in×uence of the level scaling when using a reference value of 100 dB SPL. Panel 8

shows the signals after middle ear Öltering, as the stapes motion velocity. Each individual

pre-processing stage is described in the following subsections.

Fig. 10 Illustration of the individual pre-processing steps. 1) Ear signals
consisting of two sentences recorded at different levels, 2) ear signals
mixed with a 0.5 Hz humming, 3) ear signals after DC removal Ölter, 4)
in×uence of pre-emphasis Ölter, 5) monaural RMS normalisation, 6)
binaural RMS normalisation, 7) level scaling and 8) middle ear Öltering.

DC removal ᣀ�lter

To remove low-frequency humming, a DC removal Ölter can be activated by using the ×ag

pp_bRemoveDC = true . The DC removal Ölter is based on a fourth-order IIR Butterworth

Ölter with a cut-off frequency of 20 Hz, as speciÖed by the parameter pp_cutoffHzDC = 20 .  v: latest 



Pre-emphasis

A common pre-processing stage in the context of ASR includes a signal whitening. The goal

of this pre-processing stage is to roughly compensate for the decreased energy at higher

frequencies (e.g. due to lip radiation). Therefore, a Örst-order FIR high-pass Ölter is

employed, where the Ölter coefÖcient pp_coefPreEmphasis  determines the amount of pre-

emphasis and is typically selected from the range between 0.9 and 1. Here, we set the

coefÖcient to pp_coefPreEmphasis = 0.97  by default according to [Young2006]. This pre-

emphasis Ölter can be activated by setting the ×ag pp_bPreEmphasis = true .

RMS normalisation

A signal level normalisation stage is available which can be used to equalise long-term level

differences (e.g. when recording two speakers at two different distances). For some

applications, such as ASR and speaker identiÖcation systems, it can be advantageous to

maintain a constant signal power, such that the features extracted by subsequent

processors are invariant to the overall signal level. To achieve this, the input signal is

normalised by its RMS value that has been estimated by a Örst-order low-pass Ölter with a

time constant of pp_intTimeSecRMS = 2 . Such a normalisation stage has also been suggested

in the context of AMS feature extraction [Tchorz2003], which are described in Amplitude

modulation spectrogram (modulationProc.m). The choice of the time constant is a balance

between maintaining the level ×uctuations across individual words and allowing the

normalisation stage to follow sudden level changes.

The normalisation can be either applied independently for the left and the right ear signal

by setting the parameter pp_bBinauralRMS = false , or the processing can be linked across

ear signals by setting pp_bBinauralRMS = true . When being used in the binaural mode, the

larger RMS value of both ear signals is used for normalisation, which will preserve the

binaural cues (e.g. ITD and ILD) that are encoded in the signal. The RMS normalisation can

be activated by the parameter pp_bNormalizeRMS = true .

Level reference and scaling

This stage is designed to implement the effect of calibration, in which the amplitude of the

incoming digital signal is matched to sound pressure in the physical domain. This operation

is necessary when any of the Auditory front-end models requires the input to be

represented in physical units (such as pascals, see the middle ear Öltering stage below).

Within the current Auditory front-end framework, the DRNL Ölter bank model requires

this signal representation (see Dual-resonance non-linear Ölter bank (drnlProc.m)). The

request for this is given by setting pp_bApplyLevelScaling = true , with a reference value

pp_refSPLdB  in dB SPL which should correspond to the input RMS of 1. Then the input

signal is scaled accordingly, if it had been calibrated to a different reference. The default
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value of pp_refSPLdB  is 100, which corresponds to the convention used in the work of

[Jepsen2008]. The implementation is adopted from the Auditory Modeling Toolbox

[Soendergaard2013].

Middle ear ᣀ�ltering

This stage corresponds to the operation of the middle ear where the vibration from the

eardrum is transformed into the stapes motion. The Ölter model is based on the Öndings

from the measurement of human stapes displacement by [Godde1994]. Its

implementation is adopted from the Auditory Modeling Toolbox [Soendergaard2013],

which derives the stapes velocity as the output [Lopez-Poveda2001], [Jepsen2008]. The

input is assumed to be the eardrum pressure represented in pascals which in turn assumes

prior calibration. This input-output representation in physical units is required particularly

when the DRNL Ölter bank model is used for the BM operation, because of its level-

dependent nonlinearity, designed based on that representation (see Dual-resonance non-

linear Ölter bank (drnlProc.m)). When including the middle-ear Öltering in combination

with the linear gammatone Ölter, only the simple band-pass characteristic of this model is

needed without the need for input calibration or consideration of the input/output units.

The middle ear Öltering can be applied by setting pp_bMiddleEarFiltering = true . The Ölter

data from [Lopez-Poveda2001] or from [Jepsen2008] can be used for the processing, by

specifying the model pp_middleEarModel = 'lopezpoveda'  or pp_middleEarModel = 'jepsen'

respectively.

[Godde1994] Goode, R. L., Killion, M., Nakamura, K., and Nishihara, S. (1994),
“New knowledge about the function of the human middle ear:
development of an improved analog model.” The American
journal of otology 15(2), pp. 145–154.

[Tchorz2003] Tchorz, J. and Kollmeier, B. (2003), “SNR estimation based on
amplitude modulation analysis with applications to noise
suppression,” IEEE Transactions on Audio, Speech, and
Language Processing 11(3), pp. 184–192.

[Young2006] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X.,
Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., and
Woodland, P. (2006), The HTK Book (for HTK Version 3.4),
Cambridge University Engineering Department,
http://htk.eng.cam.ac.uk.
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Auditory 뀅lter bank
Gammatone ( gammatoneProc.m )
Dual-resonance non-linear Ölter bank ( drnlProc.m )

One central processing element of the Auditory front-end is the separation of incoming

acoustic signals into different spectral bands, as it happens in the human inner ear. In

psychoacoustic modelling, two different approaches have been followed over the years.

One is the simulation of this stage by a linear Ölter bank composed of gammatone Ölters.

This linear gammatone Ölter bank can be considered a standard element for auditory

models and has therefore been included in the framework. A computationally more

challenging, but at the same time physiologically more plausible simulation of this process

can be realised by a nonlinear BM model, and we have implemented the DRNL model, as

developed by [Meddis2001]. The Ölter bank representation is requested by using the name

tag 'filterbank' . The Ölter bank type can be controlled by the parameter fb_type . To

select a gammatone Ölter bank, fb_type  should be set to ’gammatone’  (which is the

default), whereas the DRNL Ölter bank is used when setting fb_type = 'drnl' . Some of the

parameters are common to the two Ölter bank, while some are speciÖc, in which case their

value is disregarded if the other type of Ölter bank was requested. Table 6 summarises all

parameters corresponding to the 'filterbank'  request. Parameters speciÖc to a Ölter bank

type are separated by a horizontal line. The two Ölter bank implementations are described

in detail in the following two subsections, along with their corresponding parameters.

Table 6 List of parameters related to the auditory representation 'filterbank'

Parameter Default Description

fb_type 'gammatone' Filter bank type, 'gammatone'  or 'drnl'

fb_lowFreqHz 80 Lowest characteristic frequency in Hz

fb_highFreqHz 8000 Highest characteristic frequency in Hz

fb_nERBs 1 Distance between adjacent Ölters in ERB

fb_nChannels [] Number of frequency channels

fb_cfHz [] Vector of characteristic frequencies in Hz

fb_nGamma 4 Filter order, 'gammatone' -only
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Parameter Default Description

fb_bwERBs 1.01859 Filter bandwidth in ERB, 'gammatone' -only

fb_lowFreqHz 80 Lowest characteristic frequency in Hz, 'gammatone'

fb_mocIpsi 1

Ipsilateral MOC factor (0 to 1). Given as a scalar

(across all

frequency channels) or a vector (individual per frequency

channel), 'drnl' -only

fb_mocContra 1

Contralateral MOC factor (0 to 1). Same format as

'fb_mocIpsi' , 'drnl' -only

fb_model 'CASP' DRNL model (reserved for future extension), 

Gammatone ( gammatoneProc.m )

The time domain signal can be processed by a bank of gammatone Ölters that simulates the

frequency selective properties of the human BM. The corresponding Matlab function is

adopted from the Auditory Modeling Toolbox [Soendergaard2013]. The gammatone Ölters

cover a frequency range between fb_lowFreqHz  and fb_highFreqHz  and are linearly spaced

on the ERB scale [Glasberg1990]. In addition, the distance between adjacent Ölter centre

frequencies on the ERB scale can be speciÖed by fb_nERBs , which effectively controls the

frequency resolution of the gammatone Ölter bank. There are three different ways to

control the centre frequencies of the individual gammatone Ölters:

1. DeÖne a vector with centre frequencies, e.g.
fb_cfHz = [100 200 500 ...] . In this case, the parameters fb_lowFreqHz ,
fb_highFreqHz , fb_nERBs  and fb_nChannels  are ignored.

2. Specify fb_lowFreqHz , fb_highFreqHz  and fb_nChannels . The requested
number of Ölters fb_nChannels  will be spaced between fb_lowFreqHz
and fb_highFreqHz . The centre frequencies of the Örst and the last
Ölter will match with fb_lowFreqHz  and fb_highFreqHz , respectively. To
accommodate an arbitrary number of Ölters, the spacing between
adjacent Ölters fb_nERBs  will be automatically adjusted. Note that this
changes the overlap between neighbouring Ölters.

3. It is also possible to specify fb_lowFreqHz , fb_highFreqHz  and fb_nERBs .
Starting at fb_lowFreqHz , the centre frequencies will be spaced at a
distance of fb_nERBs  on the ERB scale until the speciÖed frequency
range is covered. The centre frequency of the last Ölter will not
necessarily match with fb_highFreqHz .
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The Ölter order, which determines the slope of the Ölter skirts, is set to fb_nGamma = 4  by

default. The bandwidths of the gammatone Ölters depend on the Ölter order and the

centre frequency, and the default scaling factor for a forth-order Ölter is approximately

fb_bwERBs = 1.01859 . When adjusting the parameter fb_bwERBs , it should be noted that the

resulting Ölter shape will deviate from the original gammatone Ölter as measured

by [Glasberg1990]. For instance, increasing fb_bwERBs  leads to a broader Ölter shape. A full

list of parameters is shown in Table 6.

The gammatone Ölter bank is illustrated in Fig. 11, which has been produced by the script

DEMO_Gammatone.m . The speech signal shown in the left panel is passed through a bank of 16

gammatone Ölters spaced between 80 Hz and 8000 Hz. The output of each individual Ölter

is shown in the right panel.

Fig. 11 Time domain signal (left panel) and the corresponding output of
the gammatone processor consisting of 16 auditory Ölters spaced
between 80 Hz and 8000 Hz (right panel).

Dual-resonance non-linear 뀅lter bank
( drnlProc.m )

The DRNL Ölter bank models the nonlinear operation of the cochlear, in addition to the

frequency selective feature of the BM. The DRNL processor was motivated by attempts to

better represent the nonlinear operation of the BM in the modelling, and allows for testing

the performance of peripheral models with the BM nonlinearity and MOC feedback in

comparison to that with the conventional linear BM model. All the internal

representations that depend on the BM output can be extracted using the DRNL

processor in the dependency chain in place of the gammatone Ölter bank. This can reveal

the implication of the BM nonlinearity and MOC feedback for activities such as speech

perception in noise (see [Brown2010] for example) or source localisation. It is expected

that the use of a nonlinear model, together with the adaptation loops (see Adaptation

(adaptationProc.m)), will reduce the in×uence of overall level on the internal

representations and extracted features. In this sense, the use of the DRNL model is a

physiologically motivated alternative for a linear BM model where the in×uence of level is

typically removed by the use of a level normalisation stage (see AGC in Pre-processing
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(preProc.m) for example). The structure of DRNL Ölter bank is based on the work of

[Meddis2001]. The frequencies corresponding to the places along the BM, over which the

responses are to be derived and observed, are speciÖed as a list of characteristic

frequencies fb_cfHz . For each characteristic frequency channel, the time domain input

signal is passed through linear and nonlinear paths, as seen in Fig. 12. Currently the

implementation follows the model deÖned as CASP by [Jepsen2008], in terms of the

detailed structure and operation, which is speciÖed by the default argument 'CASP'  for

fb_model .

Fig. 12 Filter bank channel structure, following the model speciÖcation
as default, with an additional nonlinear gain stage to receive feedback.

In the CASP model, the linear path consists of a gain stage, two cascaded gammatone

Ölters, and four cascaded low-pass Ölters; the nonlinear path consists of a gain

(attenuation) stage, two cascaded gammatone Ölters, a ’broken stick’ nonlinearity stage,

two more cascaded gammatone Ölters, and a low-pass Ölter. The outputs at the two paths

are then summed as the BM output motion. These sub-modules and their individual

parameters (e.g., gammatone Ölter centre frequencies) are speciÖc to the model and

hidden to the users. Details regarding the original idea behind the parameter derivation

can be found in [Lopez-Poveda2001], which the CASP model slightly modiÖed to provide a

better Öt of the output to physiological Öndings from human cochlear research works.

The MOC feedback is implemented in an open-loop structure within the DRNL Ölter bank

model as the gain factor to be applied to the nonlinear path. This approach is used by

[Ferry2007], where the attenuation caused by MOC the feedback at each of the Ölter bank

channels is controlled externally by the user. Two additional input arguments are

introduced for this feature: fb_mocIpsi  and fb_mocContra . These represent the amount of

re×exive feedback through the ipsilateral and contralateral paths, in the form of a factor

from 0 to 1 that the nonlinear path input signal is multiplied by in conjunction.

Conceptually, fb_mocIpsi = 1  and fb_mocContra = 1  would mean that no attenuation is

applied to the nonlinear path input, and fb_mocIpsi = 0  and fb_mocContra = 0  would mean

that the nonlinear path is totally eliminated. Table 6 summarises the parameters for DRNL

the processor that can be controlled by the user. Note that fb_cfHz  corresponds to the  v: latest 



characteristic frequencies and not the centre frequencies as used in the gammatone Ölter

bank, although they can have the same values for comparison. Otherwise, the

characteristic frequencies can be generated in the same way as the centre frequencies for

the gammatone Ölter bank.

Fig. 13 shows the BM stage output at 1 kHz characteristic frequency using the DRNL

processor (on the right hand side), compared to that using the gammatone Ölter bank (left

hand side), based on the right ear input signal shown in panel 1 of Fig. 10 (speech excerpt

repeated twice with a level difference). The plots can be generated by running the script

DEMO_DRNL.m . It should be noted that the CASP model of DRNL Ölter bank expects the input

signal to be transformed to the middle ear stapes velocity before processing. Therefore,

for direct comparison of the outputs in this example, the same pre-processing was applied

for the gammatone Ölter bank (stapes velocity was used as the input, through the level

scaling and middle ear Öltering). It is seen that the level difference between the initial

speech component and its repetition is reduced with the nonlinearity incorporated,

compared to the gammatone Ölter bank output, which shows the compressive nature of

the nonlinear model responding to input level changes as described earlier.

Fig. 13 The gammatone processor output (left panel) compared to the
output of the DRNL processor (right panel), based on the right ear signal
shown in panel 1 of Fig. 10, at 1 kHz centre or characteristic frequency.
Note that the input signal is converted to the stapes velocity before
entering both processors for direct comparison. The level difference
between the two speech excerpts is reduced in the DRNL response,
showing its compressive nature to input level variations.

[Brown2010] Brown, G. J., Ferry, R. T., and Meddis, R. (2010), “A computer
model of auditory efferent suppression: implications for the
recognition of speech in noise.” The Journal of the Acoustical
Society of America 127(2), pp. 943–54.

[Ferry2007] Ferry, R. T. and Meddis, R. (2007), “A computer model of medial
efferent suppression in the mammalian auditory system,” The
Journal of the Acoustical Society of America 122(6), pp. 3519.
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[Glasberg1990] (1, 2) Glasberg, B. R. and Moore, B. C. J. (1990), “Derivation
of auditory Ölter shapes from notched-noise data,” Hearing
Research 47(1-2), pp. 103–138.

[Jepsen2008] Jepsen, M. L., Ewert, S. D., and Dau, T. (2008), “A computational
model of human auditory signal processing and perception.”
Journal of the Acoustical Society of America 124(1), pp. 422–
438.

[Lopez-
Poveda2001]

Lopez-Poveda, E. A. and Meddis, R. (2001), “A human nonlinear
cochlear Ölterbank,” Journal of the Acoustical Society of
America 110(6), pp. 3107–3118.

[Soendergaard2013] Søndergaard, P. L. and Majdak, P. (2013), “The auditory
modeling toolbox,” in The Technology of Binaural
Listening, edited by J. Blauert, Springer, Heidelberg–
New York NY–Dordrecht–London, chap. 2, pp. 33–56.
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Inner hair-cell ( ihcProc.m )
The IHC functionality is simulated by extracting the envelope of the output of individual

gammatone Ölters. The corresponding IHC function is adopted from the Auditory

Modeling Toolbox [Soendergaard2013]. Typically, the envelope is extracted by combining

half-wave rectiÖcation and low-pass Öltering. The low-pass Ölter is motivated by the loss of

phase-locking in the auditory nerve at higher frequencies [Bernstein1996],

[Bernstein1999]. Depending on the cut-off frequency of the IHC models, it is possible to

control the amount of Öne-structure information that is present in higher frequency

channels. The cut-off frequency and the order of the corresponding low-pass Ölter vary

across methods and a complete overview of supported IHC models is given in Table 7. A

particular model can be selected by using the parameter ihc_method .

Table 7 List of supported IHC models¶

ihc_method Description

'hilbert' Hilbert transform

'halfwave' Half-wave rectiÖcation

'fullwave' Full-wave rectiÖcation

'square' Squared

'dau' Half-wave rectiÖcation and low-pass Öltering at 1000 Hz [Dau1996]

'joergensen' Hilbert transform and low-pass Öltering at 150 Hz [Joergensen2011]

'breebart' Half-wave rectiÖcation and low-pass Öltering at 770 Hz [Breebart2001]

'bernstein' Half-wave rectiÖcation, compression and low-pass Öltering at 425 Hz 

The effect of the IHC processor is demonstrated in Fig. 14, where the output of the

gammatone Ölter bank is compared with the output of an IHC model by running the script

DEMO_IHC.m . Whereas individual peaks are resolved in the lowest channel of the IHC

output, only the envelope is retained at higher frequencies.
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Fig. 14 Illustration of the envelope extraction processor. BM output (left
panel) and the corresponding IHC model output using
ihc_method = ’dau’  (right panel).

[Bernstein1996] Bernstein, L. R. and Trahiotis, C. (1996), “The normalized
correlation: Accounting for binaural detection across
center frequency,” Journal of the Acoustical Society of
America 100(6), pp. 3774–3784.

[Bernstein1999] (1, 2) Bernstein, L. R., van de Par, S., and Trahiotis, C. (1999),
“The normalized interaural correlation: Accounting for NoS
thresholds obtained with Gaussian and “low-noise” masking
noise,” Journal of the Acoustical Society of America 106(2),
pp. 870–876.

[Breebart2001] Breebaart, J., van de Par, S., and Kohlrausch, A. (2001),
“Binaural processing model based on contralateral
inhibition. I. Model structure,” Journal of the Acoustical
Society of America 110(2), pp. 1074–1088.

[Dau1996] Dau, T., Püschel, D., and Kohlrausch, A. (1996), “A quantitative
model of the “effective” signal processing in the auditory system.
I. Model structure,” Journal of the Acoustical Society of America
99(6), pp. 3615–3622.

[Joergensen2011] Jørgensen, S. and Dau, T. (2011), “Predicting speech
intelligibility based on the signal-to-noise envelope power
ratio after modulation-frequency selective processing,”
Journal of the Acoustical Society of America 130(3), pp.
1475–1487.
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Adaptation ( adaptationProc.m )
This processor corresponds to the adaptive response of the auditory nerve Öbers, in which

abrupt changes in the input result in emphasised overshoots followed by gradual decay to

compressed steady-state level [Smith1977], [Smith1983]. The function is adopted from

the Auditory Modeling Toolbox [Soendergaard2013]. The adaptation stage is modelled as

a chain of Öve feedback loops in series. Each of the loops consists of a low-pass Ölter with

its own time constant, and a division operator [Pueschel1988], [Dau1996], [Dau1997a]. At

each stage, the input is divided by its low-pass Öltered version. The time constant affects

the charging / releasing state of the Ölter output at a given moment, and thus affects the

amount of attenuation caused by the division. This implementation realises the

characteristics of the process that input variations which are rapid compared to the time

constants are linearly transformed, whereas stationary input signals go through

logarithmic compression.

Table 8 List of parameters related to 'adaptation' .¶

Parameter Default Description

adpt_lim 10 Overshoot limiting ratio

adpt_mindB 0

Lowest audible threshold of the signal

in dB SPL

adpt_tau [0.005 0.050 0.129 0.253 0.500] Time constants of feedback loops

adpt_model ''(empty)

Implementation model 'adt_dau'

'adt_puschel' , or 'adt_breebart'

can be used instead of the above three

parameters (See Table 9)

The adaptation processor uses three parameters to generate the output from the IHC

representation: adpt_lim  determines the maximum ratio of the onset response amplitude

against the steady-state response, which sets a limit to the overshoot caused by the loops.  v: latest 



adpt_mindB  sets the lowest audible threshold of the input signal. adpt_tau  are the time

constants of the loops. Though the default model uses Öve loops and thus Öve time

constants, variable number of elements of adpt_tau  is supported which can vary the

number of loops. Some speciÖc sets of these parameters, as used in related studies, are

also supported optionally with the adpt_model  parameter. This can be given instead of the

other three parameters, which will set them as used by the respective researchers. Table 8

lists the parameters and their default values, and Table 9 lists the supported models. The

output signal is expressed in MU which deviates the input-output relation from a perfect

logarithmic transform, such that the input level increment at low level range results in a

smaller output level increment than the input increment at higher level range. This

corresponds to a smaller just-noticeable level change at high levels than at low levels

[Dau1996], [Jepsen2008], with the use of DRNL model for the BM stage, introduces an

additional squaring expansion process between the IHC output and the adaptation stage,

which transforms the input that comes through the DRNL-IHC processors into an

intensity-like representation to be compatible with the adaptation implementation

originally designed based on the use of gammatone Ölter bank. The adaptation processor

recognises whether DRNL or gammatone processor is used in the chain and adjusts the

input signal accordingly.

Table 9 List of supported models related to 'adaptation' .¶

adpt_model Description

'adt_dau'

Choose the parameters as in the models of [Dau1996], [Dau1997a]

This consists of 5 adaptation loops with an overshoot limit of 10 and

a minimum level of 0 dB. This is a correction in regard to the model

described in [Dau1996], which did not use overshoot limiting. The

adaptation loops have an exponentially spaced time constants

adpt_tau=[0.005 0.050 0.129 0.253 0.500]

'adt_puschel'

Choose the parameters as in the original model [Pueschel1988].

This consists of 5 adaptation loops without overshoot limiting

( adpt_lim=0 ). The adaptation loops have a linearly spaced time

constants adpt_tau=[0.0050 0.1288 0.2525 0.3762 0.5000] .

'adt_breebaart' As 'adt_puschel' , but with overshoot limiting
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The effect of the adaptation processor - the exaggeration of rapid variations - is

demonstrated in Fig. 15, where the output of the IHC model from the same input as used in

the example of Inner hair-cell (ihcProc.m) (the right panel of Fig. 14) is compared to the

adaptation output by running the script DEMO_Adaptation.m .

Fig. 15 Illustration of the adaptation processor. IHC output (left panel)
as the input to the adaptation processor and the corresponding output
using adpt_model=’adt_dau’  (right panel).

[Dau1997a] (1, 2) Dau, T., Püschel, D., and Kohlrausch, A. (1997a), “Modeling
auditory processing of amplitude modulation. I. Detection and
masking with narrow-band carriers,” Journal of the Acoustical
Society of America 102(5), pp. 2892–2905.

[Pueschel1988] (1, 2) Püschel, D. (1988), “Prinzipien der zeitlichen Analyse
beim Hören,” Ph.D. thesis, University of Göttingen.

[Smith1977] Smith, R. L. (1977), “Short-term adaptation in single auditory
nerve Öbers: some poststimulatory effects,” J Neurophysiol
40(5), pp. 1098–1111.

[Smith1983] Smith, R. L., Brachman, M. L., and Goodman, D. a. (1983),
“Adaptation in the Auditory Periphery,” Annals of the New York
Academy of Sciences 405(1 Cochlear Pros), pp. 79–93.
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Auto-correlation ( autocorrelationProc.m )
Auto-correlation is an important computational concept that has been extensively studied

in the context of predicting human pitch perception [Licklider1951], [Meddis1991]. To

measure the amount of periodicity that is present in individual frequency channels, the

ACF is computed in the FFT domain for short time frames based on the IHC

representation. The unbiased ACF scaling is used to account for the fact that fewer terms

contribute to the ACF at longer time lags. The resulting ACF is normalised by the ACF at

lag zero to ensure values between minus one and one. The window size ac_wSizeSec

determines how well low-frequency pitch signals can be reliably estimated and common

choices are within the range of 10 milliseconds – 30 milliseconds.

For the purpose of pitch estimation, it has been suggested to modify the signal prior to

correlation analysis in order to reduce the in×uence of the formant structure on the

resulting ACF [Rabiner1977]. This pre-processing can be activated by the ×ag

ac_bCenterClip  and the following nonlinear operations can be selected for ac_ccMethod :

centre clip and compress ’clc’ , centre clip ’cc’ , and combined centre and peak clip

’sgn’ . The percentage of centre clipping is controlled by the ×ag ac_ccAlpha , which sets

the clipping level to a Öxed percentage of the frame-based maximum signal level.

A generalised ACF has been suggested by [Tolonen2000], where the exponent ac\_K  can

be used to control the amount of compression that is applied to the ACF. The conventional

ACF function is computed using a value of ac\_K=2 , whereas the function is compressed

when a smaller value than 2 is used. The choice of this parameter is a trade-off between

sharpening the peaks in the resulting ACF function and amplifying the noise ×oor. A value

of ac\_K = 2/3  has been suggested as a good compromise [Tolonen2000]. A list of all ACF-

related parameters is given in Table 10. Note that these parameters will in×uence the pitch

processor, which is described in Pitch (pitchProc.m).

Table 10 List of parameters related to the auditory representation
'autocorrelation' .¶

Parameter Default Description

ac_wname 'hann' Window type

ac_wSizeSec 0.02 Window duration in s
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Parameter Default Description

ac_hSizeSec 0.01 Window step size in s

ac_bCenterClip false Activate centre clipping

ac_clipMethod 'clp' Centre clipping method 'clc' , 'clp' , or 'sgn'

ac_clipAlpha 0.6 Centre clipping threshold within [0,1]

ac_K 2 Exponent in ACF

A demonstration of the ACF processor is shown in Fig. 16, which has been produced by the

scrip DEMO_ACF.m . It shows the IHC output in response to a 20 ms speech signal for 16

frequency channels (left panel). The corresponding ACF is presented in the upper right

panel, whereas the SACF is shown in the bottom right panel. Prominent peaks in the SACF

indicate lag periods which correspond to integer multiples of the fundamental frequency

of the analysed speech signal. This relationship is exploited by the pitch processor, which is

described in Pitch (pitchProc.m).

Fig. 16 IHC representation of a speech signal shown for one time frame
of 20 ms duration (left panel) and the corresponding ACF (right panel).
The SACF summarises the ACF across all frequency channels (bottom
right panel).

[Licklider1951] Licklider, J. C. R. (1951), “A duplex theory of pitch
perception,” Experientia (4), pp. 128–134.

[Meddis1991] Meddis, R. and Hewitt, M. J. (1991), “Virtual pitch and phase
sensitivity of a computer model of the auditory periphery. I:
Pitch identiÖcation,” Journal of the Acoustical Society of
America 89(6), pp. 2866–2882.

[Rabiner1977] Rabiner, L. R. (1977), “On the use of autocorrelation analysis
for pitch detection,” IEEE Transactions on Audio, Speech, and
Language Processing 25(1), pp. 24–33.   v: latest 



[Tolonen2000] (1, 2) Tolonen, T. and Karjalainen, M. (2000), “A
computationally efÖcient multipitch analysis model,” IEEE
Transactions on Audio, Speech, and Language Processing
8(6), pp. 708–716.
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Rate-map ( ratemapProc.m )
The rate-map represents a map of auditory nerve Öring rates [Brown1994] and is

frequently employed as a spectral feature in CASA systems [Wang2006], ASR

 [Cooke2001] and speaker identiÖcation systems [May2012]. The rate-map is computed

for individual frequency channels by smoothing the IHC signal representation with a leaky

integrator that has a time constant of typically rm\_decaySec=8 ms . Then, the smoothed IHC

signal is averaged across all samples within a time frame and thus the rate-map can be

interpreted as an auditory spectrogram. Depending on whether the rate-map scaling

rm_scaling  has been set to ’magnitude’  or ’power’ , either the magnitude or the squared

samples are averaged within each time frame. The temporal resolution can be adjusted by

the window size rm_wSizeSec  and the step size rm_hSizeSec . Moreover, it is possible to

control the shape of the window function rm_wname , which is used to weight the individual

samples within a frame prior to averaging. The default rate-map parameters are listed in

Table 11.

Table 11 List of parameters related to 'ratemap' .¶

Parameter Default Description

'rm_wname' 'hann' Window type

'rm_wSizeSec' 0.02 Window duration in s

'rm_hSizeSec' 0.01 Window step size in s

'rm_scaling' 'power' Rate-map scaling ( 'magnitude'  or 'power' )

'rm_decaySec' 0.008 Leaky integrator time constant in s

The rate-map is demonstrated by the script DEMO_Ratemap  and the corresponding plots are

presented in Fig. 17. The IHC representation of a speech signal is shown in the left panel,

using a bank of 64 gammatone Ölters spaced between 80 and 8000 Hz. The corresponding

rate-map representation scaled in dB is presented in the right panel.
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Fig. 17 IHC representation of s speech signal using 64 auditory Ölters
(left panel) and the corresponding rate-map representation (right panel).

[Brown1994] Brown, G. J. and Cooke, M. P. (1994), “Computational auditory
scene analysis,” Computer Speech and Language 8(4), pp. 297–
336.

[Cooke2001] Cooke, M., Green, P., Josifovski, L., and Vizinho, A. (2001),
“Robust automatic speech recognition with missing and
unreliable acoustic data,” Speech Communication 34(3), pp.
267–285.

[May2012] May, T., van de Par, S., and Kohlrausch, A. (2012), “Noise-robust
speaker recognition combining missing data techniques and
universal background modeling,” IEEE Transactions on Audio,
Speech, and Language Processing 20(1), pp. 108–121.

[Wang2006] Wang, D. L. and Brown, G. J. (Eds.) (2006), Computational
Auditory Scene Analysis: Principles, Algorithms and
Applications, Wiley / IEEE Press.
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Spectral features
( spectralFeaturesProc.m )
In order to characterise the spectral content of the ear signals, a set of spectral features is

available that can serve as a physical correlate to perceptual attributes, such as timbre and

coloration [Peeters2011]. All spectral features summarise the spectral content of the rate-

map representation across auditory Ölters and are computed for individual time frames.

The following 14 spectral features are available:

1. 'centroid'  : The spectral centroid represents the centre of gravity of
the rate-map and is one of the most frequently-used timbre
parameters [Tzanetakis2002], [Jensen2004], [Peeters2011]. The
centroid is normalised by the highest rate-map centre frequency to
reduce the in×uence of the gammatone parameters.

2. 'spread'  : The spectral spread describes the average deviation of the
rate-map around its centroid, which is commonly associated with the
bandwidth of the signal. Noise-like signals have usually a large
spectral spread, while individual tonal sounds with isolated peaks will
result in a low spectral spread. Similar to the centroid, the spectral
spread is normalised by the highest rate-map centre frequency, such
that the feature value ranges between zero and one.

3. 'brightness'  : The brightness re×ects the amount of high frequency
information and is measured by relating the energy above a pre-
deÖned cutoff frequency to the total energy. This cutoff frequency is
set to sf_br_cf = 1500  Hz by default [Jensen2004], [Peeters2011].
This feature might be used to quantify the sensation of sharpness.

4. 'high‐frequency content'  : The high-frequency content is another
metric that measures the energy associated with high frequencies. It
is derived by weighting each channel in the rate-map by its squared
centre frequency and integrating this representation across all
frequency channels [Jensen2004]. To reduce the sensitivity of this
feature to the overall signal level, the high-frequency content feature
is normalised by the rate-map integrated across-frequency.

5. 'crest'  : The SCM is deÖned as the ratio between the maximum
value and the arithmetic mean and can be used to characterise the
peakiness of the rate-map. The feature value is low for signals with a



×at spectrum and high for a rate-map with a distinct spectral
peak [Peeters2011], [Lerch2012].

6. 'decrease'  : The spectral decrease describes the average spectral
slope of the rate-map representation, putting a stronger emphasis on
the low frequencies [Peeters2011].

7. 'entropy'  : The entropy can be used to capture the peakiness of the
spectral representation [Misra2004]. The resulting feature is low for
a rate-map with many distinct spectral peaks and high for a ×at rate-
map spectrum.

8. 'flatness'  : The SFM is deÖned as the ratio of the geometric mean to
the arithmetic mean and can be used to distinguish between
harmonic (SFM is close to zero) and a noisy signals (SFM is close to
one) [Peeters2011].

9. 'irregularity'  : The spectral irregularity quantiÖes the variations of
the logarithmically-scaled rate-map across frequencies [Jensen2004].

10. 'kurtosis'  : The excess kurtosis measures whether the spectrum can
be characterised by a Gaussian distribution [Lerch2012]. This feature
will be zero for a Gaussian distribution.

11. 'skewness'  : The spectral skewness measures the symmetry of the
spectrum around its arithmetic mean [Lerch2012]. The feature will be
zero for silent segments and high for voiced speech where substantial
energy is present around the fundamental frequency.

12. 'roll‐off'  : Determines the frequency in Hz below which a pre-
deÖned percentage sf_ro_perc  of the total spectral energy is
concentrated. Common values for this threshold are between
sf_ro_perc = 0.85  [Tzanetakis2002] and sf_ro_perc = 0.95

[Scheirer1997], [Peeters2011]. The roll-off feature is normalised by
the highest rate-map centre frequency and ranges between zero and
one. This feature can be useful to distinguish voiced from unvoiced
signals.

13. 'flux'  : The spectral ×ux evaluates the temporal variation of the
logarithmically-scaled rate-map across adjacent frames [Lerch2012].
It has been suggested to be useful for the distinction of music and
speech signals, since music has a higher rate of
change [Scheirer1997].

14. 'variation'  : The spectral variation is deÖned as one minus the
normalised correlation between two adjacent time frames of the
rate-map [Peeters2011].

A list of all parameters is presented in Table 12.

Table 12 List of parameters related to 'spectral_features' .¶
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Parameter Default Description

Parameter Default Description
sf_requests 'all'

List of requested spectral features (e.g. 'flux' ). Type

help spectralFeaturesProc  in the Matlab command window

to display the full list of supported spectral features.

sf_br_cf 1500 Cut-off frequency in Hz for brightness feature

sf_ro_perc 0.85 Threshold (re. 1) for spectral roll-off feature

The extraction of spectral features is demonstrated by the script Demo_SpectralFeatures.m ,

which produces the plots shown in Fig. 18. The complete set of 14 spectral features is

computed for the speech signal shown in the top left panel. Whenever the unit of the

spectral feature was given in frequency, the feature is shown in black in combination with

the corresponding rate-map representation.
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Fig. 18 Speech signal and 14 spectral features that were extracted based
on the rate-map representation.

[Jensen2004] (1, 2, 3, 4) Jensen, K. and Andersen, T. H. (2004), “Real-time
beat estimation using feature extraction,” in Computer Music
Modeling and Retrieval, edited by U. K. Wiil, Springer, Berlin–
Heidelberg, Lecture Notes in Computer Science, pp. 13–22.

[Lerch2012] (1, 2, 3, 4) Lerch, A. (2012), An Introduction to Audio Content
Analysis: Applications in Signal Processing and Music
Informatics, John Wiley & Sons, Hoboken, NJ, USA.
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[Misra2004] Misra, H., Ikbal, S., Bourlard, H., and Hermansky, H. (2004),
“Spectral entropy based feature for robust ASR,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 193–196.

[Peeters2011] (1, 2, 3, 4, 5, 6, 7, 8) Peeters, G., Giordano, B. L., Susini, P.,
Misdariis, N., and McAdams, S. (2011), “The timbre toolbox:
Extracting audio descriptors from musical signals.” Journal of
the Acoustical Society of America 130(5), pp. 2902–2916.

[Scheirer1997] (1, 2) Scheirer, E. and Slaney, M. (1997), “Construction and
evaluation of a robust multifeature speech/music
discriminator,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1331–1334.

[Tzanetakis2002] (1, 2) Tzanetakis, G. and Cook, P. (2002), “Musical genre
classiÖcation of audio signals,” IEEE Transactions on Audio,
Speech, and Language Processing 10(5), pp. 293–302.
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Onset strength ( onsetProc.m )
According to [Bregman1990], common onsets and offsets across frequency are important

grouping cues that are utilised by the human auditory system to organise and integrate

sounds originating from the same source. The onset processor is based on the rate-map

representation, and therefore, the choice of the rate-map parameters, as listed in Table 11,

will in×uence the output of the onset processor. The temporal resolution is controlled by

the window size rm_wSizeSec  and the step size rm_hSizeSec , respectively. The amount of

temporal smoothing can be adjusted by the leaky integrator time constant rm_decaySec ,

which reduces the amount of temporal ×uctuations in the rate-map. Onset are detected by

measuring the frame-based increase in energy of the rate-map representation. This

detection is performed based on the logarithmically-scaled energy, as suggested

by [Klapuri1999]. It is possible to limit the strength of individual onsets to an upper limit,

which is by default set to ons_maxOnsetdB = 30 . A list of all parameters is presented in Table

13.

Table 13 List of parameters related to 'onset_strength' ¶

Parameter Default Description

ons_maxOnsetdB 30 Upper limit for onset strength in dB

The resulting onset strength expressed in decibel, which is a function of time frame and

frequency channel, is shown in Fig. 19. The two Ögures can be replicated by running the

script DEMO_OnsetStrength.m . When considering speech as an input signal, it can be seen that

onsets appear simultaneously across a broad frequency range and typically mark the

beginning of an auditory event.
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Fig. 19 Rate-map representation (left panel) of speech and the
corresponding onset strength in decibel (right panel).

[Klapuri1999] Klapuri, A. (1999), “Sound onset detection by applying
psychoacoustic knowledge,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3089–3092.
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Offset strength ( offsetProc.m )
Similarly to onsets, the strength of offsets can be estimated by measuring the frame-based

decrease in logarithmically-scaled energy. As discussed in the previous section, the

selected rate-map parameters as listed in Table 11 will in×uence the offset processor.

Similar to the onset strength, the offset strength can be constrained to a maximum value of

ons_maxOffsetdB = 30 . A list of all parameters is presented in Table 13.

Table 14 List of parameters related to 'offset_strength' .¶

Parameter Default Description

ofs_maxOffsetdB 30 Upper limit for offset strength in dB

The offset strength is demonstrated by the script DEMO_OffsetStrength.m  and the

corresponding Ögures are depicted in Fig. 20. It can be seen that the overall magnitude of

the offset strength is lower compared to the onset strength. Moreover, the detected

offsets are less synchronised across frequency.

Fig. 20 Rate-map representation (left panel) of speech and the
corresponding offset strength in decibel (right panel).
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Binary onset and offset maps
( transientMapProc.m )
The information about sudden intensity changes, as represented by onsets or offsets, can

be combined in order to organise and group the acoustic input according to individual

auditory events. The required processing is similar for both onsets and offsets, and is

summarised by the term transient detection. To apply this transient detection based on the

onset strength or offset strength, the user should use the request name ’onset_map’  or

’offset_map’ , respectively. Based on the transient strength which is derived from the

corresponding onset strength and offset strength processor (described in Onset strength

(onsetProc.m) and Offset strength (offsetProc.m), a binary decision about transient

activity is formed, where only the most salient information is retained. To achieve this,

temporal and across-frequency constraints are imposed for the transient information.

Motivated by the observation that two sounds are perceived as separated auditory events

when the difference in terms of their onset time is in the range of 20 ms – 40

ms [Turgeon2002], transients are fused if they appear within a pre-deÖned time context. If

two transients appear within this time context, only the stronger one will be considered.

This time context can be adjusted by trm_fuseWithinSec . Moreover, the minimum across-

frequency context can be controlled by the parameters trm_minSpread . To allow for this

selection, individual transients which are connected across multiple TF units are extracted

using Matlab’s image labelling tool bwlabel  . The binary transient map will only retain

those transients which consists of at least trm_minSpread  connected TF units. The salience

of the cue can be speciÖed by the detection thresholds trm_minStrengthdB . Whereas this

thresholds control the required relative change, a global threshold excludes transient

activity if the corresponding rate-map level is below a pre-deÖned threshold, as

determined by trm_minValuedB . A summary of all parameters is given in Table 15.

Table 15 List of parameters related to 'onset_map'  and 'offset_map' .¶

Parameter Default Description

trm_fuseWithinSec 30E‐3 Time constant below which transients are fused

trm_minSpread 5 Minimum number of connected TF units

trm_minStrengthdB 3 Minimum onset strength in dB   v: latest 



Parameter Default Description
trm_minValuedB ‐80 Minimum rate-map level in dB

To illustrate the beneÖt of selecting onset and offset information, a rate-map

representation is shown in Fig. 21 (left panel), where the corresponding onsets and offsets

detected by the transientMapProc , through two individual requests ’onset_map’  and

’offset_map’ , and without applying any temporal or across-frequency constraints are

overlaid (respectively in black and white). It can be seen that the onset and offset

information is quite noisy. When only retaining the most salient onsets and offsets by

applying temporal and across-frequency constraints (right panel), the remaining onsets

and offsets can be used as temporal markers, which clearly mark the beginning and the end

of individual auditory events.

Fig. 21 Detected onsets and offsets indicated by the black and white
vertical bars. The left panels shows all onset and offset events, whereas
the right panel applies temporal and across-frequency constraints in
order to retain the most salient onset and offset events.

[Turgeon2002] Turgeon, M., Bregman, A. S., and Ahad, P. A. (2002),
“Rhythmic masking release: Contribution of cues for
perceptual organization to the cross-spectral fusion of
concurrent narrow-band noises,” Journal of the Acoustical
Society of America 111(4), pp. 1819–1831.

  v: latest 



Docs  » Auditory front-end  » Available processors  » Pitch ( pitchProc.m )

Pitch ( pitchProc.m )
Following [Slaney1990], [Meddis2001], [Meddis1997], the sub-band periodicity analysis

obtained by the ACF can be integrated across frequency by giving equal weight to each

frequency channel. The resulting SACF re×ects the strength of periodicity as a function of

the lag period for a given time frame, as illustrated in Fig. 16. Based on the SACF

representation, the most salient peak within the plausible pitch frequency range

p_pitchRangeHz  is detected for each frame in order to obtain an estimation of the

fundamental frequency. In addition to the peak position, the corresponding amplitude of

the SACF is used to re×ect the conÖdence of the underlying pitch estimation. More

speciÖcally, if the SACF magnitude drops below a pre-deÖned percentage p_confThresPerc

of its global maximum, the corresponding pitch estimate is considered unreliable and set to

zero. The estimated pitch contour is smoothed across time frames by a median Ölter of

order p_orderMedFilt , which aims at reducing the amount of octave errors. A list of all

parameters is presented in Table 16. In the context of pitch estimation, it will be useful to

experiment with the settings related to the non-linear pre-processing of the ACF, as

described in Auto-correlation (autocorrelationProc.m).

Table 16 List of parameters related to 'pitch' .¶

Parameter Default Description

p_pitchRangeHz [80 400] Plausible pitch frequency range in Hz

p_confThresPerc 0.7 ConÖdence threshold related to the SACF magnitude

p_orderMedFilt 3 Order of the median Ölter

The task of pitch estimation is demonstrated by the script DEMO_Pitch  and the

corresponding SACF plots are presented in Fig. 22. The pitch is estimated for an anechoic

speech signal (top left panel). The corresponding is presented in the top right panel, where

each black cross represents the most salient lag period per time frame. The plausible pitch

range is indicated by the two white dashed lines. The conÖdence measure of each

individual pitch estimates is shown in the bottom left panel, which is used to set the

estimated pitch to zero if the magnitude of the SACF is below the threshold. The Önal pitch

contour is post-processed with a median Ölter and shown in the bottom right panel.

Unvoiced frames, where no pitch frequency was detected, are indicated by NaN ‘s.  v: latest 



Fig. 22 Time domain signal (top left panel) and the corresponding SACF
(top right panel). The conÖdence measure based on the SACF magnitude
is used to select reliable pitch estimates (bottom left panel). The Önal
pitch estimate is post-processed by a median Ölter (bottom right panel).

[Meddis1997] Meddis, R. and O’Mard, L. (1997), “A unitary model of pitch
perception,” Journal of the Acoustical Society of America
102(3), pp. 1811–1820.

[Meddis2001] Meddis, R., O’Mard, L. P., and Lopez-Poveda, E. A. (2001), “A
computational algorithm for computing nonlinear auditory
frequency selectivity,” Journal of the Acoustical Society of
America 109(6), pp. 2852–2861.

[Slaney1990] Slaney, M. and Lyon, R. F. (1990), “A perceptual pitch detector,”
in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 357–
360.
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Medial Olivo-Cochlear (MOC)
feedback ( mocProc.m )
It has now been a well known fact that in the auditory system, an efferent pathway of

Öbers exists, originating from the auditory neurons in the olivary complex to the outer hair

cells  [Guinan2006]. This operates as a top-down feedback path, as opposed to the bottom-

up peripheral signal transmission towards the brain, affecting the movement of the basilar

membrane in response to the input stimulus. The MOC processor mimics this feedback,

particularly originating from the medial part of the olivary complex. In Auditory front-end,

this feedback is realised by monitoring the output from the ratemap processor which

corresponds to the auditory neurons’ Öring rate, and by controlling accordingly the

nonlinear path gain of the DRNL processor which corresponds to the basilar membrane’s

nonlinear operation. This approach is based on the work of [Clark2012], except that the

auditory nerve processing model is simpliÖed as the ratemap processor in Auditory front-

end.

The input to the MOC processor is the time frame-frequency representation from the

ratemap processor. This is then converted into an attenuation factor per each frequency

channel. The constants for this rate-to-attenuation conversion are internal parameters of

the processor, which can be set in accordance with various physiological Öndings such as

those of [Liberman1988]. The amplitude relationship was adopted from the work of

[Clark2012]. The time course and delay of the feedback activity, such as in the work

of [Backus2006], can be approximated by adjusting the leaky integrator time constant

rm_decaySec  and the window step size rm_hSizeSec  of the ratemap processor.

In addition to this so-called re×exive feedback, realised as a closed-loop operation, the

re×ective feedback is realised by means of additional control parameters that can be

modiÖed externally in an open-loop manner. The two parameters moc_mocIpsi  and

moc_mocContra  are included for this purpose. Depending on applications, these two can be

accessed and adjusted via the Blackboard system, and applied jointly with the re×exive

feedback to the nonlinear path as the Önal multiplicative gain factor. Table 17 lists the

parameters for the processor, including the above-mentioned two. The other two

parameters moc_mocThresholdRatedB  and moc_mocMaxAttenuationdB  are speciÖed such that the

input level- attenuation relationship is Ötted best to the data of [Liberman1988] which is

scaled within a range of 0 dB to 40 dB by [Clark2012].
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Table 17 List of parameters related to the auditory representation ’moc’

Parameter Default DescriptionParameter Default Description

moc_mocIpsi 1 Ipsilateral MOC feedback factor (0 to 1)

moc_mocContra 1 Contralateral MOC feedback factor (0 to 1)

moc_mocThresholdRatedB ‐180 Threshold ratemap value for MOC activation in dB

moc_mocMaxAttenuationdB 40 Maximum possible MOC attenuation in dB

Fig. 23 shows, Örstly on the left panel, the input-output characteristics of the MOC

processor, using on-frequency stimulation from tones at 520 Hz and 3980 Hz, same as in

the work of [Liberman1988]. As mentioned above, the relationship between the input level

and the MOC attenuation activity through the ratemap representation was derived

through curve Ötting to the available data set of [Liberman1988], which is also shown on

the plot. An example of input signal-DRNL output pair at 40 dB input level is shown on the

right panel. The feedback applies an attenuation at the later part of the tone. These plots

can be generated by running the script DEMO_MOC.m .

Fig. 23 Left panel: input-output characteristics of the MOC processor
for on-frequency tone stimulus at 520 Hz and 3980 Hz. The data set
of [Liberman1988], scaled as in the work of [Clark2012], is also shown
for comparison. Right panel: DRNL processor output (bottom) from a 50
ms tone at 40 dB SPL and 520 Hz (top), with the re×exive feedback
operating.

[Backus2006] Backus, B. C. and Guinan, J. J. (2006), “Time-course of the
human medial olivocochlear re×ex,” The Journal of the
Acoustical Society of America 119(5 Pt 1), pp. 2889–2904.
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[Clark2012] (1, 2, 3) Clark, N. R., Brown, G. J., Jürgens, T., and Meddis, R.
(2012), “A frequency-selective feedback model of auditory
efferent suppression and its implications for the recognition of
speech in noise.” Journal of the Acoustical Society of America
132(3), pp. 1535–1541.

[Guinan2006] Guinan, J. J. (2006), “Olivocochlear efferents: anatomy,
physiology, function, and the measurement of efferent effects
in humans.” Ear and hearing 27(6), pp. 589–607,
http://www.ncbi.nlm.nih.gov/pubmed/17086072.

[Liberman1988] (1, 2, 3, 4) Liberman, M. C. (1988), “Response properties of
cochlear efferent neurons: monaural vs. binaural
stimulation and the effects of noise,” Journal of
Neurophysiology 60(5), pp. 1779–1798,
http://jn.physiology.org/content/60/5/1779.
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Amplitude modulation spectrogram
( modulationProc.m )
The detection of envelope ×uctuations is a very fundamental ability of the human auditory

system which plays a major role in speech perception. Consequently, computational

models have tried to exploit speech- and noise speciÖc characteristics of amplitude

modulations by extracting so-called amplitude modulation spectrogram (AMS)features

with linearly-scaled modulation Ölters [Kollmeier1994], [Tchorz2003], [Kim2009],

[May2013a], [May2014a], [May2014b]. The use of linearly-scaled modulation Ölters is,

however, not consistent with psychoacoustic data on modulation detection and masking in

humans [Bacon1989], [Houtgast1989], [Dau1997a], [Dau1997b], [Ewert2000]. As

demonstrated by [Ewert2000], the processing of envelope ×uctuations can be described

effectively by a second-order band-pass Ölter bank with logarithmically-spaced centre

frequencies. Moreover, it has been shown that an AMS feature representation based on an

auditory-inspired modulation Ölter bank with logarithmically-scaled modulation Ölters

substantially improved the performance of computational speech segregation in the

presence of stationary and ×uctuating interferers [May2014c]. In addition, such a

processing based on auditory-inspired modulation Ölters has recently also been successful

in speech intelligibility prediction studies [Joergensen2011], [Joergensen2013]. To

investigate the contribution of both AMS feature representations, the amplitude

modulation processor can be used to extract linearly- and logarithmically-scaled AMS

features. Therefore, each frequency channel of the IHC representation is analysed by a

bank of modulation Ölters. The type of modulation Ölters can be controlled by setting the

parameter ams_fbType  to either ’lin’  or ’log’ . To illustrate the difference between

linear linearly-scaled and logarithmically-scaled modulation Ölters, the corresponding

Ölter bank responses are shown in Fig. 24. The linear modulation Ölter bank is

implemented in the frequency domain, whereas the logarithmically-scaled Ölter bank is

realised by a band of second-order IIR Butterworth Ölters with a constant-Q factor of 1.

The modulation Ölter with the lowest centre frequency is always implemented as a low-

pass Ölter, as illustrated in the right panel of Fig. 24.
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Fig. 24 Transfer functions of 15 linearly-scaled (left panel) and 9
logarithmically-scaled (right panel) modulation Ölters.

Similarly to the gammatone processor described in Gammatone (gammatoneProc.m),

there are different ways to control the centre frequencies of the individual modulation

Ölters, which depend on the type of modulation Ölters

ams_fbType = 'lin'

1. Specify ams_lowFreqHz , ams_highFreqHz  and ams_nFilter . The
requested number of Ölters ams_nFilter  will be linearly-spaced
between ams_lowFreqHz  and ams_highFreqHz . If ams_nFilter  is
omitted, the number of Ölters will be set to 15 by default.

ams_fbType = 'log'

1. Directly deÖne a vector of centre frequencies, e.g.
ams_cfHz = [4 8 16 ...] . In this case, the parameters ams_lowFreqHz ,
ams_highFreqHz , and ams_nFilter  are ignored.

2. Specify ams_lowFreqHz  and ams_highFreqHz . Starting at
ams_lowFreqHz , the centre frequencies will be logarithmically-

spaced at integer powers of two, e.g. 2^2, 2^3, 2^4 ... until the
higher frequency limit ams_highFreqHz  is reached.

3. Specify ams_lowFreqHz , ams_highFreqHz  and ams_nFilter . The
requested number of Ölters ams_nFilter  will be spaced
logarithmically as power of two between ams_lowFreqHz  and
ams_highFreqHz .

The temporal resolution at which the AMS features are computed is speciÖed by the

window size ams_wSizeSec  and the step size ams_hSizeSec . The window size is an important

parameter, because it determines how many periods of the lowest modulation frequencies

can be resolved within one individual time frame. Moreover, the window shape can be

adjusted by ams_wname . Finally, the IHC representation can be downsampled prior to

modulation analysis by selecting a downsampling ratio ams_dsRatio  larger than 1. A full list

of AMS feature parameters is shown in Table 18.
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Table 18 List of parameters related to 'ams_features' .¶

Parameter Default Description

ams_fbType 'log' Filter bank type ( 'lin'  or 'log' )

ams_nFilter [] Number of modulation Ölters (integer)

ams_lowFreqHz 4 Lowest modulation Ölter centre frequency in Hz

ams_highFreqHz 1024 Highest modulation Ölter centre frequency in Hz

ams_cfHz [] Vector of modulation Ölter centre frequencies in Hz

ams_dsRatio 4 Downsampling ratio of the IHC representation

ams_wSizeSec 32E‐3 Window duration in s

ams_hSizeSec 16E‐3 Window step size in s

ams_wname 'rectwin' Window name

The functionality of the AMS feature processor is demonstrated by the script DEMO_AMS

and the corresponding four plots are presented in Fig. 25. The time domain speech signal

(top left panel) is transformed into a IHC representation (top right panel) using 23

frequency channels spaced between 80 and 8000 Hz. The linear and the logarithmic AMS

feature representations are shown in the bottom panels. The response of the modulation

Ölters are stacked on top of each other for each IHC frequency channel, such that the AMS

feature representations can be read like spectrograms. It can be seen that the linear AMS

feature representation is more noisy in comparison to the logarithmically-scaled AMS

features. Moreover, the logarithmically-scaled modulation pattern shows a much higher

correlation with the activity re×ected in the IHC representation.
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Fig. 25 Speech signal (top left panel) and the corresponding IHC
representation (top right panel) using 23 frequency channels spaced
between 80 and 8000 Hz. Linear AMS features (bottom left panel) and
logarithmic AMS features (bottom right panel). The response of the
modulation Ölters are stacked on top of each other for each IHC
frequency channel, and each frequency channel is visually separated by
a horizontal black line. The individual frequency channels, ranging from
1 to 23, are labels at the left hand side.

[Bacon1989] Bacon, S. P. and Grantham, D. W. (1989), “Modulation masking:
Effects of modulation frequency, depths, and phase,” Journal of
the Acoustical Society of America 85(6), pp. 2575–2580.

[Dau1997b] Dau, T., Püschel, D., and Kohlrausch, A. (1997b), “Modeling
auditory processing of amplitude modulation. II. Spectral and
temporal integration,” Journal of the Acoustical Society of
America 102(5), pp. 2906–2919.

[Ewert2000] (1, 2) Ewert, S. D. and Dau, T. (2000), “Characterizing frequency
selectivity for envelope ×uctuations,” Journal of the Acoustical
Society of America 108(3), pp. 1181–1196.

[Houtgast1989] Houtgast, T. (1989), “Frequency selectivity in amplitude-
modulation detection,” Journal of the Acoustical Society of
America 85(4), pp. 1676–1680.
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[Joergensen2013] Jørgensen, S., Ewert, S. D., and Dau, T. (2013), “A multi-
resolution envelope-power based model for speech
intelligibility,” Journal of the Acoustical Society of
America 134(1), pp. 1–11.

[Kim2009] Kim, G., Lu, Y., Hu, Y., and Loizou, P. C. (2009), “An algorithm that
improves speech intelligibility in noise for normal-hearing
listeners,” Journal of the Acoustical Society of America 126(3),
pp. 1486–1494.

[Kollmeier1994] Kollmeier, B. and Koch, R. (1994), “Speech enhancement
based on physiological and psychoacoustical models of
modulation perception and binaural interaction,” Journal of
the Acoustical Society of America 95(3), pp. 1593–1602.

[May2013a] May, T. and Dau, T. (2013), “Environment-aware ideal binary
mask estimation using monaural cues,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics
(WASPAA), pp. 1–4.

[May2014a] May, T. and Dau, T. (2014), “Requirements for the evaluation of
computational speech segregation systems,” Journal of the
Acoustical Society of America 136(6), pp. EL398– EL404.

[May2014b] May, T. and Gerkmann, T. (2014), “Generalization of supervised
learning for binary mask estimation,” in International Workshop
on Acoustic Signal Enhancement, Antibes, France.

[May2014c] May, T. and Dau, T. (2014), “Computational speech segregation
based on an auditory-inspired modulation analysis,” Journal of
the Acoustical Society of America 136(6), pp. 3350-3359.
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Spectro-temporal modulation
spectrogram
Neuro-physiological studies suggest that the response of neurons in the primary auditory

cortex of mammals are tuned to speciÖc spectro-temporal patterns [Theunissen2001],

[Qiu2003]. This response characteristic of neurons can be described by the so-called STRF.

As suggested by [Qiu2003], the STRF can be effectively modelled by two-dimensional (2D)

Gabor functions. Based on these Öndings, a spectro-temporal Ölter bank consisting of 41

Gabor Ölters has been designed by [Schaedler2012]. This Ölter bank has been optimised

for the task of ASR, and the respective real parts of the 41 Gabor Ölters is shown in Fig. 26.

The input is a log-compressed rate-map with a required resolution of 100 Hz, which

corresponds to a step size of 10 ms. To reduce the correlation between individual Gabor

features and to limit the dimensions of the resulting Gabor feature space, a selection of

representative rate-map frequency channels will be automatically performed for each

Gabor Ölter [Schaedler2012]. For instance, the reference implementation based on 23

frequency channels produces a 311 dimensional Gabor feature space.
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Fig. 26 Real part of 41 spectro-temporal Gabor Ölters.

The Gabor feature processor is demonstrated by the script DEMO_GaborFeatures.m , which

produces the two plots shown in Fig. 27. A log-compressed rate-map with 25 ms time

frames and 23 frequency channels spaced between 124 and 3657 Hz is shown in the left

panel for a speech signal. These rate-map parameters have been adjusted to meet the

speciÖcations as recommended in the ETSI standard [ETSIES]. The corresponding Gabor

feature space with 311 dimension is presented in the right panel, where vowel transition

(e.g. at time frames around 0.2 s) are well captured. This aspect might be particularly

relevant for the task of ASR.
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Fig. 27 Rate-map representation of a speech signal (left panel) and the
corresponding output of the Gabor feature processor (right panel).

[ETSIES] ETSI ES 201 108 v1.1.3 (2003), “Speech processing, transmission
and quality aspects (STQ); distributed speech recognition; front-
end feature extraction algorithm; compression algorithms,”
http://www.etsi.org.

[Qiu2003] (1, 2) Qiu, A., Schreiner, C. E., and Escabì, M. A. (2003), “Gabor
analysis of auditory midbrain receptive Öelds: Spectro-temporal
and binaural composition.” Journal of Neurophysiology 90(1), pp.
456–476.

[Schaedler2012] (1, 2) Schädler, M. R., Meyer, B. T., and Kollmeier, B. (2012),
“Spectro-temporal modulation subspace-spanning Ölter
bank features for robust automatic speech recognition,”
Journal of the Acoustical Society of America 131(5), pp.
4134–4151.

[Theunissen2001] Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje,
W. E., and Gallant, J. L. (2001), “Estimating spatio-
temporal receptive Öelds of auditory and visual neurons
from their responses to natural stimuli,” Network:
Computation in Neural Systems 12, pp. 289–316.
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Cross-correlation
( crosscorrelationProc.m )
The IHC representations of the left and the right ear signals is used to compute the

normalised CCF in the FFT domain for short time frames of cc_wSizeSec  duration with a

step size of cc_hSizeSec . The CCF is normalised by the auto-correlation sequence at lag

zero. This normalised CCF is then evaluated for time lags within cc_maxDelaySec  (e.g., [-1

ms, 1 ms]) and is thus a three-dimensional function of time frame, frequency channel and

lag time. An overview of all CCF parameters is given in Table 19. Note that the choice of

these parameters will in×uence the computation of the ITD and the IC processors, which

are described in Interaural time differences (itdProc.m) and Interaural coherence

(icProc.m), respectively.

Table 19 List of parameters related to 'crosscorrelation' .¶

Parameter Default Description

cc_wname 'hann' Window type

cc_wSizeSec 0.02 Window duration in s

cc_hSizeSec 0.01 Window step size in s

cc_maxDelaySec 0.0011 Maximum delay in s considered in CCF computation

The script DEMO_Crosscorrelation.m  demonstrates the functionality of the CCF function and

the resulting plots are shown in Fig. 28. The left panel shows the ear signals for a speech

source that is located closer to the right ear. As result, the left ear signal is smaller in

amplitude and is delayed in comparison to the right ear signal. The corresponding CCF is

shown in the right panel for 32 auditory channels, where peaks are centred around

positive time lags, indicating that the source is closer to the right ear. This is even more

evident by looking at the SCCF, as shown in the bottom right panel.
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Fig. 28 Left and right ear signals shown for one time frame of 20 ms
duration (left panel) and the corresponding CCF (right panel). The SCCF
summarises the CCF across all auditory channels (bottom right panel).
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Interaural time differences ( itdProc.m )
The ITD between the left and the right ear signal is estimated for individual frequency

channels and time frames by locating the time lag that corresponds to the most prominent

peak in the normalised CCF. This estimation is further reÖned by a parabolic interpolation

stage [May2011], [May2013b]. The ITD processor does not have any adjustable

parameters, but it relies on the CCF described in Cross-correlation

(crosscorrelationProc.m) and its corresponding parameters (see Table 19). The ITD

representation is computed by using the request entry ’itd’ .

The ITD processor is demonstrated by the script DEMO_ITD.m , which produces two plots as

shown in Fig. 29. The ear signals for a speech source that is located closer to the right ear

are shown in the left panel. The corresponding ITD estimation is presented for each

individual TF unit (right panel). Apart from a few estimation errors, the estimated ITD

between both ears is in the range of 0.5 ms for the majority of TF units.

Fig. 29 Binaural speech signal (left panel) and the estimated ITD in ms
shown as a function of time frames and frequency channels.

[May2011] May, T., van de Par, S., and Kohlrausch, A. (2011), “A probabilistic
model for robust localization based on a binaural auditory front-
end,” IEEE Transactions on Audio, Speech, and Language
Processing 19(1), pp. 1–13.
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[May2013b] May, T., van de Par, S., and Kohlrausch, A. (2013), “Binaural
Localization and Detection of Speakers in Complex Acoustic
Scenes,” in The technology of binaural listening, edited by J.
Blauert, Springer, Berlin–Heidelberg–New York NY, chap. 15,
pp. 397–425.
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Interaural level differences ( ildProc.m )
The ILD is estimated for individual frequency channels by comparing the frame-based

energy of the left and the right-ear IHC representations. The temporal resolution can be

controlled by the frame size ild_wSizeSec  and the step size ild_hSizeSec . Moreover, the

window shape can be adjusted by the parameter ild_wname . The resulting ILD is expressed

in dB and negative values indicate a sound source positioned at the left-hand side, whereas

a positive ILD corresponds to a source located at the right-hand side. A full list of

parameters is shown in Table 20.

Table 20 List of parameters related to 'ild' .¶

Parameter Default Description

ild_wSizeSec 20E‐3 Window duration in s

ild_hSizeSec 10E‐3 Window step size in s

ild_wname 'hann' Window name

The ILD processor is demonstrated by the script DEMO_ILD.m  and the resulting plots are

presented in Fig. 30. The ear signals are shown for a speech source that is more closely

located to the right ear (left panel). The corresponding ILD estimates are presented for

individual TF units. It is apparent that the change considerably as a function of the centre

frequency. Whereas hardly any ILDs are observed for low frequencies, a strong in×uence

can be seen at higher frequencies where ILDs can be as high as 30 dB.
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Fig. 30 Binaural speech signal (left panel) and the estimated ILD in dB
shown as a function of time frames and frequency channels.
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Interaural coherence ( icProc.m )
The IC is estimated by determining the maximum value of the normalised CCF. It has been

suggested that the IC can be used to select TF units where the binaural cues (ITDs and

ILDs) are dominated by the direct sound of an individual sound source, and thus, are likely

to re×ect the true location of one of the active sources [Faller2004]. The IC processor does

not have any controllable parameters itself, but it depends on the settings of the CCF

processor, which is described in Cross-correlation (crosscorrelationProc.m). The IC

representation is computed by using the request entry ’ic’ .

The application of the IC processor is demonstrated by the script DEMO_IC , which produces

the following four plots shown in Fig. 31. The top left and bottom left panels show the

anechoic and reverberant speech signal, respectively. It can be seen that the time domain

signal is smeared due to the in×uence of the reverberation. The IC for the anechoic signal

is close to one for most of the individual TF units, which indicates that the corresponding

binaural cues are reliable. In contrast, the IC for the reverberant signal is substantially

lower for many TF units, suggesting that the corresponding binaural cues might be

unreliable due to the impact of the reverberation.
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Fig. 31 Time domain signals and the corresponding interaural coherence
as a function of time frames and frequency channels estimated for a
speech signal in anechoic and reverberant conditions. Anechoic speech
(top left panel) and the corresponding IC (top right panel). Reverberant
speech (bottom left panel) and the corresponding IC (bottom right
panel).

[Faller2004] Faller, C. and Merimaa, J. (2004), “Source localization in
complex listening situations: Selection of binaural cues based
on interaural coherence,” Journal of the Acoustical Society of
America 116(5), pp. 3075–3089.
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Precedence effect ( precedenceProc.m )
The precedence effect describes the ability of humans to fuse and localize the sound based

on the Örst-arriving parts, in the presence of its successive version with a time delay below

an echo-generating threshold [Wallach1949]. The effect of the later-arriving sound is

suppressed by the Örst part in the localization process. The precedence effect processor in

Auditory front-end models this, with the strategy based on the work of [Braasch2013]. The

processor detects and removes the lag from a binaural input signal with a delayed

repetition, by means of an autocorrelation mechanism and deconvolution. Then it derives

the ITD and ILD based on these lag-removed signals.

The input to the precedence effect processor is a binaural time-frequency signal chunk

from the gammatone Ölterbank. Then for each chunk a pair of ITD and ILD values is

calculated as the output, by integrating the ITDs and ILDs across the frequency channels

according to the weighted-image model [Stern1988], and through amplitude-weighted

summation. Since these ITD/ILD calculation methods of the precedence effect processor

are different from what are used for the Auditory front-end ITD and ILD processors, the

Auditory front-end ITD and ILD processors are not connected to the precedence effect

processor. Instead the steps for the correlation analyses and the ITD/ILD calculation are

coded inside the processor as its own speciÖc techniques. Table 21 lists the parameters

needed to operate the precedence effect processor.

Table 21 List of parameters related to the auditory representation ’precedence’

Parameter Default Description

prec_wSizeSec 20E‐3 Window duration in s

prec_hSizeSec 10E‐3 Window step size in s

prec_maxDelaySec 10E‐3 Maximum delay in s for autocorrelation computation

Fig. 32 shows the output from a demonstration script DEMO_precedence.m . The input signal is

a 800-Hz wide bandpass noise of 400 ms length, centered at 500 Hz, mixed with a

re×ection that has a 2 ms delay, and made binaural with an ITD of 0.4 ms and a 0-dB ILD.
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During the processing, windowed chunks are used as the input, with the length of 20 ms. It

can be seen that after some initial confusion, the processor estimates the intended ITD

and ILD values as more chunks are analyzed.

Fig. 32 Left panel: band-pass input noise signal, 400 ms long (only the
Örst 50 ms is shown), 800 Hz wide, centered at 500 Hz, mixed with a
re×ection of a 2-ms delay, and made binaural with an of 0.4 ms ITD and
ILD of 0 dB. Right panel: estimated ITD and ILD shown as a function of
time frames.

[Braasch2013] Braasch, J. (2013), “A precedence effect model to simulate
localization dominance using an adaptive, stimulus
parameter-based inhibition process.” The Journal of the
Acoustical Society of America 134(1), pp. 420–35.

[Stern1988] Stern, R. M., Zeiberg, A. S., and Trahiotis, C. (1988), “Lateralization of
complex binaural stimuli: A weighted-image model,” The Journal of the
Acoustical Society of America 84(1), pp. 156–165,
http://scitation.aip.org/content/asa/journal/jasa/84/1/10.1121/1.396982

[Wallach1949] Wallach, H., Newman, E. B., and Rosenzweig, M. R. (1949),
“The Precedence Effect in Sound Localization,” The American
Journal of Psychology 62(3), pp. 315–336,
http://www.jstor.org/stable/1418275.

  v: latest 



Docs  » Auditory front-end  » Add your own processors

Add your own processors
To write the class deÖnition for a new processor such that it will be recognised and

properly integrated, one has to follow these steps:

Getting started and setting up processor properties
Implement static methods
Implement parameters “getter” methods
Implement the processor constructor
Preliminary testing
Implement the core processing method
Override parent methods
Allow alternative processing options
Implement a new signal type
Recommendations for Önal testing

The Auditory front-end framework has been designed in such a way that it can be easily

upgraded. To add a new processor, write its class deÖnition in a new .m  Öle and add it to

the /src/Processors  folder. If correctly written, the processor should be automatically

detected by the framework and be ready to use. This section documents in details how to

correctly write the class deÖnition of a new processor. It is highly recommended to look

into the deÖnition of existing processors to get a grasp of how classes are deÖned and

written in Matlab. In the following, we will sometimes refer to a particular existing

processor to illustrate some aspects of the implementation.

Note

The following descriptions are exhaustive, and adding a processor
to the framework is actually easier than the length of this page
suggests!
This tutorial is written assuming limited knowledge about object-
oriented programming using Matlab. Hence most OOP concepts
involved are brie×y explained.
You can base your implementation on the available templateProc.m
Öle which contains a pre-populated list of properties and methods.
Simply copy the Öle, rename it to your processor name, and follow
the instructions.
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Getting started and setting up
processor properties

External parameters controllable by the user
Internal parameters

The properties of an object are a way to store data used by the object. There are two types

of properties for processors, those which:

store all the parameters needed to integrate the processor into the
framework (e.g., the sampling frequency on which it operates, the
number of inputs/outputs, ...)
store parameter values which are used in the actual processing

When writing the class deÖnition for a new processor, it is only necessary to implement the

latter: parameters which are needed in the computation. All parameters needed for the

integration of the processor in the framework are already deÖned in the parent Processor

class. Your new processor should inherit this parent class in order to automatically have

access to the properties and methods of the parent class. Inheritance in Matlab is indicated

by the command < nameOfParentClass  following the name of your new class in the Örst line

of its deÖnition.

The new processor class deÖnition should be saved in a .m  Öle that has the same name as

the deÖned class. In the example below, that would be myNewProcessor.m .

There are usually two categories of properties to be implemented for a new processor:

external (user-controlled) parameters and internal parameters necessary for the

processor but which do not need to be known to the “outside world”.

Note

Only the two types of properties below have been used so far in every processor

implementation. However, it is Öne to add more if needed for your new processor.
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External parameters controllable by the
user

External parameters are directly related to the parameters the user can access and

change. The actual values for these are stored in a speciÖc object accessible via the

.parameters  property of the processor. DeÖning them as individual properties seems

redundant, and is therefore optional. However it can be very convenient in order to

simplify the access to the parameter value and to make your code more readable.

Instead of storing an actual value, the corresponding processor property should only point

to a value in the .parameters  object. This will avoid having two different values for the

same parameter. To do this, external parameters should be deÖned as a set of dependent

properties. This is indicated by the Dependent = true  property attribute. If a property is set

to Dependent , then a corresponding “getter” method has to be implemented for it. This will

be developed in a following section. For example, if your new processor has two

parameters, parA  and parB , you can deÖne these as properties as follow:

classdef myNewProcessor < Processor 
 
  properties (Dependent = true) 
    parA; 
    parB; 
  end 
 
  %... 
 
end 

 

This will allow easier access to these values in your code. For example, myNewProcessor.parA

will always give the same output as myNewProcessor.parameters.map('xx_nameTagOfParameterA') ,

even if the parameter value changes due to feedback. This simpliÖes greatly the code,

particularly when many parameters are involved.

Internal parameters

Internal parameters are sometimes (not always) needed for the functioning of the

processor. They are typically used to store internal states of the processor (e.g., to allow

continuity in block-based processing), Ölter instances (if your processor involves Öltering),

or just intermediate parameter values used to make code more readable.

Because they are “internal” to the processor, these parameters are usually stored as a set

of private properties by using the GetAccess = private  property attributes. This will

virtually make the property invisible and inaccessible to all other objects.
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Implement static methods
getDependency

getParameterInfo

getProcessorInfo

Static methods are methods that can be called without an existing instance of an object. In

the implementation of processors, they are used to store all the hard-coded information.

This can be for example the processor name, the type of signal it accepts as input, or the

names and default values of its external parameters. A static method is implemented by

deÖning it in a method block with the (Static)  method attribute:

classdef myNewProcessor < Processor 
 
  % ... Properties and other methods definition 
 
  methods (Static) 
 
    function out = myStaticMethod_1(in) 
      %... 
    end 
 
    function out = myStaticMethod_2(in) 
      %... 
    end 
 
  end 
 
end 

 

Static methods share the same structure and names across processors, so they can easily

be copy/pasted from an existing processor and then modiÖed to re×ect your new

processor. The following three methods have to be implemented.

.getDependency() : Returns the type of input signal by its user request
name
.getParameterInfo() : Returns names, default values, and descriptions

of external parameters
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.getProcessorInfo() : Returns information about the processor as a
Matlab structure

As they are used to hard-code and return information, none of these methods accept input

arguments.

getDependency

This method returns the type of input signal your processor should accept:

function name = getDependency() 
  name = 'requestNameOfInputSignal'; 
end 

 

where 'requestNameOfInputSignal'  is the request name of the signal that should be used as

input. “Request name” corresponds to the request a user would place in order to obtain a

particular signal. For example, the inner hair-cell envelope processor requires as input the

output of e.g., a gammatone Ölterbank. The request name for this signal is 'filterbank'

which should therefore be the output of the static method ihcProc.getDependency() . You

can also check the list of currently valid request names by typing requestList  in Matlab’s

command window.

If you are unsure about which name should be used, consider which processor would come

directly before your new processor in a processing chain (i.e., the processor your new

processor depends on). Say it is named dependentProc . Then typing:

dependentProc.getProcessorInfo.requestName 

 

in Matlab’s command window will return the corresponding request name you should

output in your getDependency  method.

getParameterInfo

This method hard-codes all information regarding the (external) parameters used by your

processor, i.e., lists of their names, default values, and description. These are used to

populate the output of the helper script parameterHelper  and to give a default value to

parameters when your processor is instantiated.
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The lists are returned as cell arrays of strings (or any other type for the default parameter

values). They should follow the same order, such that the n-th member of each of the three

lists relate to the same parameter.

Parameter names need not be the same as the parameter property name you deÖned

earlier. This will become apparent in the next section. In fact, names should be changed to

at least include a two or three letters preÖx that is unique to your new processor. You can

make sure it is not already in use by browsing through the output of the parameterHelper

script.

The method should look something like this:

function [names,defValues,description] = getParameterInfo() 
 
  names = {'xx_par1','xx_par2','xx_par3'}; 
 
  defValues = {0.5, ... 
               [1 2 3 4], ... 
               'someStringValue'}; 
 
  description = {'Tuning factor of dummy example (s)',... 
                 'Vector of unused frequencies (Hz)',... 
                 'Model name (''someStringValue'' or ''anotherValue'')'} 
 
end 

 

This dummy example illustrates the following important points:

Use a unique preÖx in the name of the parameters ( xx_  above) that
abbreviates the name or task of the processor.
Find a short, but self-explanatory parameter name (not like parX
above). If it makes sense, you can re-use the same name as a
parameter involved in another processor. The preÖx will make the
name unique.
Default values can be of any type (e.g., ×oat number, array, strings,...)
Descriptions should be as short as possible while still explanatory.
Mention if applicable the units or the different alternatives.

getProcessorInfo

This method stores the properties of the processor that are needed to integrate it in the

framework. It outputs a structure with the following Öelds:

.name : A short, self-explanatory name for the processor
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.label : A name for the processor that is used as a label. It can the
same as .name  if that is sufÖcient, or a bit longer if needed.
.requestName : The name tag of the request that a user should input

when calling the .addProcessor  method of the manager. This has to be
a valid Matlab name (e.g., it cannot include spaces).
.requestLabel : A longer name for the signal this processor produces,

used e.g., as plot labels.
outputType : The type of signal object (name of the class) this

processor produces. If none of the existing signals in the framework
are suitable, you will need to implement a new one.
isBinaural : Set to 0 if your processor operates on a single channel

(e.g., an auditory Ölterbank) or to 1 if it needs a binaural input (e.g., the
inter-aural level differences processor). If your processor can operate
on both mono and stereo signals (such as the pre-processor
preProc.m ), set it to 2.

Your method should initialise the structure that will be returned as output and give a value

to all of the above-mentioned Öelds:

%... 
 
function pInfo = getProcessorInfo 
 
  pInfo = struct; 
 
  pInfo.name = 'MyProcessor'; 
  pInfo.label = 'Processor doing things'; 
  % etc... 
 
end 
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Implement parameters “getter”
methods
As described in an earlier section, external parameters of the processor, i.e., those that can

be modiÖed by the user, are implemented as Dependent  properties of your processor class.

For your implementation to be valid, a “getter” method needs to be implemented for each

of these parameters. If not, Matlab will generate an error when trying to access that

parameter value. If a property is set as Dependent , then its getter method will be called

whenever the program tries to access that property. In general, this can be useful for a

property that depends on others and that need to be recomputed whenever accessed. In

the present case, we will set the getter method to read the corresponding parameter value

in the parameter object associated with your processor. If the value of the parameter has

changed throughout the processing (e.g., in response to feedback), then we are sure to

always get the updated value.

“Getter” methods for parameters are implemented without any method attribute and

always follow the same structure. Hence they can easily be copy/pasted and adjusted:

methods 
 
  function value = get.parName(pObj) 
    value = pObj.parameters.map('xx_parNameTag') 
  end 
 
  % ... implement one get. method for each parameter 
 
end 

 

In the above example, parName  is the name of the parameter as a dependent property of

your processor class, and xx_parNameTag  is the name of the parameter deÖned in the static

.getParameterInfo  method. pObj  represents an instance of your processor class, it does

not need to be changed across methods.
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Implement the processor constructor
For any possible application, every class should implement a very speciÖc method: a class

constructor. A class constructor is a function that has the exact same name as your class. It

can take any combination of input arguments but can return only a single output: an

“instance” of your class.

In the Auditory front-end architecture however, the input arguments to the constructor of

all processors have been standardised, such that all processor constructors can be called

using the exact same arguments. The input arguments should be (in this order) the

sampling frequency of the input signal to the processor and an instance of a parameter

object returned e.g. by the script genParStruct.m . The constructor’s role is then to create an

object of the class, and often to initialise all its properties. Most of this initialisation step is

the same across all processors (e.g., setting input/output sampling frequencies, indicating

the type of processor, ...). Hence all processor constructors rely heavily on the constructor

of their parent class (or super-constructor), Processor(...)  which deÖnes these across-

processors operations. This allows to have all this code in one place which reduces the

code you have to write for your processor, as well as reducing chances for bugs and

increasing maintainability. This concept of “inheritance” will be discussed in a further

section.

In practice, this means that the constructor for your processor will be very short:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13

function pObj = myNewProcessor(fs,parObj) 
  %myNewProcessor   ... Provide some help here ... 
 
  if nargin<2||isempty(parObj); parObj = Parameters; end 
  if nargin<1; fs = []; end 
 
  % Call super‐constructor 
  pObj = pObj@Processor(fs, fsOut,'myNewProcessor',parObj); 
 
  % Additional code depending on your processor 
  % ... 
 
end 
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The constructor method should be placed in a “method” block with no method

attributes.

Let us break down the constructor structure line by line:

Line 1: As stated earlier, all processor constructors take two input and
return a single output, your processor instance pObj . Matlab restricts
all constructors to return a single output. If for any reason you need
additional outputs, you would have to place them in a property of
your processor instead of a regular output. Input arguments are the
input sampling frequency, i.e., the sampling frequency of the signal at
the input of the processor, and a parameter object parObj .
Line 2: This is where you will place help regarding how to call this
constructor. Because they have a generic form across all processors,
you can easily copy/paste it from another processor.
Lines 4 and 5: An important aspect in this implementation is that the
constructor should be called with no input argument and still return a
valid instance of the processor, without any error. Hence these two
lines deÖne default values for inputs if none were speciÖed.
Line 8: This line generates a processor instance by calling the class
super-constructor. The super-constructor takes four inputs:

the input sampling frequency fs
the output sampling frequency. If your processor does not modify
the sampling rate, then you can replace fsOut  with fs . If the
output sampling rate of your processor if Öxed, i.e., not depending
on external parameters, then you can specify it here, in place of
fsOut . Lastly, if the output sampling rate depends on some

external parameters (i.e., susceptible to change via feedback from
the user), then you should leave the fsOut  Öeld empty: [] . The
output sampling rate will be deÖned in another method that is
called every time feedback is involved.
the name of the children processor, here myNewProcessor .
the parameter object parObj  already provided as input.

Line 11: Your processor might need additional initialisation. All extra
code should go there. To ensure that no error is generated when
calling the constructor with no arguments (which Matlab sometimes
does implicitly), the code should be embedded in a
if nargin > 0 ... end  block. Here you can for example initialise

buffers or internal properties.

Warning
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The initialisation of anything that depends on external parameters (e.g., Ölters, framing

windows, ...) is not performed here on line 11. When parameters change due to

feedback, these properties need to be re-initialised. Hence their initialisation is

performed in another method that will be described in a following section.
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Preliminary testing
Default instantiation
Is it a valid processor?
Are parameters correctly described?

At this stage of the implementation, your processor should be correctly instantiated and

recognised by the framework. In some cases (e.g., your processor is a simple single input /

single output processor), it might even be correctly integrated and routed to other

processors. In any case, now is a good time to take a break from writing code and do some

preliminary testing. We will go through a few example tests you can run, describe which

problems could arise and suggest how to solve them. Try to run these tests in the order

they are listed below, as this will help troubleshooting. They should run as expected before

you go further in your implementation.

Note

You will not be able to instantiate your processor before you have written a concrete

implementation to Processor  abstract methods. To carry out the tests below, just write

empty processChunk  and reset  methods. In this way, Matlab will not complain about

trying to instantiate a class that contains abstract methods. The actual implementation

of these methods will be described in later sections.

Default instantiation

As mentioned when implementing the constructor, you should be able to get a valid

instance of your processor by calling its constructor without any input arguments:

>> p = myNewProcessor 

 

If this line returns an error, then you have to revise your implementation of the

constructor. The error message should indicate where the problem is located, so that you

can easily correct it. If your processor cannot be instantiated with no arguments, then it

will not be listed as a valid processor.   v: latest 



If on the other hand this line executed without error, then there are two things you should

control:

1. The line above (if not ended by a semicolon) should display the visible,
public properties of the processor. Check that this list corresponds to
the properties you deÖned in your implementation. The property
values should be the default values you have deÖned in your
getParameterInfo  static method. If a property is missing, then you

forgot to list it in the beginning of your class deÖnition (or you deÖned
it as Hidden  or Private ). If a value is incorrect, or empty, then it is a
mistake in your getParameterInfo  method. In addition, the Type
property should refer to the name  Öeld returned by getProcessorInfo
static method.

2. Inspect the external parameters of the processor by typing
p.parameters . This should return a list of all external parameters.

Control that all parameters are there and that their default value is
correct.

To test that your external properties are indeed dependent, you can change the value of

one or more of them directly in your parameter  processor property and see if that change

is re×ected in the dependent property. For example if you type:

p.parameters.map('xx_par1') = someRandomValue 

 

then this should be re×ected in the property associated with that parameter.

Note

The input and output frequency properties of your processor, FsHzIn  and FsHzOut  are

probably incorrect, but that is normal as you did not specify the sampling frequency

when calling the constructor with no arguments.

Is it a valid processor?

To test whether your processor is recognised as a valid processor, run the requestList

script. The signal request name corresponding to your processor should appear in the list

(i.e., the name deÖned in getProcessorInfo.requestName ). If not (and the previous test did

work), then maybe your class deÖnition Öle is not located in the correct folder. Move it to

the src/Processors  folder. Another possibility is that you made your processor hidden

(which should not happen if you followed these instructions). Setting explicitly the bHidden
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property of your processor to 1  will hide it from the framework. This is used in order to

allow “sub-processors” in the framework, but it is probably not the case for you here so you

should not enable this option.

Are parameters correctly described?

If your processor is properly recognised, then you can call the parameterHelper  script from

the command window. There you should see a new category corresponding to your

processor. Clicking on it will display a list of user-controllable parameters for your

processor, as well as their descriptions. Feel free to adjust your getParameterInfo  static

method to have a more suitable description.
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Implement the core processing
method

Input and output arguments
Chunk-based and signal-based processing
Reset method

At this stage, and if the previous tests were successfully passed, your processor should be

correctly detected by the Auditory front-end framework. However, there is still some work

to do. In particular, the core of your processor has to be implemented, which performs the

processing of the input signal and returns a corresponding output.

This section will provide guidelines as to how to implement that method. However, this

task is very dependent on the functionality of a particular processor. You can get insights

as to how to perform the signal processing task by looking at the code of the .processChunk

methods of existing processors.

Note

Some of the challenges in implementing the processing method were already

presented in a section of the technical description. It is recommended at that stage to

go back and read that section again.

Input and output arguments

The processing method should be called processChunk  and be placed in a block of methods

with no attributes (e.g., following the class constructor). The function takes a single

effective input argument, a chunk of input signal and returns a single output argument, the

corresponding chunk of output signal. Because it is a non-static method of the processor,

an instance of the processor is passed as Örst input argument. Hence the method deÖnition

looks something like this for a monaural single-output processor:
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function out = processChunk(pObj,in) 
 
  % The signal processing to obtain "out" from "in" is written here 
  % 
  % ... 
 
end 

 

Or, for a binaural single-output processor (such as ildProc ):

function out = processChunk(pObj,in_left,in_right) 
 
  % The signal processing to obtain "out" from "in" is written here 
  % 
  % ... 
 
end 

 

If your processor is not of one of the two kinds described above, then you are free to use a

different signature for your processChunk  method (i.e., different number of input or output

arguments). However, you will then have to override the initiateProcessing  method.

Given an instance of your processor, say p , this allows you to call this method (and in

general all methods taking an object instance as Örst argument) in two different ways:

processChunk(p,in)

p.processChunk(in)

The two calls will of course return the same output.

Note

Having an instance of the processor as an argument means that you can access all of its

properties to carry out the processing. In particular, the external and internal

parameter properties you have deÖned earlier. For example, the processing method of

a simple “gain” processor could read as out = in * p.gain

The arguments in  and out  are arrays containing “pure” data. Although signal-related

data is stored as speciÖc signal objects in the Auditory front-end, only the data is passed

around when it comes to processing. It is done internally to avoid unnecessary copies. So it

is not something that has to be addressed in the implementation of your processing

method. Your input is an array whose dimensionality depends on the type of signal.

Dimensions are ordered in the same way as in the data-storing buffer of the signal object.
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For example, the input in  in the gammatoneProc.processChunk  is a one-dimensional array

indexing time. Similarly, the output should be arranged in the same way than in its

corresponding output signal object. For example, the output out  of

modulationProc.processChunk  is a three-dimensional array where the Örst dimension indexes

time, the second refers to audio frequency and the third corresponds to modulation

frequency. Just like the way data is stored in the modulationSignal.Data  buffer.

Note

The Örst dimension for all signals used in the Auditory front-end is always indexing

time.

Chunk-based and signal-based processing

As the name of the method processChunk  suggests, you should implement the processing

method such that it can process consecutive chunks of input signal, as opposed to the

entire signal at once. This enables “online” processing, and eventually “real-time”

processing once the software has been sufÖciently optimised. This has two fundamental

consequences on your implementation:

1. The input data to the processing method can be of arbitrary duration.
2. The processing method needs to maintain continuity between input

chunks. In other words, when concatenating the outputs obtained by
processing individual consecutive chunks of input, one need to obtain
the same output as if all the consecutive input were concatenated and
processed at once.

Point 1. above implies that depending on the type of processing you are carrying out, it

might be necessary to buffer the input signal. For example, processors involving framing of

the signal, such as ratemapProc  or ildProc , need to put the segment of the input signal that

went out of bound of the framing operation in a buffer. This buffer is then appended to the

beginning of the next input chunk. This is illustrated in a section of the technical

description of the framework. This also means that for some processor (those which lower

the sampling rate in general), an input that is too short in time might produce an empty

output. But this input will still be considered in the next chunk.

Point 2. is the most challenging one because it very much depends on the processing

carried out by the processor. Hence there are no general guidelines. However, the

Auditory front-end comes with some building blocks to help with this task. It features for

instance Ölter objects that can be used for processing. All Ölters manage their internal

states themselves, such that output continuity is ensured. For an example on how to use

Ölters, see e.g. gammatoneProc.processChunk . Sometimes however, one need more than simple

Öltering operations. One can often Önd a workaround by using some sort of “overlap-save”  v: latest 



method using smart buffering of the input or output as described in the technical

description. A good example of using buffering for output continuity can be found in e.g.,

ildProc.processChunk .

Reset method

To ensure continuity between output chunks, your new processor might include “internal

states” (e.g., built-in Ölter objects or internal buffers). Normally, incoming chunks of input

are assumed to be consecutive segments of a same signal. However, the user can decide to

process an entirely new signal as input at any time. In this case, your processor should be

able to reset its internal states.

This is performed by the reset  method. This method should be implemented in a method

block with no method attributes, just like the constructor. It should simply reset the Ölters

(if any) by calling all the Ölters reset  methods, and/or empty all internal buffers.

If your processor does not need any internal state storage, then the reset  method should

still be implemented (as it is an abstract method of the parent class) but can be left empty

(see, e.g., itdProc.reset ).
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Override parent methods
Initialisation methods
Input/output routing methods
Processing method

The Auditory front-end framework was developed to maximise code reusing. Many of the

existing processors, although they carry out different processing tasks, have common

attributes in terms of e.g., number of inputs, number of outputs, how to call their

processing methods, ... Hence all aspects of initialisation (and re- initialisation following a

response to feedback) and input/output routing have been implemented for common-

cases as methods of the parent Processor  class. If your processor does not behave

similarly to others in one of these regards, then this approach allows you to redeÖne the

speciÖc method in your new children processor class deÖnition. In the object oriented

jargon, this procedure is called method overriding.

In the following, we list the methods that might need overriding and how to do so.

Subsections for each methods will start with a description of what the method does and a

note explaining in which cases the method needs to be overridden, such that you can

quickly identify if this is necessary for your processor. Some examples of existing

processors that override a given method will also be given so they can be used as examples.

Note that all non- static methods from the parent Processor  class can be overridden if

necessary. The following list only concerns methods that were written with overriding in

mind to deal with particular cases.

Note

Overridden methods need to have the same method attribute(s) as the parent method

they are overriding.

Initialisation methods

verifyParameters
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This method is called at the end of the Processor  super-constructor. It ensures that user-

provided parameters are valid. The current implementation of the Auditory front-end

relies on the user being responsible and aware of which type or values are suitable for a

given parameter. Therefore, we do not perform a systematic check of all parameters.

Sometimes though, you might want to verify that user- provided parameters are correct in

order to avoid Matlab returning an error at a later stage. For example,

ihcProc.verifyParameters  will check that the inner hair-cell model name entered by the user

is part of the list of valid names.

Another use for the verifyParameters  method is to solve con×icts between parameters. For

example, the auditory Ölterbank in gammatoneProc  can be instantiated in three different

ways (e.g., by providing a range of frequency and a number of channels, or directly a vector

of centre frequencies). The user- provided parameters for this processor are therefore

potentially “over- determining” the position of centre frequencies. To make sure that there

is no con×ict, some priority rules are deÖned in gammatoneProc.verifyParameters  to ensure

that a unique and non-ambiguous vector of centre frequencies is generated.

Note

This method does nothing by default. Override it if you need to perform speciÖc checks

on external parameters (i.e., the user-provided parameters extended by the default

values) before instantiating your processor.

To override this method, place it in a methods block with the Access=protected  attribute.

The method takes only an instance of the processor object (say, pObj ) as input argument,

and does not return any output.

If you are checking that parameters have valid values, replace those which are invalid with

their default value in pObj.parameters.map  (see e.g., ihcProc.verifyParameters ). It is a good

practice here to inform the user by returning a warning, so that he/she knows that the

default value is used instead.

If you are solving con×icts between parameters, set up a priority rule and only retain user-

provided parameters that have higher priority according to this rule (see e.g.,

gammatoneProc.verifyParameters ). Mention explicitly this rule in the help line of your

processor constructor.

prepareForProcessing

This method performs the remaining initialisation steps that we purposely did not include

in the constructor as they initialise properties that are susceptible to change when

receiving feedback. It also includes initialisation steps that can be performed only once
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know the original sampling frequency of the signal before its cross-correlation was

computed to provide lag values in seconds. But to access the cross-correlation processor

and request that value, the two processors need to be linked together already, which does

not happen at the level of instantiation but later. Hence this method will be called for each

processors once they all have been inter-linked, but also whenever feedback is received.

Note

Override this method if your processor has properties or internal parameters that can

be changed via user feedback or that comes directly from preceding processors in the

processing tree.

This method should have the Hidden=true  method attribute. Hidden methods are

sometimes used in the Auditory front-end when we need public access to it (i.e., other

objects than the processor itself should be able to call the method) but when it is not

deemed necessary to have the user call it. The user can still call the method by explicitly

writing its name, but the method will not appear in the list of methods returned by Matlab

script methods(.)  nor by Matlab’s automatic completion.

The method only takes an instance of the processor as input argument and does not return

outputs. In the method, you should initialise all internal parameters that are susceptible to

changes from user feedback. Note that this includes the processor’s output sampling

frequency FsHzOut  if this frequency depends on the processor parameters. A good

example is ratemapProc.prepareForProcessing , which initialises internal parameters (framing

windows), the output sampling frequency and some Ölters.

instantiateOutput

This method is called just after a processor has been instantiated to create a signal object

that will contain the output of this new processor and add the signal to the data object.

Note

Override this method if your output signal object constructor needs additional input

arguments (e.g., for a FeatureSignal ), if your processor generates more than one type of

output, or if your processor can generate either mono or stereo output (e.g., the

current preProc ). There is no processor in the current implementation that generates

two different outputs. However, the pre- processor can generate either mono or stereo

outputs depending on the number of channels in the input signal (see

preProc.instantiateOutput  for an example).
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This method should have the Hidden=true  method attribute. It takes as input an instance of

your processor and a instance of a data object to add the signal to. It returns the output

signal object(s) as a cell array with the usual convention that Örst column is left channel (or

mono) and right column is right channel. Different lines are for different types of signals.

Warning

Because there is no such processor at the moment, creating a new processor that

returns two different types of output (and not just left/right channels) might involve

additional changes. This is left to the developers responsibility to test and adjust

existing code.

Input/output routing methods

When the manager creates a processing “tree”, it also populates the Input  and Output

properties of each processors with handles to their respective input and output signal

objects. The methods deÖned in the parent Processor  should cover most cases already,

and it is unlikely that you will have to override them for your own processor. For these two

methods, it is important to remember the internal convention when storing multiple

signals in a cell array: columns are for audio channels (Örst column is left or mono and

second column is right). Different lines are for different types of signals.

The way Input  and Output  properties are routed should be in accordance with how they

are used in the initiateProcessing  method, which will be described in the next subsection.

addInput

This method takes an instance of the processor and a cell array of handles to dependent

processors (i.e., processors one level below in the processing tree) and does not return any

arguments. Instead, it will populate the Input  property of your processor with a cell array

of handles to the signals that are outputs to the dependent processors. The current

implementation of Processor.addInput  works for three cases, which overall cover all

currently existing processors in the Auditory front-end:

There is a single dependent processor which has a single output.
There are two dependent processors each with single output
corresponding to the left and right channels of a same input signal.
There is a single dependent processor which produces two outputs: a
left and a right channel (such as preProc  for stereo signals).

Note
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Override this method if your processor input signals are related to its dependent

processors in a different way than the three scenarios listed above.

This method should have the Hidden=true  attribute. You should just route the output of

your dependent processors to the input of your new processor adequately. Again, it was

not necessary thus far to override this method, hence no examples can be provided here.

Additionally, this functionality has not been tested, so it might imply some minor

reworking of other code components.

addOutput

This method adds a signal object (or a cell array of signals) to the Output  property of your

processor.

Note

Override this method if your processor has multiple outputs of different types. If your

processor returns two outputs as the left and right channel of a same representation, it

is not necessary to override this method.

This method should have the Hidden=true  method attribute. It takes as input an instance of

the processor and a single or a cell array of signal objects.

Processing method

initiateProcessing

This method is closely linked to the addInput , addOutput  and processChunk  methods. It is a

wrapper to the actual processing method that routes elements of the cell arrays Input  and

Output  to actual inputs and outputs of the processChunk  method and call that method. It

also appends the new chunk(s) of output to the corresponding output signal(s).

The parent implementation considers two cases: monaural and binaural (i.e., a “left” and a

“right” inputs) which produce single outputs.

Note

Override this method if your processor is not part of the two cases above or if your

implementation of the processChunk  has a different signature than the standard.
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A good example of an overridden initiateProcessing  method can be found in

preProc.initiateProcessing , as the processing method of the pre-processor does not have a

standard signature as it returns two outputs (left and right channels).
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Allow alternative processing options
Sometimes, two different processors (implemented as two different classes) can perform

the same operation. The choice between such alternative processors is made depending on

a given user-provided (or default) request parameter value. This is the case for example for

the auditory Ölterbank, which can be performed by either a Gammatone Ölterbank

( gammatoneProc.m ) or a dual-resonance non- linear Ölterbank ( drnlProc.m ).

As can be seen when browsing parameterHelper , the two processors should be listed under

the same request name, and one of the parameters ( 'fb_type'  in the example above)

should allow to switch between the two (or more) alternatives. When the manager

instantiates the processors and notices that a given representation has alternative ways of

being computed, it will call the methods isSuitableForRequest  of each alternatives to know

which one should be used.

Therefore, if your processor represents an alternative way of carrying out a given

operation, you should implement its isSuitableForRequest  method, as well as for its

alternative, if it was not already existing.

This method takes as unique input an instance of a processor and will look into its

parameters  property to determine if it is the suitable alternative. It will return a boolean

indicating if it is suitable ( true ) or not ( false ). Note that this method is called internally,

not from an actual processor instance that would be used afterwards, but from a dummy,

empty processor generated using the user-provided request and parameters.

See as examples gammatoneProc.isSuitableForRequest  and drnlProc.isSuitableForRequest .
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Implement a new signal type
The Auditory front-end supports already a wide range of signal types:

TimeDomainSignal : used for single-dimensional signal
TimeFrequencySignal : used for two-dimension signals (time and

frequency)
CorrelationSignal : used for three-dimension signals (time, frequency

and lags)
ModulationSignal : used for three-dimension signals (time, audio

frequency and modulation frequency).
FeatureSignal : used for a labelled collection of time-domain signals
BinaryMask : used for two-dimensional (time and frequency) binary

signals (0 or 1).

If your new processor generates a new type of signal that is not currently supported, you

might have to add your own implementation of a new signal. This tutorial will not go in

details on how to implement new signal types. However, the following aspects should be

considered:

Your signal class should inherit the parent Signal  class.
It should implement the abstract plot  method. If there is no practical
way of plotting your signal, this method could be left empty.
Its constructor should take as argument a handle to your new
processor (that generates this signal as output), a buffer size in
seconds, and a vector of size across the other dimensions ( [size_dim2, 

size_dim3,...] ). If more arguments are needed (as is the case for
FeatureSignal ), then this signature can be changed, but the
instantiateOutput  of your processor should also be overridden.

  v: latest 



Docs  » Auditory front-end  » Add your own processors  »

Recommendations for Önal testing

Recommendations for 됅nal testing
Now the implementation of your new processor should be Önalised, and it is important to

test it thoroughly. Below are some recommendations with regard to testing:

Make sure that all aspects of your implementation work. Test for
mono as well as stereo input signals, vary your processor parameters
and check that the change is re×ected accordingly in the output.
If you have based your implementation on another existing
implementation (even better, one that is documented in the
literature), then compare your new implementation with the
reference implementation and control that both provide the same
output up to a reasonable error. A reasonable error, for a processor
that does not involve stochastic processes should be around
quantisation error, assuming that your new implementation is exactly
as the reference.
Test the online capability of your processor (i.e., maintaining the
continuity of its output) by processing a whole signal and the same
signal cut into chunks. Both runs should provide the same output (up
to a “reasonable error”). You can use the test script
test_onlineVSoffline  to perform that task.
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Introduction
The goal of the Two!Ears project is to develop an intelligent, active computational model of

auditory perception and experience in a multi-modal context. In order to do so, the system

must be able to recognise acoustic sources and optical objects, and achieve perceptual

organisation of sound in the same manner as human listeners do. Bregman has referred to

the latter phenomenon as ASA [Bregman1990], and to reproduce this ability in a machine

system a number of factors must be considered:

ASA involves diverse sources of knowledge, including both primitive
(innate) grouping heuristics and schema-driven (learned) grouping
principles.
Solving the ASA problem requires the close interaction of top-down
and bottom-up processes through feedback loops.
Auditory processing is ×exible, adaptive, opportunistic and context-
dependent.

The characteristics of ASA are well-matched to those of blackboard problem-solving

architectures. A blackboard system consists of a group of independent experts (knowledge

sources) that communicate by reading and writing data on a globally-accessible data

structure (blackboard). The blackboard is typically divided into layers, corresponding to

data, hypotheses and partial solutions at different levels of abstraction. Given the contents

of the blackboard, each knowledge source indicates the actions that it would like to

perform; these actions are then coordinated by a scheduler, which determines the order in

which actions will be carried out.

Blackboard systems were introduced by [Erman1980] as an architecture for speech

understanding, in their Hearsay-II system. In the 1990s, a number of authors described

blackboard-based systems for machine hearing [Cooke1993], [Lesser1995], [Ellis1996],

[Godsmark1999]. All of these systems were in most respects conventional blackboard

architectures, in which the knowledge sources employed rule-based heuristics. In contrast,

the Two!Ears architecture aims to exploit recent developments in machine learning, by

combining the ×exibility of a blackboard architecture with powerful learning algorithms

afforded by probabilistic graphical models.
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Fig. 30 Overview of the blackboard architecture of Two!Ears.

The general structure of the Blackboard system is shown in Fig. 30. It consists of different

knowledge sources that can put data on and receive data from the blackboard. In addition,

special knowledge sources can perceive data from outside (ear signals) or send data to the
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outside (turn the head). The management of the different processes going on in the

blackboard is achieved by monitoring and scheduling which is performed by two

independent modules.

Read on for further details on the blackboard architecture, details on the knowledge

sources, or start with use the blackboard system.
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Usage
The blackboard system is the heart of the Two!Ears Auditory Model as it provides an

architecture that integrates experience formation and active behaviour from a set of

different functional modules. These modules can work on different levels of abstraction,

independently from each other or in collaboration, in a bottom-up or top-down manner.

Setting up the blackboard

In order to get the model running you Örst have to decide what is the task that the model

should solve. You can get an idea of what is possible if you have a look at the currently

available knowledge sources of the Blackboard system. A knowledge source is an

independent module that runs inside the blackboard system and has knowledge about an

speciÖc topic, which could come from bottom-up or top-down processing.

If you have decided on what you want to do, you conÖgure your blackboard in a XML-Öle.

Let’s assume that you want to classify a target speech source in your binaural input signals.

A corresponding conÖguration Öle could then look like:
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31

<blackboardsystem> 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="baby" Type="IdentityKS"> 
        <Param Type="char">baby</Param>
        <Param Type="char">6687829ce1a73694a1ce41c7c01dec1b</Param> 
    </KS> 
    <KS Name="femaleSpeech" Type="IdentityKS"> 
        <Param Type="char">femaleSpeech</Param> 
        <Param Type="char">6687829ce1a73694a1ce41c7c01dec1b</Param> 
    </KS> 
    <KS Name="idDec" Type="IdDecisionKS"> 
        <Param Type="int">0</Param> 
        <Param Type="int">1</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>baby</sink> 
        <sink>femaleSpeech</sink> 
    </Connection> 
    <Connection Mode="replaceParallel">
        <source>baby</source> 
        <source>femaleSpeech</source> 
        <sink>idDec</sink> 
    </Connection> 
</blackboardsystem> 

 

Looking at the conÖguration Öle step by step we Önd the following settings:

dataConnection

This speciÖes where the data that your classiÖer uses comes from. For
most of the available knowledge sources this will be the Auditory
front-end which processes the input ear signals in a bottom-up way
and provides the knowledge source with auditory features it can use
to perform its action. If the data should come from the auditory front-
end you have to specify AuditoryFrontEndKS , which is by itself a
knowledge source.

KS
This speciÖes the knowledge sources that should be part of the blackboard system. In

this case we use two identity knowledge sources that have knowledge about features

corresponding to a particular sound source. This is given as a parameter Param  to the

identity knowledge source. Each identity knowledge source will provide a hypothesis

to the blackboard stating the probability that the corresponding identity is matched by

the input signal.
  v: 1.3 



The second parameter in the IdentityKS  description (a string of hexadecimal digits) is

the version number of a Matlab MAT Öle that contains a trained acoustic model. For the

Örst knowledge source in the example above, the Öle name of the corresponding

acoustic model Öle will be baby.6687829ce1a73694a1ce41c7c01dec1b.model.mat . For more

details, see the description of the identity knowledge source, which explains how to

train your own source models.

The second kind of knowledge source we use is the identity decision knowledge source.

It will judge the different identity hypothesis it will get from the identity knowledge

sources and performs the Önal decision which identity is matched by the input signals.

Connection
The blackboard is a modular system. The Connection  settings tell the blackboard

system which connections should be made between its various modules, so that they

can be notiÖed about relevant events. The conÖguration Öle shown above describes

three connections, each of which describe an event binding between one or more

sources and one or more sinks; let’s look at each of them in turn.

Lines 17-20: This describes an event binding between the scheduler and the auditory

front end, for an event called AgendaEmpty . Hence, the auditory front end will be

notiÖed when this event is dispatched by the scheduler, causing it to retrieve a new

block of data.

Lines 21-25: Makes an event binding between the auditory front end and the two

IdentityKS  objects deÖned earlier in the Öle. Thus, the IdentityKS  objects will be

notiÖed when new audio input is available to classify.

Lines 26-30: Make event bindings between the two IdentityKS  objects and the

IdDecisionKS ; hence the IdDecisionKS  is notiÖed when a source has been classiÖed, so

that it can make a Önal decision on which source types are present in the scene.

Each of these connections can have a speciÖc Mode , which determines how the

blackboard should add triggered knowledge sources into the agenda. For example, the

replaceOld  mode indicates that old instances of the corresponding sink in the agenda

should be replaced when a new one occurs. For full details of the different modes, see

the section on dynamic blackboard interactions.

Running the blackboard

The following example code fragment shows how to run the blackboard system. It is

assumed that the XML Öles Scene.xml  and Blackboard.xml  have previously been created

and are on your Matlab path.
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2 
3 
4 
5

bbs = BlackboardSystem(0); 
sim = simulator.SimulatorConvexRoom('Scene.xml'); 
bbs.setRobotConnect(sim); 
bbs.buildFromXml('Blackboard.xml'); 
bbs.run(); 

 

In the Örst line, a BlackboardSystem  object is created. The parameter to the constructor (in

this case, zero) indicates the verbosity level. In line 2 a room simulation is created from the

scene description Öle Scene.xml . Line 3 then connects the blackboard to this simulator

front end (at this stage you could also connect it to a real robot platform). Finally, in line 4

the blackboard is built from the conÖguration Öle Blackboard.xml  and line 5 runs the

blackboard; it will now proceed in a run loop until there is no more data to process.

Further examples

In order to see the whole model in action, including setting up of the Binaural simulator

you should have a look at the example chapter.
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Blackboard architecture
Architectural considerations
Dynamic system construction
Dynamic blackboard memory
Dynamic blackboard interactions
Scheduler

The Blackboard system is targeted as the front-end for a great variety of applications,

providing an architecture that integrates experience formation and active behaviour from

a set of different functional modules. These modules can work on different levels of

abstraction, independently from each other or in collaboration, in a bottom-up or top-

down manner. A key feature of this system should be its ability to evolve, so that easy

modiÖcation, exchange and/or extension of modules can be achieved within a scalable

architecture.

This document will provide you an overview about the blackboard architecture that is used

together with the knowledge sources in order to provide such a system.
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Architectural considerations
Building a ×exible system
Building a dynamic system

In order to implement this integrative and system-wide view, some core attributes of the

system have been established as follows.

Building a 韣�exible system

The system we develop is a platform, i.e. it provides functionality to execute other

functionality. While the target functionality is clear – auditory and multi-modal experience

formation, scene understanding and exploration – it involves many different problems,

each with many possible solutions. We therefore design the system with extension in mind,

trying not to constrain possible functionality of modules.

In particular, the blackboard system allows the plugging-in of different knowledge sources.

Knowledge sources are modules that deÖne their own functionality, to be executed in the

organised frame of our system. They deÖne by themselves which data they need for

execution and which data they produce – the blackboard system provides the tools for

requesting and storing this data, but does not care about the actual contents (while the

knowledge sources do not need to care about where and how data is stored). It is also

important that the blackboard system has no static knowledge of what types of knowledge

sources are available. So long as knowledge sources follow a certain implementation

scheme, independent of their actual functionality they can register dynamically (i.e. at

runtime) as a module in the blackboard system. Thus, a library of knowledge sources can

be built during this project that can be extended arbitrarily, without need to modify the

blackboard system. Implementors of new modules need only be concerned with

implementing their functionality.

The Two!Ears architecture has been designed and implemented using an object-oriented

approach. Accordingly, the implementation scheme knowledge sources must adhere to is

provided in the form of an abstract class). Additionally, to enable creation of new

knowledge sources that depend on auditory signals without needing to hard-code a signal

request into the system, an auditory front-end dependent knowledge source superclass

has been developed.
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Building a dynamic system

Key to providing the described ×exibility is to neither hard-code lists of usable knowledge

sources nor the interactions between them. Hard-coded (or static) lists and dependencies

would be overly restrictive – the system must be open to dynamic change.

At the same time, ×exibility for extension is not the only cause for needing a dynamic

system. The system is intended to be an active system that does not only work in a signal

processing bottom-up manner, but also in a cognitive top-down manner. Modules must

therefore be allowed to change the system setup at runtime. This means that it is essential

for our system to be equipped with functionality for dynamic module instantiation,

registration and removal. This also implies the need for on-the-×y rewiring of the

communication links between modules.
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Dynamic system construction
To ensure an easy-to-use system, we implemented as the main class a wrapper that

integrates the different main components, and hides their connections where possible.

This main class is called BlackboardSystem, since the blackboard is the central component

of our platform. This is an excerpt of its deÖnition:

class BlackboardSystem 
    properties 
        blackboard; 
        blackboardMonitor; 
        scheduler; 
        robotConnect; 
        dataConnect; 
    methods 
        BlackboardSystem() 
        setRobotConnect( robotConnect ) 
        setDataConnect( connectorClassName ) 
        buildFromXml( xmlName ) 
        addKS( ks ) 
        createKS( ksClassName, ksConstructArgs ) 
        numKSs() 
        run() 

 

The engine of our system is distributed across the BlackboardSystem , Blackboard ,

BlackboardMonitor  and Scheduler  classes, with the BlackboardSystem  class holding instances

of the latter three. These four classes each have genuine responsibilities: the

BlackboardSystem  integrates the framework parts, responsible for constructing and setting

up the system. The blackboard is the central storage of functional data and knowledge

sources. It holds a data map that saves arbitrary knowledge source data along time,

together with methods to add and recall data from within knowledge source code.

Additionally, the knowledge sources themselves are put into blackboard storage by the

BlackboardSystem .

The BlackboardMonitor  is responsible for creating bindings on demand between knowledge

sources, by instantiating event listeners. It keeps track of these bindings and maintains the

agenda of knowledge sources. The Scheduler  is the executive component of the system.

While the BlackboardMonitor  keeps control of the knowledge sources in the agenda, the
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Scheduler  decides about the order of those knowledge sources to be executed. It does that

based on the attentional priorities of the knowledge sources. Fig. 34 shows the system

class diagram.

Fig. 34 Class diagram of the whole blackboard system. The
BlackboardSystem  class is the integrative system component holding the

other modules and giving access to system functionality.

An example of an XML-conÖgured blackboard system is shown below. Two identity

knowledge sources are connected to the Auditory front-end, and triggering an identity

decision knowledge source.
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<blackboardsystem> 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="baby" Type="IdentityKS"> 
        <Param Type="char">baby</Param>
        <Param Type="char">6687829ce1a73694a1ce41c7c01dec1b</Param> 
    </KS> 
    <KS Name="femaleSpeech" Type="IdentityKS"> 
        <Param Type="char">femaleSpeech</Param> 
        <Param Type="char">6687829ce1a73694a1ce41c7c01dec1b</Param> 
    </KS> 
    <KS Name="idDec" Type="IdDecisionKS"> 
        <Param Type="int">0</Param> 
        <Param Type="int">1</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>baby</sink> 
        <sink>femaleSpeech</sink> 
    </Connection> 
    <Connection Mode="replaceParallel">
        <source>baby</source> 
        <source>femaleSpeech</source> 
        <sink>idDec</sink> 
    </Connection> 
</blackboardsystem> 

 

Several core functionalities are provided through the BlackboardSystem  class:

Connecting a Robotic platform or the Binaural simulator to the Blackboard system. The

connected robot or simulator must implement the robot interface for delivering audio

ear signals and commanding movement and head rotation. The blackboard system and

all its components including the knowledge sources get access to the audio stream and

robot actions through this connection ( setRobotConnect  method).

Setting the type of the module that integrates with the Auditory front-end,

instantiating it and connecting it to the Blackboard system. This module is a knowledge

source itself, responsible for processing the ear signals into cues (such as interaural

time differences) needed by other knowledge sources. The Auditory front-end itself is

connected to the Robotic platform or the Binaural simulator in order to obtain the ear

signals. ( setDataConnect  method).

Instantiating and adding knowledge sources. These knowledge sources must inherit

from AbstractKS  (see abstract knowledge source) or AuditoryFrontEndDepKS  (see

Section Auditory signal dependent knowledge source superclass:

AuditoryFrontEndDepKS) to be able to be interfaced and run by the system.
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Knowledge sources that inherit from AuditoryFrontEndDepKS  automatically get

connected with the Auditory front-end by the system in order to place their signal/cue

requests.

Adding and instantiating knowledge sources can take place both before or while

running the system; it can be done from outside the system or from inside knowledge

sources. This enables the development of top-down controlling knowledge sources

from higher cognitive experts running in the system ( addKS  or createKS  method).

The start-up conÖguration of the system can completely be deÖned by an XML Öle; the

system is then constructed before running by loading this Öle. Of course this

conÖguration can be changed dynamically while executing the system. The XML

description needs at least a dataConnection  node specifying the type of the Auditory

front-end module; then, it can also contain KS  nodes with parameters to construct

knowledge sources, and Connection  nodes that specify event bindings between

knowledge sources. See the code listing from above for an example ( buildFromXml

method).

Starting the execution of the system. This triggers the blackboard system to request

data from the robot/binaural simulator connection, and subsequent action by the

Auditory front-end and all knowledge sources that are connected. The system will not

stop execution before the Robotic platform or the Binaural simulator sends an ending

signal ( run  method).
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Dynamic blackboard memory
The Blackboard  class holds the central data repository of the platform. It stores the

knowledge sources and any shared data, in particular the output of the knowledge sources

(e.g. estimates of the location of a sound source). It is accessible to all knowledge sources;

and it not only stores current data, but keeps track of the history of this data in order to

enable knowledge sources to work on time series data.

Importantly, the Blackboard  is ×exible about data categories, which do not have to be hard-

coded into the system. Knowledge sources decide on their own and at runtime what to add

and what to request. Thus, the system does not need to be changed in order to implement

new knowledge sources that work with new data categories. Of course, knowledge

sources can only read data categories that are actually stored in the blackboard by other

knowledge sources (or themselves).

The following listing shows an excerpt of the Blackboard  interface:

class Blackboard 
        KSs; 
        signals; 
        currentSoundTime; 
    methods 
        Blackboard() 
        addData( dataLabel, data, append, time ) 
        getData( dataLabel, reqSndTime ) 
        getLastData( dataLabel, time ) 
        getNextData( dataLabel, time ) 
        getDataBlock( dataLabel, blockSize_s ) 

 

Prominently featured are methods to add and access data:

addData

lets knowledge sources add data to the blackboard storage. The data
category has to be named in dataLabel , data  hands over the actual
data to store. append  is an optional ×ag indicating whether to
overwrite or append data at the same time step (there might, for
example, be several source identity hypotheses per time step, but
only one source number hypothesis might be allowed). time  speciÖes  v: latest 



the time point under which this data shall be stored. It is optional and,
if not set, defaults to the current time.

getData

lets knowledge sources read data from the blackboard storage.
dataLabel  indicates the data category requested, reqSndTime  the time

point of interest. getLastData , getNextData  and getDataBlock  are
special cases of getData  for retrieving the last data, the next data
after a particular point in time, or a whole data block of length
blockSize_s .

The following is an example from the implementation of the IdDecisionKS  class:

idHyps = obj.blackboard.getData( ... 
             'identityHypotheses', obj.trigger.tmIdx ).data; 
%... 
%find the most likely identity hypothesis ‐> maxProbHyp 
%... 
obj.blackboard.addData( ... 
    'identityDecision', maxProbHyp, false, obj.trigger.tmIdx ); 

 

Let us assume that we have an instantiation called bbs  of the Blackboard system. Now we

would like to see the currently available data in its memory. For that you can run:

>> bbs.blackboard.getDataLabels() 

 

or specify explicitly a time for which you would like to see the available data:

>> bbs.blackboard.getDataLabels(bbs.blackboard.currentSoundTimeIdx‐1) 

 

Additionally, the blackboard is used as a storage for pointers to signals from the Auditory

front-end requested by knowledge sources inheriting from AuditoryFrontEndDepKS . The

actual memory in which these signals are stored for recall is implemented in the Auditory

front-end through circular buffers.
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Dynamic blackboard interactions
Knowledge sources can communicate information through the ×exible blackboard storage.

However, adding data to the blackboard does not trigger other knowledge sources to be

executed. Such interaction – triggering knowledge source execution – is done through an

event system. SpeciÖcally, knowledge sources do not actually trigger execution of other

knowledge sources (since they are decoupled and have no “knowledge” of each other), but

knowledge sources make a request to be triggered upon the Öring of particular events.

Each knowledge source has a standard event it can trigger, KsFiredEvent , inherited from

AbstractKS . Beyond that, every knowledge source class is free to deÖne as many additional

events as reasonable for its task. Knowledge sources cause the events themselves through

a call to notify  as in the following example, in which the knowledge source induces an

event and attaches a BlackboardEventData  object holding the time that it was triggered:

notify( 'KsFiredEvent', BlackboardEventData(obj.trigger.tmIdx) ); 

 

The blackboard system a priori is totally ignorant of which events exist (clear

responsibilities principle, open to extension). It also does not monitor any events by

default, until knowledge sources request to be triggered by an event. This request is done

through the method bind  provided by the BlackboardMonitor  class, whose interface is

(partially) listed in the following excerpt:

class BlackboardMonitor 
    properties 
        pastAgenda; 
        executing; 
        agenda; 
    methods 
        BlackboardMonitor() 
        bind( sources, sinks, addMode, eventName ) 

 

The bind  method connects the sinks  knowledge sources to event eventName  (optional,

defaults to KsFiredEvent ) caused by the sources  knowledge sources. addMode  speciÖes

how the BlackboardMonitor  shall handle adding the triggered knowledge sources into the  v: latest 



agenda. It understands the following modes, illustrated in Fig. 35:

add

Add the triggered knowledge source to the end of the agenda,
regardless of whether or not there is already a (not yet executed)
knowledge source instantiation of this sink in the agenda from a
former triggering.

replaceOld

Replace old knowledge source instantiations of this sink in the
agenda with the new one. Only instantiations of the sink triggered by
the same source and same event are replaced. This is an important
mode for knowledge sources where processing current data is more
important than processing all data.

replaceParallel

Replace knowledge source instantiations of this sink from the same
time point of parallel sources in the agenda with the new one. Only
instantiations of the sink triggered at the same time and by the same
event are replaced. This mode avoids sinks being unnecessarily
executed several times with the same information.

replaceParallelOld

Replace old or current knowledge source instantiations of this sink
triggered by parallel sources in the agenda with the new one. Only
instantiations of the sink triggered by the same event are replaced.
This mode is a combination of the replaceOld  and replaceParallel
modes.

It should be noted that the addMode  only affects triggered knowledge source instantiations

in the agenda, i.e. those that are not executed yet. As soon as a knowledge source is

executed, it is removed from the agenda (Örst in executing , afterwards in pastAgenda ).
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Fig. 35 The different possibilities of event binding between knowledge
sources with the blackboard system.
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Scheduler
The scheduler is the component of the blackboard system that actually executes the

knowledge sources – but Örst, it schedules them, that is, it decides the order in which

knowledge sources waiting in the agenda get executed. This order is rescheduled after

every execution of a knowledge source, since the conditions determining the order may

have changed, or new knowledge sources may be present in the agenda that are more

urgent.

The following factors in×uence the order of execution of knowledge sources:

Knowledge sources have a property called attentional priority.
Knowledge sources with higher priority get executed before
knowledge sources with lower priority. This priority can be set by the
knowledge source itself, by other knowledge sources or from outside
the system. The BlackboardMonitor  provides a method for setting focus
on a knowledge source (increasing its priority), along with the option
to propagate this higher priority down along the dependency chain of
this knowledge source. The dependency chain is determined by the
event bindings.
Knowledge sources must implement a method canExecute , that
returns whether or not the knowledge source can execute at this
moment, and which is called by the scheduler if the knowledge source
is Örst on the scheduling list. If it cannot execute, the knowledge
source can decide whether to remain in the agenda or be removed
from it.
Knowledge sources deÖne a maximum invocation frequency, that
cannot be exceeded. It is a maximum frequency, because knowledge
sources get not necessarily executed periodically, since they are
triggered by events, but not by timers. The scheduler checks whether
the last execution time was long enough ago before considering the
knowledge source for execution. Until then, it remains in the agenda.

This listing shows the relevant parts of the interface with respect to in×uencing the

scheduling:
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class BlackboardMonitor 
    methods 
        focusOn( ks, propagateDown ) 
        resetFocus() 
 
class AbstractKS 
    properties 
        invocationMaxFrequency_Hz; 
    methods (Abstract) 
        canExecute() 
        execute() 
    methods 
        focus() 
        unfocus() 
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Examples
In this part you Önd a collection of several examples using the complete Two!Ears Auditory

Model for common tasks. At the moment the following examples are available:

Localisation with and without head rotations
Localisation - looking at the results in detail
DNN-based localisation under reverberant conditions
GMM-based localisation under reverberant conditions
Train sound type identiÖcation models
IdentiÖcation of sound types
Segmentation with and without priming
(Re)train the segmentation stage
Stream binaural signals from BASS to Matlab
Prediction of coloration in spatial audio systems
Prediction of localisation in spatial audio systems

This section will expand with every new major feature that will be added to the model.
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Localisation with and without head
rotations
The Two!Ears Auditory Model comes with several knowledge sources that work together

to estimate the perceived azimuth of a sound source, see Localisation knowledge sources

for a summary. The main work is done by the GmmLocationsKS knowledge source that

uses ITD and ILD cues provided by the Auditory front-end and compares them with

learned cues to azimuth maps. As an output it provides a probability distribution of

possible directions for the source. This will be passed on to the ConfusionKS knowledge

source which looks at the probabilities and decides if a clear direction can be extracted

from this. If not, ConfusionSolvingKS is called which then triggers RotationKS to rotate the

head of the listener (could be in the simulation or of a robot) and start the localisation

process again.

In this example we will see how to set up the model to perform a localisation task and how

to switch on or off the possibility of the model to rotate its head. This example can be

found in the examples/localisation_w_and_wo_head_movements  folder which consists of the

following Öles:

BlackboardNoHeadRotation.xml 
Blackboard.xml 
localise.m 
SceneDescription.xml 

 

The Örst Öle we look at is SceneDescription.xml , it deÖnes the actual acoustic scene in which

our virtual head and the sound source will be placed in order to simulate binaural signals. It

looks like this:
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<?xml version="1.0" encoding="utf‐8"?> 
<scene 
  BlockSize="4096" 
  SampleRate="44100" 
  MaximumDelay="0.0" 
  NumberOfThreads="1" 
  LengthOfSimulation = "5" 
  HRIRs="impulse_responses/scut_kemar_anechoic/SCUT_KEMAR_anechoic_1m.sofa"> 
  <source Radius="1.0" 
          Mute="false" 
          Type="point" 
          Name="SoundSource"> 
    <buffer ChannelMapping="1" 
        Type="noise"/> 
  </source> 
  <sink Name="Head" 
        Position="0 0 0" 
        UnitX="1 0 0" 
        UnitZ="0 0 1"/> 
</scene> 

 

Here, we deÖne basic things like the sampling rate, the length of the stimulus, the used

HRTF, the source material, the listener position, and the distance between listener and

source. For more documentation on specifying an acoustic scene, see ConÖguration using

XML Scene Description.

Note

We don’t specify the exact source azimuth here, as we will choose different azimuth

values later on and set them on the ×y from within Matlab.

The next thing we have to do is to specify of what components or model should consists

and what it should actually do. This is done by selecting appropriate modules for the

Blackboard system stage of the model. This can be conÖgured again in a xml Öle. First we

look at the conÖguration for localisation including head movements ( Blackboard.xml ):
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<?xml version="1.0" encoding="utf‐8"?> 
<blackboardsystem> 
 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="loc" Type="GmmLocationKS"/> 
    <KS Name="conf" Type="ConfusionKS"/> 
    <KS Name="confSolv" Type="ConfusionSolvingKS"/> 
    <KS Name="rot" Type="RotationKS"> 
        <Param Type="ref">robotConnect</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>loc</sink> 
    </Connection> 
    <Connection Mode="add"> 
        <source>loc</source> 
        <sink>conf</sink> 
    </Connection> 
    <Connection Mode="replaceOld" Event="ConfusedLocations"> 
        <source>conf</source> 
        <sink>rot</sink> 
    </Connection> 
    <Connection Mode="add" Event="ConfusedLocations"> 
        <source>conf</source> 
        <sink>confSolv</sink> 
    </Connection> 
 
</blackboardsystem> 

 

Here, we use different knowledge sources that work together in order to solve the

localisation task. We have AuditoryFrontEndKS for extract auditory cues from the ear

signals, GmmLocationsKS, ConfusionKS, ConfusionSolvingKS, and RotationKS for the

actual localisation task. The Param  tags are parameters we can pass to the knowledge

sources. After setting up which knowledge sources we will use, we connect them with the

Connection  tags. For more information on conÖguring the blackboard see ConÖguration.

In a second conÖguration Öle we setting up the same blackboard, but now disabling its

ability to turn the head ( BlackboardNoHeadRotation.xml ):
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<?xml version="1.0" encoding="utf‐8"?> 
<blackboardsystem> 
 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="loc" Type="GmmLocationKS"/> 
    <KS Name="conf" Type="ConfusionKS"> 
        <!‐‐ Disable confusion solving (== no head rotation) ‐‐> 
        <Param Type="int">0</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>loc</sink> 
    </Connection> 
    <Connection Mode="add"> 
        <source>loc</source> 
        <sink>conf</sink> 
    </Connection> 
</blackboardsystem> 

 

Now, everything is prepared and we can start Matlab in order to perform the localisation.

You can just start it and run the following command to see it in action, afterwards we will

have a look at what happened:

>> localise 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Source direction        Model w head rot.       Model wo head rot. 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
   0                        0                       0 
  33                       35                      35 
  76                       70                      70 
‐121                     ‐120                     ‐55 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

As you can see the model with head rotation returned better results as the model without

head rotation enabled. The reason why we have problems without head rotations is that

we have trained the model with another HRTF data set (QU KEMAR) as we used for the

creation of the acoustic scene (SCUT KEMAR).

Now, we have a look into the details of the localise()  function. We will only talk about the

parts that are responsible for the task, not for printing out the results onto the screen.

First we deÖne the source angles we are going to synthesise and start the Binaural

simulator:
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% Different angles the sound source is placed at 
sourceAngles = [0 33 76 239]; 
 
% === Initialise binaural simulator 
sim = simulator.SimulatorConvexRoom('SceneDescription.xml'); 
sim.Verbose = false; 
sim.Init = true; 

 

After that we have a loop over the different source angles in which we are setting the

source position in the Binaural simulator and run two different blackboards after each

other, one with, the other one without head rotations:

for direction = sourceAngles 
 
    sim.Sources{1}.set('Azimuth', direction); 
    sim.rotateHead(0, 'absolute'); 
    sim.ReInit = true; 
 
    % GmmLocationKS with head rotation for confusion solving 
    bbs = BlackboardSystem(0); 
    bbs.setRobotConnect(sim);
    bbs.buildFromXml('Blackboard.xml');
    bbs.run(); 
 
    % Reset binaural simulation 
    sim.rotateHead(0, 'absolute'); 
    sim.ReInit = true; 
 
    % GmmLocationKS without head rotation and confusion solving 
    bbs = BlackboardSystem(0); 
    bbs.setRobotConnect(sim);
    bbs.buildFromXml('BlackboardNoHeadRotation.xml'); 
    bbs.run(); 
 
end 
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Localisation - looking at the results in
detail
As seen in the previous example localisation is performed inside the blackboard by

different localisation knowledge sources. In this example we will perform a single

localisation of a anechoic white noise signal coming from 0° using GmmLocationKS. The

example can be found in the examples/localisation_look_at_details  folder which consists of

the following Öles:

Blackboard.xml 
localise.m 
SceneDescription.xml 

 

For details on Blackboard.xml  and SceneDescription.xml  have a look at our previous

example. Here, we will focus on the details after we performed the localisation. So, Örst

run:

>> bbs = localise; 

 

in Matlab. This runs the blackboard and does the localisation, but does not print any

results, it only returns the blackboard as bbs . The blackboard itself stores lots of data in

itself, see Dynamic blackboard memory for details. To see what is currently available in the

memory run:

>> bbs.blackboard.getDataLabels() 
 
ans = 
 
    'confusionHypotheses' 
    'headOrientation' 
    'sourcesAzimuthsDistributionHypotheses' 
    'perceivedAzimuths' 
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To analyse the localisation performance of the model we ask the blackboard to return the

localisation data:

>> perceivedAzimuths = bbs.blackboard.getData('perceivedAzimuths') 
 
perceivedAzimuths = 
 
1x9 struct array with fields:
 
    sndTmIdx 
    data 

 

It returns a relatively complicated struct that comes with time stamps sndTmIdx  and the

corresponding data  which again is a struct containing different things, here is the output

for one time stamp:

>> perceivedAzimuths(9).data 
 
ans = 
 
  PerceivedAzimuth with properties: 
 
            azimuth: 20 
    headOrientation: 340 
    relativeAzimuth: 0 
              score: 0.7028 

 

But don’t worry there is an easy way to get an overview of the results. First, we are only

interested in the summary of the localisation result:

>> sourceAzimuth = 0; % the actual source position 
>> [loc, locError] = evaluateLocalisationResults(perceivedAzimuths, sourceAzimuth) 
 
loc = 
 
     0 
 
 
locError = 
 
     0 

 

As you can see the source was localised at 0° meaning that the localisation error is also 0°.

After that we would like to have a more detailed view on what happened during the

localisation:   v: latest 



>> displayLocalisationResults(perceivedAzimuths, sourceAzimuth) 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Reference target angle:   0 degrees 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Localised source angle: 
BlockTime   PerceivedAzimuth    (head orient., relative azimuth)    Probability 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  0.56        0 degrees     (  0 degrees,      0 degrees)   1.00 
  1.02        0 degrees     (  0 degrees,      0 degrees)   0.65 
  1.58        0 degrees     ( 20 degrees,    340 degrees)   0.56 
  2.04        0 degrees     (  0 degrees,      0 degrees)   0.61 
  2.51        0 degrees     ( 20 degrees,    340 degrees)   0.50 
  3.07        0 degrees     (  0 degrees,      0 degrees)   0.69 
  3.53        0 degrees     ( 20 degrees,    340 degrees)   0.73 
  4.09        0 degrees     (  0 degrees,      0 degrees)   0.62 
  4.55        0 degrees     (340 degrees,     20 degrees)   0.70 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Mean localisation error: 0 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Here, we see that the head was turned twice during the localisation and that the perceived

location was always at 0°, but the model has not have always the same conÖdence that the

source was really located there, which you can see by the Probability  values. In the cases

when they were to low they triggered a head movement in order to see if the values would

be higher for another head position.

So far, we looked at all the details going on in the blackboard. In order to localise the

blackboard uses different cues - like ITDs and ILDs - that are provided by the Auditory

front-end. It might be of interest to have a detailed look on them. In order to see which are

available, run:

>>  bbs.listAfeData 
 
Available AFE data: 
 
  'filterbank' 
  'time' 
  'input' 
  'itd' 
  'innerhaircell' 
  'ild' 
  'crosscorrelation' 
  'head_rotation' 

 

All those cues can be plotted with bbs.plotAfeData(cueName) , for example:

>> bbs.plotAfeData('time'); 
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Fig. 59 Left and right ear signals.

>> bbs.plotAfeData('ild'); 

 

Fig. 60 ILDs between the two ear signals over time.

The next one is not really a cue provided by the Auditory front-end, but is it good to know

in which position the head was pointing at what time:

>> bbs.plotAfeData('head_rotation'); 
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Fig. 61 Head rotations of the model during localisation.
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DNN-based localisation under
reverberant conditions
The Two!Ears Auditory Model comes with several knowledge sources that work together

to estimate the perceived azimuth of a sound source, see Localisation knowledge sources

for a summary. One stage of this process is the mapping of the extracted features like ITDs

and ILDs to the perceived azimuth angle. This mapping is highly in×uenced by the

environment. For example, if you are in a room the ITD values will look quite different than

in the case of an anechoic chamber. That is the reason why we have different knowledge

sources that do this mapping: DnnLocationKS, GmmLocationsKS, and ItdLocationKS.

ItdLocationKS utilises a simple lookup table for the mapping works well in the case of

Prediction of localisation in spatial audio systems. GmmLocationsKS is at the moment

trained only for anechoic condition. In this example we have a look at DnnLocationKS

which was trained with a multi-conditional training approach to work under reverberant

conditions [MaEtAl2015dnn]. Beside this, DnnLocationKS works in the same way as

GmmLocationsKS and connects with ConfusionKS, ConfusionSolvingKS, and RotationKS

to solve front-back confusions.

In this example we will have a look at localisation in a larger room, namely the BRIR data

set measured in TU Berlin, room Auditorium 3, which provides six different loudspeaker

positions as possible sound sources. All Öles can be found in the examples/localisation_DNNs

folder which consists of the following Öles:

BlackboardDnnNoHeadRotation.xml 
BlackboardDnn.xml 
estimateAzimuth.m 
localise.m 
resetBinauralSimulator.m 
setupBinauralSimulator.m 

 

The setup is very similar to Localisation with and without head rotations with a few

exceptions. First, the setup of the Binaural simulator is different as we use BRIRs instead of

HRTFs, and have one impulse response set for every sound source. The initial

conÖguration of the Binaural simulator is provided by the setupBinauralSimulator  function:
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sim = simulator.SimulatorConvexRoom(); 
set(sim, ... 
    'BlockSize',            4096, ... 
    'SampleRate',           44100, ... 
    'NumberOfThreads',      1, ...
    'LengthOfSimulation',   1, ...
    'Renderer',             @ssr_brs, ... 
    'Verbose',              false, ... 
    'Sources',              {simulator.source.Point()}, ... 
    'Sinks',                simulator.AudioSink(2) ... 
    ); 
set(sim.Sinks, ... 
    'Name',                 'Head', ... 
    'Position',             [ 0.00  0.00  0.00]' ... 
    ); 
set(sim.Sources{1}, ... 
    'AudioBuffer',          simulator.buffer.Ring(1) ... 
    ); 
set(sim.Sources{1}.AudioBuffer, ... 
    'File', 'sound_databases/grid_subset/s1/bbaf2n.wav' ... 
    ); 

 

Here, we conÖgure it to use the @ssr_brs  renderer which is needed for BRIRs, deÖne the

speech signal to use, but don’t provide a BRIR yet as this will be done on the ×y later on.

We have four different conÖguration Öles for setting up the Blackboard system. One

important step for the DnnLocationKS is to deÖne a resampling as it is trained for 16000

Hz at the moment. As an example, we list the Öle BlackboardDnn.xml` :

  v: latest 



<?xml version="1.0" encoding="utf‐8"?> 
<blackboardsystem> 
 
    <dataConnection Type="AuditoryFrontEndKS"> 
       <Param Type="double">16000</Param> 
    </dataConnection> 
 
    <KS Name="loc" Type="DnnLocationKS"> 
        <Param Type="int">16</Param> 
    </KS> 
    <KS Name="conf" Type="ConfusionKS"/> 
    <KS Name="confSolv" Type="ConfusionSolvingKS"/> 
    <KS Name="rot" Type="RotationKS"> 
        <Param Type="ref">robotConnect</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>loc</sink> 
    </Connection> 
    <Connection Mode="add"> 
        <source>loc</source> 
        <sink>conf</sink> 
    </Connection> 
    <Connection Mode="replaceOld" Event="ConfusedLocations"> 
        <source>conf</source> 
        <sink>rot</sink> 
    </Connection> 
    <Connection Mode="add" Event="ConfusedLocations"> 
        <source>conf</source> 
        <sink>confSolv</sink> 
    </Connection> 
 
</blackboardsystem> 

 

Here, we use different knowledge sources that work together in order to solve the

localisation task. We have AuditoryFrontEndKS for extract auditory cues from the ear

signals sampled at 16 kHz, DnnLocationKS with 16 frequency channels, ConfusionKS,

ConfusionSolvingKS, and RotationKS for the actual localisation task. The Param  tags are

parameters we can pass to the knowledge sources. After setting up which knowledge

sources we will use, we connect them with the Connection  tags. For more information on

conÖguring the blackboard see ConÖguration.

In the other blackboard conÖguration Öles we set up a blackboard for the case of

DnnLocationKS without confusion solving by head rotation.
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Now, everything is prepared and we can start Matlab in order to perform the localisation.

You can just start it and run the following command to see it in action, afterwards we will

have a look at what happened:

>> localise 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Source direction   DnnLocationKS w head rot.   DnnLocationKS wo head rot. 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
        0                ‐5                       ‐180 
      ‐52               ‐60                        ‐55 
     ‐131              ‐135                       ‐135 
        0                 0                       ‐180 
       30                25                         25 
      ‐30               ‐30                        ‐30 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

As you can see the model with head rotation returned better results than the model

without head rotation enabled.

Now, we have a look into the details of the localise()  function. We will only talk about the

parts that are responsible for the task, not for printing out the results onto the screen.

First, we deÖne the sources we are going to synthesise and start the Binaural simulator:

brirs = { ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src1_xs+0.00_ys+3.97.sofa';
 ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src2_xs+4.30_ys+3.42.sofa';
 ... 
    'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src3_xs+2.20_ys‐
1.94.sofa'; ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src4_xs+0.00_ys+1.50.sofa';
 ... 
    'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src5_xs‐
0.75_ys+1.30.sofa'; ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src6_xs+0.75_ys+1.30.sofa';
 ... 
    }; 
headOrientation = 90; % towards y‐axis (facing src1) 
sourceAngles = [90, 38.5, ‐41.4, 90, 120, 60] ‐ headOrientation; % phi = atan2d(ys,xs) 

 

After that we have a loop over the different sources in which we are loading the

corresponding BRIR into the Binaural simulator and run the Blackboard system inside the

estimateAzimuth  function:
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for ii = 1:length(sourceAngles) 
    direction = sourceAngles(ii); 
    sim.Sources{1}.IRDataset = simulator.DirectionalIR(brirs{ii}); 
    sim.rotateHead(headOrientation, 'absolute'); 
    sim.Init = true; 
    % DnnLocationKS w head rot. 
    phi1 = estimateAzimuth(sim, 'BlackboardDnn.xml'); 
    resetBinauralSimulator(sim, headOrientation); 
    % DnnLocationKS wo head rot. 
    phi2 = estimateAzimuth(sim, 'BlackboardDnnNoHeadRotation.xml'); 
    sim.ShutDown = true; 
end 

 

As we run four different blackboards after each other, we have to reinitialise the Binaural

simulator in between.
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GMM-based localisation under
reverberant conditions
The Two!Ears Auditory Model comes with several knowledge sources that work together

to estimate the perceived azimuth of a sound source, see Localisation knowledge sources

for a summary. One stage of this process is the mapping of the extracted features like ITDs

and ILDs to the perceived azimuth angle. This mapping is highly in×uenced by the

environment. For example, if you are in a room the ITD values will look quite different than

in the case of an anechoic chamber. That is the reason why we have different knowledge

sources that do this mapping: DnnLocationKS, GmmLocationsKS, and ItdLocationKS.

ItdLocationKS utilises a simple lookup table for the mapping works well in the case of

Prediction of localisation in spatial audio systems. GmmLocationsKS is at the moment

trained only for anechoic condition. In this example we have a look at GmmLocationsKS

which was trained with a multi-conditional training approach to work under reverberant

conditions [MaEtAl2015dnn]. Beside this, GmmLocationsKS works in the same way as

DnnLocationKS and connects with ConfusionKS, ConfusionSolvingKS, and RotationKS to

solve front-back confusions.

In this example we will have a look at localisation in a larger room, namely the BRIR data

set measured in TU Berlin, room Auditorium 3, which provides six different loudspeaker

positions as possible sound sources. All Öles can be found in the examples/localisation_GMMs

folder which consists of the following Öles:

BlackboardDnnNoHeadRotation.xml 
BlackboardDnn.xml 
estimateAzimuth.m 
localise.m 
resetBinauralSimulator.m 
setupBinauralSimulator.m 

 

The setup is very similar to Localisation with and without head rotations with a few

exceptions. First, the setup of the Binaural simulator is different as we use BRIRs instead of

HRTFs, and have one impulse response set for every sound source. The initial

conÖguration of the Binaural simulator is provided by the setupBinauralSimulator  function:
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sim = simulator.SimulatorConvexRoom(); 
set(sim, ... 
    'BlockSize',            4096, ... 
    'SampleRate',           44100, ... 
    'NumberOfThreads',      1, ...
    'LengthOfSimulation',   1, ...
    'Renderer',             @ssr_brs, ... 
    'Verbose',              false, ... 
    'Sources',              {simulator.source.Point()}, ... 
    'Sinks',                simulator.AudioSink(2) ... 
    ); 
set(sim.Sinks, ... 
    'Name',                 'Head', ... 
    'Position',             [ 0.00  0.00  0.00]' ... 
    ); 
set(sim.Sources{1}, ... 
    'AudioBuffer',          simulator.buffer.Ring(1) ... 
    ); 
set(sim.Sources{1}.AudioBuffer, ... 
    'File', 'sound_databases/grid_subset/s1/bbaf2n.wav' ... 
    ); 

 

Here, we conÖgure it to use the @ssr_brs  renderer which is needed for BRIRs, deÖne the

speech signal to use, but don’t provide a BRIR yet as this will be done on the ×y later on.

We have four different conÖguration Öles for setting up the Blackboard system. As an

example, we list the Öle BlackboardDnn.xml` :
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<?xml version="1.0" encoding="utf‐8"?> 
<blackboardsystem> 
 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="loc" Type="GmmLocationKS"/> 
    <KS Name="conf" Type="ConfusionKS"/> 
    <KS Name="confSolv" Type="ConfusionSolvingKS"/> 
    <KS Name="rot" Type="RotationKS"> 
        <Param Type="ref">robotConnect</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>loc</sink> 
    </Connection> 
    <Connection Mode="add"> 
        <source>loc</source> 
        <sink>conf</sink> 
    </Connection> 
    <Connection Mode="replaceOld" Event="ConfusedLocations"> 
        <source>conf</source> 
        <sink>rot</sink> 
    </Connection> 
    <Connection Mode="add" Event="ConfusedLocations"> 
        <source>conf</source> 
        <sink>confSolv</sink> 
    </Connection> 
 
</blackboardsystem> 

 

Here, we use different knowledge sources that work together in order to solve the

localisation task. We have AuditoryFrontEndKS for extract auditory cues from the ear

signals, GmmLocationsKS channels, ConfusionKS, ConfusionSolvingKS, and RotationKS

for the actual localisation task. The Param  tags are parameters we can pass to the

knowledge sources. After setting up which knowledge sources we will use, we connect

them with the Connection  tags. For more information on conÖguring the blackboard see

ConÖguration.

In the other blackboard conÖguration Öles we set up a blackboard for the case of

GmmLocationsKS without confusion solving by head rotation.

Now, everything is prepared and we can start Matlab in order to perform the localisation.

You can just start it and run the following command to see it in action, afterwards we will

have a look at what happened:
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>> localise 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Source direction   GmmLocationKS w head rot.   GmmLocationKS wo head rot. 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
            0                 0                       ‐180 
          ‐52               ‐55                       ‐100 
         ‐131              ‐135                       ‐140 
            0                 0                       ‐180 
           30                30                         30 
          ‐30               ‐30                        ‐30 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

As you can see the model with head rotation returned better results than the model

without head rotation enabled.

Now, we have a look into the details of the localise()  function. We will only talk about the

parts that are responsible for the task, not for printing out the results onto the screen.

First, we deÖne the sources we are going to synthesise and start the Binaural simulator:

brirs = { ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src1_xs+0.00_ys+3.97.sofa';
 ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src2_xs+4.30_ys+3.42.sofa';
 ... 
    'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src3_xs+2.20_ys‐
1.94.sofa'; ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src4_xs+0.00_ys+1.50.sofa';
 ... 
    'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src5_xs‐
0.75_ys+1.30.sofa'; ... 
    
'impulse_responses/qu_kemar_rooms/auditorium3/QU_KEMAR_Auditorium3_src6_xs+0.75_ys+1.30.sofa';
 ... 
    }; 
headOrientation = 90; % towards y‐axis (facing src1) 
sourceAngles = [90, 38.5, ‐41.4, 90, 120, 60] ‐ headOrientation; % phi = atan2d(ys,xs) 

 

After that we have a loop over the different sources in which we are loading the

corresponding BRIR into the Binaural simulator and run the Blackboard system inside the

estimateAzimuth  function:
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for ii = 1:length(sourceAngles) 
    direction = sourceAngles(ii); 
    sim.Sources{1}.IRDataset = simulator.DirectionalIR(brirs{ii}); 
    sim.rotateHead(headOrientation, 'absolute'); 
    sim.Init = true; 
    % GmmLocationKS w head rot. 
    phi1 = estimateAzimuth(sim, 'BlackboardDnn.xml'); 
    resetBinauralSimulator(sim, headOrientation); 
    % GmmLocationKS wo head rot. 
    phi2 = estimateAzimuth(sim, 'BlackboardDnnNoHeadRotation.xml'); 
    sim.ShutDown = true; 
end 

 

As we run four different blackboards after each other, we have to reinitialise the Binaural

simulator in between.
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Train sound type identi됅cation
models

Example step-through

Part of the Two!Ears Auditory Model is the Identity knowledge source: IdentityKS which

can be instantiated (multiple times) to identify the type of auditory objects, like “speech”,

“Öre”, “knock” etc. Each IdentityKS needs a source type model – this example shows one

possibility to train such a model. Have a look at the IdentiÖcation of sound types to see

how these models are being used in the Blackboard system.

The base folder for this example is examples/train_identification_model , with the example

script Öle being trainAndTestCleanModel.m . Later in the model training process, new

directories with names like Training.2015.08.03.14.57.21.786  will be created by the training

pipeline, holding log Öles of the training, Öle lists of the used training and testing data, and

of course the trained models. These are the models to be used in the IdentityKS, then. To

see if everything is working, just run

>> trainAndTestCleanModel; 

 

Example step-through

To dive into the example, load up Matlab, navigate into the example directory, and open

trainAndTestCleanModel.m , which contains a function (also usable as a script). Let’s have a

look before Öring it up!

Start-up

First thing happening in there is the

startTwoEars(); 
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command. This simply start the Two!Ears Auditory Model and adds all necessary paths to

your Matlab paths.

Feature and model creators

The next code paragraph Örst creates the basic pipeline object of type

TwoEarsIdTrainPipe, and then sets two deÖning options: The feature creator and the

model creator.

pipe = TwoEarsIdTrainPipe(); 
pipe.featureCreator = featureCreators.FeatureSet1Blockmean(); 
pipe.modelCreator = modelTrainers.GlmNetLambdaSelectTrainer( ... 
    'performanceMeasure', @performanceMeasures.BAC2, ... 
    'cvFolds', 7, ... 
    'alpha', 0.99 ); 

 

In this case, an L1-regularized sparse logistic regression model will be trained through the

use of the GlmNetLambdaSelectTrainer, which is a wrapper for GLMNET. A pile of

auditory features will be used in this model, processed and compiled by the

FeatureSet1Blockmean feature creator. Have a look into the respective sections to learn

more!

Training and testing sets

The models will be trained using a particular set of sounds, speciÖed in the trainset ×ist.

For this example, the IEEE AASP single event sounds serve as training material. There are

sounds for several classes like “laughter”, “keys”, “speech”, etc. If you don’t call the

trainAndTestCleanModel  function with a different class name, a model for the “speech” class

will be trained (this is speciÖed in the third line). Irregardless of the class the model is

trained for, all sounds listed in the ×ist (have a look) will be used for training – but only the

ones belonging to the model class will serve as “positive” examples.

pipe.trainset = 
'learned_models/IdentityKS/trainTestSets/IEEE_AASP_80pTrain_TrainSet_1.flist'; 
pipe.testset = 
'learned_models/IdentityKS/trainTestSets/IEEE_AASP_80pTrain_TestSet_1.flist'; 

 

The testset  speciÖes Öles used for testing the trained model. This is not necessary for the

model creation, it only serves as an immediate way of providing feedback about the model

performance after training. Of course the testset  must only contain Öles that have not

been used for training, to test for generalisation of the model.
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Scene con됅guration

A “clean” scene conÖguration is used to train this model. That means: the sound sources

are positioned at 0° azimuth relative to the head, there is no interfering noise, and no

reverberation (free-Öeld conditions). Have a look into the respective training pipeline

documentation part to get to know the many possibilities to conÖgure the acoustic training

scene.

sc = dataProcs.SceneConfiguration(); % clean 
pipe.setSceneConfig( [sc] ); 

 

Running the pipeline

After everything is set up, the pipeline has to be initialised and can then be run.

pipe.init(); 
modelPath = pipe.pipeline.run( {classname}, 0 ); 

 

Initialisation can take some time depending on the Öles for training and testing, and

whether they are available through a local copy of the Two!Ears database, through the

download cache of the remote Two!Ears database, or whether they have to be

downloaded from there Örst. The time needed for actually running the pipeline can vary

substantially, depending on

the total accumulated length of sound Öles used
the scene conÖguration – using reverberation or noise interference
makes the binaural simulation take longer
the features having to be extracted by the Auditory front-end
the type of model (training) – there are big differences here, as the
computational effort can be much higher for some models than for
others (GLMNET, the one used here, is pretty fast)
and whether the Öles have been processed in this conÖguration
before or not. The pipeline saves intermediate Öles after each
processing stage (binaural simulation, auditory front-end, feature
creation) for each sound Öle and each conÖguration, and it Önds those
Öles later, if a Öle is to be processed in the same (or partly the same)
conÖguration. This way, a lot of time-consuming preprocessing can be
saved. You can try it – interrupt the preprocessing at any moment by
hitting ctrl+c, and restart the script. You will see that all processed
Öles/stages won’t be done again.   v: latest 



After successful training and testing, you should see something like

Running: MultiConfigurationsEarSignalProc 
========================================== 
.C:\projekte\twoEars\wp1git\tmp\sound_databases\IEEE_AASP\alert\alert11.wav 
... 
 
Running: MultiConfigurationsAFEmodule 
========================================== 
.C:\projekte\twoEars\wp1git\tmp\sound_databases\IEEE_AASP\alert\alert11.wav 
... 
 
Running: MultiConfigurationsFeatureProc 
========================================== 
.C:\projekte\twoEars\wp1git\tmp\sound_databases\IEEE_AASP\alert\alert11.wav 
... 
 
Running: GatherFeaturesProc 
========================================== 
.C:\projekte\twoEars\wp1git\tmp\sound_databases\IEEE_AASP\alert\alert11.wav 
... 
 
=================================== 
##   Training model "speech" 
=================================== 
 
 
==  Training model on trainSet... 
 
 
Run on full trainSet... 
GlmNet training with alpha=0.990000 
   size(x) = 5040x846 
 
 
Run cv to determine best lambda... 
Starting run 1 of CV... GlmNet training with alpha=0.990000 
   size(x) = 4111x846 
 
Applying model to test set... 
Done. Performance = 0.842686 
 
... 
 
Calculate Performance for all 
lambdas...................................................Done 
 
==  Testing model on testSet... 
 
 
 
=================================== 
##   "speech" Performance: 0.942548 
=================================== 
 
 ‐‐ Model is saved at C:\projekte\twoEars\twoears‐
examples\train_identification_model\Training.2015.08.06.15.44.52.582 ‐‐ 
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The stated performance is on the test set, and the path afterwards indicates the location of

the model on your drive.
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Identi≴cation of sound types
Example step-through

This example particularly serves to demonstrate two aspects of the Two!Ears Auditory

Model:

Building a Blackboard system dynamically in code (instead of via xml
deÖnition, as demonstrated in the Localisation with and without head
rotations example)
Using identity knowledge sources with source type models to
generate hypotheses about the type of sound objects in an auditory
scene.

The base folder for this example is examples/identification , with the main example script

Öle being identify.m . Other than that, there is the Öle SceneDescription.xml  which

describes the Binaural simulator conÖguration, there are Öve directories with names like

“Training.2015.07.24.00.23.42.772”, which hold the used source type models, a sound Öle

list shortTest.flist , and subfunctions ( buildIdentificationBBS.m , makeTestSignal.m ,

setDefaultIdModels.m ) used in identify.m . Have a look at Train sound type identiÖcation

models to see how the source type models have been created. To see if everything is

working, just run

>> identify; 

 

Example step-through

To dive into the example, load up Matlab, navigate into the example directory, and open

identify.m , which contains a function (also usable as a script). Let’s have a look before

Öring it up!

Specifying the identi≴cation models
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The function identify  takes a parameter, which shall specify the models to be used for

source type identiÖcation. However, for this example, you can run without setting this

parameter, and let the function setDefaultIdModels  do this for you.

if nargin < 1, idModels = setDefaultIdModels(); end 

 

This function speciÖes Öve source type models by giving the directories they are located in

and the class they are trained to identify, respectively.

Starting Two!Ears

Next, we initialise the Two!Ears Auditory Model:

startTwoEars(); 

 

Creating a test scene

To test the identiÖcation models, a test scene is compiled from audio events (IEEE AASP

single event sounds database) from several wav-Öles, listed in shortTest.flist . All those

wav-Öles have not been used for training of the tested models (they have all been trained

using the same trainset), so the models have never “seen” (or better: “heard”) these actual

sounds. The function makeTestSignal  not only compiles the audio, but also reads the

“ground truth”, i.e. the on- and offset times of the respective events from the annotation

Öles. The scene is about 45 seconds long. The events are concatenated in random order

(with 0.5s inbetween two events).

Initialising the Binaural Simulator

The next code paragraph deals with initialisation of the Binaural simulator. More speciÖc,

the acoustic sources are set to an head-relative azimuth of zero degrees and three meters

distance. Free-Öeld conditions (no reverberation) are set through absence of a room

deÖnition (either in the SceneDescription.xml  or in code). The models have been trained

under the same conditions.

Building the example Blackboard System

The construction of the Blackboard system for this example is done directly in Matlab

(versus via xml) in the function buildIdentificationBBS . Let’s look into it, we Örst create a

new BlackboardSystem object:
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bbs = BlackboardSystem(1); 

 

This object is our access point and frame for the simulation. We Örst set up the connection

to the Binaural simulator and the Auditory front-end:

bbs.setRobotConnect(sim); 
bbs.setDataConnect('AuditoryFrontEndKS'); 

 

Followed by invocation of the identity knowledge sources using the function createKS  of

the Blackboard system, which also takes care to place the Auditory front-end requests at

the AuditoryFrontEndKs. The identity knowledge sources need name and location of the

source type models they load and represent in the system. We set their invocation

frequency to 100ms (default value is 250ms):

for ii = 1 : numel( idModels ) 
    idKss{ii} = bbs.createKS('IdentityKS', {idModels(ii).name, idModels(ii).dir}); 
    idKss{ii}.setInvocationFrequency(10); 
end 

 

We create one more knowledge source, the IdTruthPlotKS – it’s not really a knowledge

source in the sense of the word in this case, but a handy way to implement a debugging tool

for live-inspection of the identity information in the blackboard system. It needs the

ground truth information passed to it:

idCheat = bbs.createKS('IdTruthPlotKS', {labels, onOffsets}); 

 

In the last lines dealing with blackboard system construction, we connect the different

modules:

bbs.blackboardMonitor.bind({bbs.scheduler}, {bbs.dataConnect}, 'replaceOld', 'AgendaEmpty' 
); 
bbs.blackboardMonitor.bind({bbs.dataConnect}, idKss, 'replaceOld' ); 
bbs.blackboardMonitor.bind(idKss, {idCheat}, 'replaceParallelOld' ); 

 

The dataConnect  gets bound to the scheduler – this way, the next
chunk of acoustic data is fetched whenever no more knowledge
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The identity knowledge sources get bound to the dataConnect  (which
we have instantiated to be the AuditoryFrontEndKS before)
The IdTruthPlotKS  gets bound to the identity knowledge sources,
which produce the identity hypotheses.

Running the simulation

With the blackboard system set up, we can start the simulation,

bbs.run(); 

 

which will trigger the Örst fetching of acoustic data by the system, followed by processing

and triggering subsequent events and knowledge source executions. The blackboard

system is set up to “verbose” mode, printing the events and executions on the Matlab

console:

‐‐‐‐‐‐‐‐ [Event Fired:] Scheduler ‐> (AgendaEmpty) ‐> AuditoryFrontEndKS 
‐‐‐‐‐‐‐‐ [Executing KS:] AuditoryFrontEndKS 
‐‐‐‐‐‐‐‐ [Event Fired:] AuditoryFrontEndKS ‐> (KsFiredEvent) ‐> IdentityKS[clearthroat] 
‐‐‐‐‐‐‐‐ [Event Fired:] AuditoryFrontEndKS ‐> (KsFiredEvent) ‐> IdentityKS[knock] 
‐‐‐‐‐‐‐‐ [Event Fired:] AuditoryFrontEndKS ‐> (KsFiredEvent) ‐> IdentityKS[switch] 
‐‐‐‐‐‐‐‐ [Event Fired:] AuditoryFrontEndKS ‐> (KsFiredEvent) ‐> IdentityKS[keyboard] 
‐‐‐‐‐‐‐‐ [Event Fired:] AuditoryFrontEndKS ‐> (KsFiredEvent) ‐> IdentityKS[speech] 
‐‐‐‐‐‐‐‐ [Executing KS:] IdTruthPlotKS 
‐‐‐‐‐‐‐‐ [Executing KS:] IdentityKS[clearthroat] 
....Identity Hypothesis: clearthroat with 75% probability. 
‐‐‐‐‐‐‐‐ [Event Fired:] IdentityKS[clearthroat] ‐> (KsFiredEvent) ‐> IdTruthPlotKS 
‐‐‐‐‐‐‐‐ [Executing KS:] IdentityKS[knock] 
....Identity Hypothesis: knock with 0% probability. 
‐‐‐‐‐‐‐‐ [Event Fired:] IdentityKS[knock] ‐> (KsFiredEvent) ‐> IdTruthPlotKS 
‐‐‐‐‐‐‐‐ [Executing KS:] IdentityKS[switch] 
....Identity Hypothesis: switch with 6% probability. 
‐‐‐‐‐‐‐‐ [Event Fired:] IdentityKS[switch] ‐> (KsFiredEvent) ‐> IdTruthPlotKS 
‐‐‐‐‐‐‐‐ [Executing KS:] IdentityKS[keyboard] 
....Identity Hypothesis: keyboard with 0% probability. 
‐‐‐‐‐‐‐‐ [Event Fired:] IdentityKS[keyboard] ‐> (KsFiredEvent) ‐> IdTruthPlotKS 
‐‐‐‐‐‐‐‐ [Executing KS:] IdentityKS[speech] 
....Identity Hypothesis: speech with 89% probability. 
‐‐‐‐‐‐‐‐ [Event Fired:] IdentityKS[speech] ‐> (KsFiredEvent) ‐> IdTruthPlotKS 

 

You can see the before installed event bindings in action – the scheduler triggers the

AuditoryFrontEndKS, which triggers the IdentityKSs, which place identity hypotheses on

the blackboard and trigger the IdTruthPlotKS.
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The simulation will take a few minutes – as mentioned, it processes a 45s scene, and at the

moment, is not optimised to run in real-time. You can see the progress in the id truth plot,

which shows the wave form of the left channel (ear) accompanied by a graphical

representation of the events, ground truth versus hypotheses produced by the models:

Fig. 58 This is the live plot of hypotheses created by the identity
knowledge sources, in comparison to the “ground truth” (as given by

annotated on- and offset times for the source sound Öles).

Evaluating the simulation

Finally, idScoresRelativeError  calculates an error rate of the tested models for this

example:

Evaluate scores... 
 
relative error of clearthroat identification model: 0.244339 
relative error of keyboard identification model: 0.112274 
relative error of knock identification model: 0.034251 
relative error of speech identification model: 0.095172 
relative error of switch identification model: 0.110843 
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The relative error rate here is the over time integrated difference between ground truth

and model hypotheses (divided by the length of the simulation).
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Segmentation with and without
priming
The Blackboard system of the Two!Ears Auditory Model is equipped with a

SegmentationKS knowledge source which is capable of generating soft-masks for auditory

features in the time-frequency domain. The segmentation framework relies on a

probabilistic clustering approach to assign individual time-frequency units to sound

sources that are present in the scene. This assignment can either be computed

unsupervised or exploit additional prior knowledge about potential source positions

provided by the user or e.g. by the DnnLocationKS knowledge source.

Note

To run the examples, an instance of the SegmentationKS knowledge source has to be

trained Örst. Please refer to (Re)train the segmentation stage for details.

This example will demonstrate how the SegmentationKS knowledge source is properly

initialised with and without prior knowledge and how the hypotheses which are generated

by the segmentation framwork can be used within the Blackboard system. The example

can be found in the examples/segmentation  folder which consists of the following Öles:

demo_segmentation_clean.m 
demo_segmentation_noisy.m 
demo_segmentation_priming.m 
demo_train_segmentation.m 
segmentation_blackboard_clean.xml 
segmentation_blackboard_noise.xml 
segmentation_config.xml 
test_scene_clean.xml 
test_scene_noise.xml 
training_scene.xml 

 

Note

The SegmentationKS  knowledge source is based on Matlab functions that were

introduced in release R2013b. Therefore, it is currently not possible to use

SegmentationKS  with earlier versions of Matlab.
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The example contains three different demo scenes, namely demo_segmentation_clean.m ,

demo_segmentation_noisy.m  and demo_segmentation_priming.m . The Örst demo shows the

segmentation framework for three speakers in anechoic and undisturbed acoustic

conditions without providing prior knowledge about the speaker positions. The scene

parameters are speciÖed in the corresponding test_scene_clean.xml  Öle:

<?xml version="1.0" encoding="utf‐8"?> 
<scene 
  Renderer="ssr_binaural" 
  BlockSize="4096" 
  SampleRate="44100" 
  LengthOfSimulation = "3" 
  HRIRs="impulse_responses/qu_kemar_anechoic/QU_KEMAR_anechoic_3m.sofa"> 
  <source Name="Speaker1" 
          Type="point" 
          Position="0.8660 0.5 1.75"> 
    <buffer ChannelMapping="1" 
            Type="fifo" 
            File="sound_databases/IEEE_AASP/speech/speech08.wav"/> 
  </source> 
  <source Name="Speaker2" 
          Type="point" 
          Position="1 0 1.75"> 
    <buffer ChannelMapping="1" 
            Type="fifo" 
            File="sound_databases/IEEE_AASP/speech/speech14.wav"/> 
  </source> 
  <source Name="Speaker3" 
          Type="point" 
          Position="0.8660 ‐0.5 1.75"> 
    <buffer ChannelMapping="1" 
            Type="fifo" 
            File="sound_databases/IEEE_AASP/speech/speech07.wav"/> 
  </source> 
  <sink Name="Head" 
        Position="0 0 1.75" 
        UnitX="1 0 0" 
        UnitZ="0 0 1"/> 
</scene> 

 

The speaker positions described here correspond to angular positions at -30°, 0° and 30°,

respectively. These positions will be Öxed for all conditions in this demo. For more

documentation on specifying an acoustic scene, see ConÖguration using XML Scene

Description. Additionally, the Öle segmentation_blackboard_clean.xml  contains the necessary

information to build a Blackboard system with the corresponding SegmentationKS (see

ConÖguration for details):
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<?xml version="1.0" encoding="utf‐8"?> 
<blackboardsystem> 
 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="seg" Type="SegmentationKS"> 
        <Param Type="char">DemoKS</Param> 
        <Param Type="double">3</Param> 
        <Param Type="int">3</Param> 
        <Param Type="int">0</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>seg</sink> 
    </Connection> 
 
</blackboardsystem> 

 

The SegmentationKS knowledge source takes four parameters as input arguments. The

Örst parameter is the name of the knowledge source instance which contains previously

trained localisation models. For further information about training this speciÖc knowledge

source, please refer to (Re)train the segmentation stage. The second parameter deÖnes the

block size in seconds on which the segmentation should be performed. In this demo, a

block size of 3 seconds is assumed for all cases. The third parameter speciÖes the number

of sources which are assumed to be present in a scene and the fourth parameter is a ×ag

which can be either set to 0 or 1, indicating if an additional background estimation should

be performed. If this is the case, the model assumes that individual time-frequency units

can either be associated with a sound source or with background noise, which is helpful in

noisy acoustic environments but can also degrade performance if no or little background

noise is present. As no background noise is assumed in the Örst demo, this parameter is set

to zero accordingly. Running the script demo_segmentation_clean.m  will produce a result

similar to Fig. Fig. 63.

Fig. 63 Figure generated after running the script
demo_segmentation_clean.m . The Ögure shows all three soft masks and

location estimates for the speech sources that are simulated in this
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demo. Note that the estimated positions do not necessarily match the
true positions (-30°, 0° and 30°) due to the limited localisation
capabilities of the SegmentationKS knowledge source. This problem can
be circumvented by exploiting prior knowledge about the source
positions (see below).

The second demo Öle demo_segmentation_noisy.m  provides essentially the same acoustic

conÖguration as the Örst demo with additional diffuse background noise. This is speciÖed

in the corresponding test_scene_noise.xml  conÖguration Öle:

<?xml version="1.0" encoding="utf‐8"?> 
<scene 
  Renderer="ssr_binaural" 
  BlockSize="4096" 
  SampleRate="44100" 
  LengthOfSimulation = "3" 
  HRIRs="impulse_responses/qu_kemar_anechoic/QU_KEMAR_anechoic_3m.sofa"> 
  <source Name="Speaker1" 
          Type="point" 
          Position="0.8660 0.5 1.75"> 
    <buffer ChannelMapping="1" 
            Type="fifo" 
            File="sound_databases/IEEE_AASP/speech/speech08.wav"/> 
  </source> 
  <source Name="Speaker2" 
          Type="point" 
          Position="1 0 1.75"> 
    <buffer ChannelMapping="1" 
            Type="fifo" 
            File="sound_databases/IEEE_AASP/speech/speech14.wav"/> 
  </source> 
  <source Name="Speaker3" 
          Type="point" 
          Position="0.8660 ‐0.5 1.75"> 
    <buffer ChannelMapping="1" 
            Type="fifo" 
            File="sound_databases/IEEE_AASP/speech/speech07.wav"/> 
  </source> 
  <source Type="pwd" 
          Name="Noise" 
          Azimuths="0 30 60 90 120 150 180 210 240 270 300 330"> 
    <buffer ChannelMapping="1 2 3 4 5 6 7 8 9 10 11 12" 
            Type="noise" 
            Variance="0.02" 
            Mean="0.0"/> 
  </source> 
  <sink Name="Head" 
        Position="0 0 1.75" 
        UnitX="1 0 0" 
        UnitZ="0 0 1"/> 
</scene> 
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To account for the background noise during the estimation process, the corresponding ×ag

in the blackboard conÖguration Öle segmentation_blackboard_noise.xml  is set to one:

<?xml version="1.0" encoding="utf‐8"?> 
<blackboardsystem> 
 
    <dataConnection Type="AuditoryFrontEndKS"/> 
 
    <KS Name="seg" Type="SegmentationKS"> 
        <Param Type="char">DemoKS</Param> 
        <Param Type="double">3</Param> 
        <Param Type="int">3</Param> 
        <Param Type="int">1</Param> 
    </KS> 
 
    <Connection Mode="replaceOld" Event="AgendaEmpty"> 
        <source>scheduler</source> 
        <sink>dataConnect</sink> 
    </Connection> 
    <Connection Mode="replaceOld"> 
        <source>dataConnect</source> 
        <sink>seg</sink> 
    </Connection> 
 
</blackboardsystem> 

 

Running the corresponding script demo_segmentation_noisy.m  will generate an additional

soft-mask for the background noise which is shown in Fig. Fig. 64.
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Fig. 64 Figure generated after running the script
demo_segmentation_noisy.m . The Ögure shows four soft masks of which

three correspond to the individual sources and the remaining one is a
soft-mask for the background noise. Note that the latter one only
contains very small probabilities for all time-frequency units in this
demo. This is due to the fact that stationary white noise was used in this
case and the (partially overlapping) speech sources cover a broad range
of the whole time-frequency spectrum.

Note

The background noise estimation procedure is based on the assumption that the noise

present in the scene is diffuse and hence its directions of arrival follow a uniform

distribution around the unit circle. If this condition is not valid and directional noise

sources are present, considering them as additional sources instead of using the

background estimation procedure might yield better results.

Finally, the third demo shows the possibilities of priming the SegmentationKS knowledge

source, which means providing prior knowledge about the source positions before the

segmentation is actually performed. For this purpose, the implementation of

SegmentationKS provides an additional function setFixedPositions()  which can be used to

manually specify the positions of the sound sources. In the script

demo_segmentation_priming.m , this is done in the following way:

1 
2 
3

% Provide prior knowledge of the two speaker locations 
prior = [‐deg2rad(30); deg2rad(30); 0]; 
bbs.blackboard.KSs{2}.setFixedPositions(prior); 

 

It is also possible to exploit this functionality dynamically during runtime by using

intermediate results of the DnnLocationKS knowledge source from the blackboard. Note

that angular positions are handled in radians within the SegmentationKS framework,

hence position estimates in degrees must be converted accordingly. A possible result for

this demo is shown in Fig. Fig. 65.

Fig. 65 Figure generated after running the script
demo_segmentation_priming.m .
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(Re)train the segmentation stage
The SegmentationKS knowledge source of the Two!Ears Auditory Model depends on a

localisation model which is based on support vector machine regression. This regression

model has to be trained using a set of HRTFs. A demo of how a speciÖc instance of the

SegmentationKS can be trained is provided by the script demo_train_segmentation.m  in the

examples/segmentation  folder. This script shows how the default  setting of the

SegmentationKS knowledge source which is used for all demos is generated.

Before starting with the training of a new model, the conÖguration of the Binaural

simulator for which this model should be used has to be speciÖed. This is done by setting

up a training scene. In this case, the training scene is speciÖed in the training_scene.xml

Öle:

<?xml version="1.0" encoding="utf‐8"?> 
<scene 
  BlockSize="4096" 
  SampleRate="44100" 
  MaximumDelay="0.0" 
  NumberOfThreads="1" 
  LengthOfSimulation = "5" 
  HRIRs="impulse_responses/qu_kemar_anechoic/QU_KEMAR_anechoic_3m.sofa"> 
  <source Radius="3.0" 
          Mute="false" 
          Type="point" 
          Name="SoundSource"> 
    <buffer ChannelMapping="1" 
        Type="noise"/> 
  </source> 
  <sink Name="Head" 
        Position="0 0 0" 
        UnitX="1 0 0" 
        UnitZ="0 0 1"/> 
</scene> 

 

The only parameter that is relevant for the training process is the set of HRTFs, which is

taken from the Database impulse_responses/qu_kemar_anechoic/QU_KEMAR_anechoic_3m.sofa  for

this demo. All other parameters only have to match the HRTFs speciÖcations. The current

implementation of the training framework uses white noise as a stimulus signal during

training.
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Besides the scene description Öle, the only requirement to generate a training script is to

provide a unique identiÖer for the SegmentationKS instance that should be trained. In the

Öle demo_train_segmentation.m  this is done via

1 ksName = 'DemoKS'; 

 

Furthermore, some additional parameters that should be used for training can be speciÖed

directly in the training script. The additional parameters are optional and will be initialised

by the default Auditory front-end values if not explicitly speciÖed. The possible

conÖguration parameters are provided as an example in demo_train_segmentation.m :

1 
2 
3 
4 
5

nChannels = 32;             % Number of filterbank channels 
winSize = 0.02;             % Size of the processing window in [s] 
hopSize = 0.01;             % Frame shift in [s] 
fLow = 80;                  % Lowest filterbank center frequency in [Hz] 
fHigh = 8000;               % Highest filterbank center frequency in [Hz] 

 

If all of the described prerequisites are met, an instance of the SegmentationKS can be

created:

1 
2 
3 
4 
5 
6 
7

segKS = SegmentationKS(ksName, ... 
    'NumChannels', nChannels, ... 
    'WindowSize', winSize, ... 
    'HopSize', hopSize, ... 
    'FLow', fLow, ... 
    'FHigh', fHigh, ... 
    'Verbosity', true);     % Enable status messages during training 

 

This instance can subsequently be used to automatically generate all Öles required for the

training process:

1 
2

xmlSceneDescription = 'training_scene.xml'; 
segKS.generateTrainingData(xmlSceneDescription); 

 

If this is completed, the train()  function can be used to start training of the regression

models.

1 segKS.train(); 
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The train()  command will produce an error message if a set of trained models already

exist for the identiÖer the SegmentationKS was instantiated with. Overwriting existing

models has to be explicitly enforced by calling the train()  method with a additional

doOverwrite  ×ag which has to be set to true :

1 segKS.train(true); 

 

Note

The training process may take up to several hours depending on the available

computational ressources. It is generally recommended to set the Verbosity  ×ag to

true  at instantiation, in order to receive important status and progress messages

during the training process.

If training is completed, the generated training Öles are not needed anymore and can be

deleted if no re-training should be performed. This can be done by calling the

removeTrainingData  method:

1 segKS.removeTrainingData(); 
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Stream binaural signals from BASS to
Matlab

Preliminary steps
Control BASS to start an acquisition
Get audio data in Matlab
End the session

This tutorial shows an example of how to control the BASS component and retrieve audio

streams in Matlab, using the matlab-genomix bridge.

Preliminary steps

In order to follow this tutorial, you will need:

A Linux system with the robotic tools and BASS installed (c.f. Installation of the robotic

tools). We will call this system the BASS host.

An ALSA-compliant sound acquisition interface with at least two input channels, and

two microphones plugged into it. The interface must be connected to the BASS host.

Note

Alternatively, if you do not possess an external sound interface but the BASS host

has an integrated sound card and microphone, you still might be able to follow the

tutorial. Keep in mind though that if there is only one microphone, you will not have

a genuine stereo signal, but a simulated one from your mono input.

A computer with Matlab and the matlab-genomix bridge installed. We will call it the

remote client. The BASS host and the remote client could possibly, but not necessarily,

be the same computer.

On the BASS host, open 3 new terminals. In the Örst terminal, run the command:

$ roscore 
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This launches the ROS middleware. ROS nodes can now connect to this node called the

ROS master. In the second terminal, run the command:

$ genomixd 

 

This launches a genomix server, now waiting for incoming connections from clients on port

8080 by default. In the third terminal, run the command:

$ bass‐ros 

 

This is the BASS component, now running on the system. The name bass‐ros  speciÖes that

this GenoM3 component uses the ROS middleware. So it is actually a ROS node, connected

to the ROS master running in the Örst terminal.

For the moment, the BASS component is not doing anything. It is waiting for requests from

a client (which will be Matlab here) to start services. This is the followed process:

1. The client emits a HTTP message destined for the genomix server,
requesting to call a service of the BASS component.

2. genomix executes the call directed at the BASS component.
3. When the service is completed, BASS returns its output to genomix,

and genomix relays it back to the client.

Keep the third terminal running BASS visible on the screen. When we will call some

services, we will notice their effect on the component’s standard output stream (stdout).

Control BASS to start an acquisition

On the remote client, start a Matlab session and make sure that matlab-genomix is in the

Matlab path (c.f. Installation of the robotic tools).

Connect to genomix and load BASS

If you have Matlab on the same computer where the genomix server is running, you can

simply connect to genomix with:

>> client = genomix.client 
client = 
 
  client with no properties.    v: latest 



 

This will attempt a connection on localhost:8080  by default. Otherwise if your BASS host

and your remote client are two different computers, get the IP address of the BASS host

and override the default value with:

>> client = genomix.client('xxx.xxx.xxx.xxx:8080') % write the IP address of BASS host 

 

Then, load BASS:

>> bass = client.load('bass')
 
bass = 
 
  component with properties: 
 
        genom_state: [function_handle] 
               kill: [function_handle] 
       connect_port: [function_handle] 
    connect_service: [function_handle] 
               Stop: [function_handle] 
        ListDevices: [function_handle] 
    DedicatedSocket: [function_handle] 
              Audio: [function_handle] 
     abort_activity: [function_handle] 
            Acquire: [function_handle] 
        CloseSocket: [function_handle] 

 

The returned handle bass  has a list of properties either corresponding to services (e.g.

Acquire ) or ports (e.g. Audio ) of the component.

Get the name of your sound interface

Invoke the ListDevices  service to get the name of your ALSA device:

>> bass.ListDevices(); 

 

The detected sound devices are listed on the components’s standard output stream

(stdout). On the BASS host, look in the terminal where the component is running, and Önd a

line that matches your interface, something like:

hw:1,0 [Babyface2361116] [USB Audio]    v: latest 



 

The leading string, hw:1,0  in the example, is the name of your ALSA device.

Start an acquisition

We will now use the Acquire  service to start an acquisition.

Caution

By default, services are invoked synchronously, i.e. the command to invoke them only

returns after completion of the service. As the acquisition runs indeÖnitely, the Acquire

service never completes unless you explicitly stop it. So you must invoke this service

asynchronously, i.e. the command invoking the service returns immediately and the

service output can be retrieved later on. Otherwise you will be blocked in the Matlab

command window without control, including stopping the service. If this happens, a

solution is to kill the Matlab process and start again.

The service can be invoked asynchronously by providing the '‐a'  option:

>> r = bass.Acquire('‐a') 
 string device: ALSA name of the sound device (hw:1,0) > 

 

The Acquire  service expects input arguments. As we did not passed them to the function

directly, they are prompted interactively. Enter values according to your sound interface

(see the example below):

For the device  parameter, take the value you obtained at the previous step.

For the sampleRate  parameter, choose a sampling rate that your device supports. The

default value (44100 Hz) is most likely to work.

For the nFramesPerChunk  parameter, choose a chunk size that your device supports.

Some devices only support powers of 2 (e.g. 512, 1024, 2048...), refer to your device

manual.

For the nChunksOnPort  parameter, choose a value that is big enough so that the output

port of BASS streams a few seconds of audio data. For instance, with the default values

(44100 Hz for the sampling rate and 2205 frames for the chunk size), keep 80 chunks

on the port to have 4 seconds:

duration = nChunksOnPort ∗ nFramesPerChunk/sampleRate

= 80 ∗ 2205/44100

= 4s
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>> r = bass.Acquire('‐a') 
 string device: ALSA name of the sound device (hw:1,0) > 'hw:1,0' 
 unsigned long sampleRate: Sample rate in Hz (44100) > 44100 
 unsigned long nFramesPerChunk: Chunk size in frames (2205) > 2205 
 unsigned long nChunksOnPort: Port size in chunks (20) > 80 
 
r = 
 
  request with properties: 
 
       status: 'sent' 
       result: [] 
    exception: [] 

 

If starting the acquisition succeeded, you should see the status 'sent'  in the returned

handle. Otherwise, the status would be 'error' , check then the error message printed in

the terminal on the BASS host. It could be an invalid input parameter.

Note

The parameter prompts like string device: ALSA name of the sound device (hw:1,0) >

contains valuable information, i.e. the data type of the parameter, its name, a short

description and a default value between parenthesis that will be used if you press enter

without specifying another value. All this information comes from the dotgen Öle of the

component, and is part of its deÖnition.

Get audio data in Matlab

You can read the output port of BASS, named Audio , in Matlab:

>> p = bass.Audio() 
p = 
 
    Audio: [1x1 struct] 
 
>> p.Audio 
ans = 
 
         sampleRate: 44100 
      nChunksOnPort: 80 
    nFramesPerChunk: 2205 
     lastFrameIndex: 251370 
               left: {176400x1 cell} 
              right: {176400x1 cell} 
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The data structure shown here is retrieved when reading the port with function

bass.Audio() . The audio signals are stored in the left  and right  Öelds. Note the presence

of the index lastFrameIndex  for keeping track of the data.

If your remote client computer has speakers, you can listen to the retrieved signals:

% Speak in the microphones for a few seconds 
 
% Read the last few recorded seconds 
>> p = bass.Audio(); 
 
% Play the recorded sound, on left channel for instance 
>> soundsc(cell2mat(p.Audio.left), p.Audio.sampleRate); 

 

Notice how the duration of the sound matches the one you selected with parameter

nChunkOnPort  when starting the acquisition.

End the session

When you are done, you can clear the used objects in Matlab:

>> delete(bass); 
>> delete(client); % This closes the connection to genomix 

 

On the BASS host, you can kill processes roscore , genomixd  and bass‐ros  by typing

Control‐c  in each terminal.
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Prediction of coloration in spatial
audio systems

Getting listening test data
Setting up the Binaural Simulator
Estimating the coloration with the Blackboard
Verify the results

Assume we have a live performance of three singers at different positions. Using spatial

audio systems like Wave Field Synthesis we might be able to synthesize their

corresponding sound Öeld in a way that we are convinced they are exactly at those

positions they were during their actual performance. But what we most probably not be

able to synthesize correctly is the timbre of those singers and listeners will perceive a

coloration compared to the original performance.

We did different listening tests where we investigated the amount of coloration listeners

perceive in different Wave Field Synthesis systems with a varying number of loudspeakers

and the distance between adjacent loudspeakers.

The Two!Ears model has a ColorationKS that is able to predict the amount of coloration

compared to a reference. The model learns this reference on the ×y by choosing the Örst

audio input it gets after the start of the Blackboard system.

In the following we show you how to get the results for listening tests from our database

and how to use the Two!Ears model to predict the data.

Getting listening test data

The Database contains lots of so called human labels, which are varying data, that all

comes from listening tests and has somehow human behavior as input. This can be in the

form of direct rating of speciÖc attributes like localisation or coloration, but also indirect

input like measurements of the head movements of the listeners during their tasks.

In the following we are interested in modelling the results for the coloration experiment

performed with WFS, which is described in 2015-10-01: Coloration of a point source in

Wave Field Synthesis revisited. We did the experiment for different listening positions,
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loudspeaker arrays, and audio source materials. In this example, we will focus on the

central listening position, a circular loudspeaker array, and music as source material.

First, we will get the source signal and the listening test results and corresponding BRS

Öles:

sourceMaterial = audioread(db.getFile('stimuli/anechoic/aipa/music1_48k.wav')); 
humanLabels = readHumanLabels(['experiments/2015‐10‐01_wfs_coloration/', ... 
                'human_label_coloration_wfs_circular_offcenter_music.csv']); 

 

You could listen to the audio source material with and have a look at the results from the

listening test:

>> sound(sourceMaterial, 48000); 
>> humanLabels 
 
humanLabels = 
 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.9622]    [0.0419] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [ 0.0075]    [0.2127] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [ 0.0730]    [0.2107] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.1764]    [0.2212] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.1103]    [0.2410] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.2899]    [0.2165] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.3714]    [0.2348] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.7415]    [0.1406] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [‐0.4208]    [0.1803] 
    'experiments/2015‐10‐01_wfs_coloration/brs/wfs_...'    [ 0.7443]    [0.1587] 

 

The Örst column of humanLabels  lists the corresponding BRS Öle used during the

experiment, the second column the median coloration rating – ranging from -1 for not

colored to 1 for strongly colored – and the third column the conÖdence interval of the

ratings.

Setting up the Binaural Simulator

The Binaural simulator is then setup with the BRS renderer:
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sim = simulator.SimulatorConvexRoom(); 
set(sim, ... 
    'BlockSize',            48000, ... 
    'SampleRate',           48000, ... 
    'NumberOfThreads',      3, ...
    'LengthOfSimulation',   5, ...
    'Renderer',             @ssr_brs, ... 
    'Verbose',              false, ... 
    'Sources',              {simulator.source.Point()}, ... 
    'Sinks',                simulator.AudioSink(2) ... 
    ); 
set(sim.Sinks, ... 
    'Name',                 'Head', ... 
    'UnitX',                [ 0.00 ‐1.00  0.00]', ... 
    'UnitZ',                [ 0.00  0.00  1.00]', ... 
    'Position',             [ 0.00  0.00  1.75]' ... 
    ); 
set(sim.Sources{1}, ... 
    'AudioBuffer',          simulator.buffer.FIFO(1) ... 
    ); 
% First BRS entry corresponds to the reference condition 
sim.Sources{1}.IRDataset = simulator.DirectionalIR(humanLabels{1,1}); 
sim.Sources{1}.setData(sourceMaterial); 
sim.Init = true; 

 

Estimating the coloration with the
Blackboard

Now the audio part is prepared and we only have to setup the Blackboard system and

estimate a coloration value for every condition with the ColorationKS:

% === Estimate reference 
bbs = BlackboardSystem(0); 
bbs.setRobotConnect(sim); 
bbs.setDataConnect('AuditoryFrontEndKS'); 
ColorationKS = bbs.createKS('ColorationKS', {'music'}); 
bbs.blackboardMonitor.bind({bbs.scheduler}, {bbs.dataConnect}, 'replaceOld', ... 
                           'AgendaEmpty' ); 
bbs.blackboardMonitor.bind({bbs.dataConnect}, {ColorationKS}, 'replaceOld' ); 
bbs.run(); % The ColorationKS runs automatically until the end of the signal 
sim.ShutDown = true; 
 
% === Estimate coloration for every conditions 
for jj = 1:size(humanLabels,1) 
    sim.Sources{1}.IRDataset = simulator.DirectionalIR(humanLabels{jj,1}); 
    sim.Sources{1}.setData(sourceMaterial); 
    sim.Init = true; 
    bbs.run() 
    prediction(jj) = ... 
        bbs.blackboard.getLastData('colorationHypotheses').data.differenceValue; 
    sim.ShutDown = true; 
end 
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The model returned a coloration estimation for every condition in the range of 0..1

where 0  means no coloration and 1  strongly colored:

>> prediction 
 
prediction = 
 
    0.0035    0.5316    0.5566    0.4907    0.5321    0.3595    0.3080    0.2261 
 
    0.2608    1.7576 

 

The anchor condition, which is the very last entry, was rated to be even more degraded

than 1. This re×ects that the model is more optimised for comb-Ölter like spectra at the

moment and not for strongly low- or high-passed signals.

Verify the results

Now, its time to compare the results with the ones from the listening test. Note, that the

listening test ratings were in the range -1..1 and we have to transfer them to 0..1:

figure; hold on; 
% Plot listening test results as points with errorbars 
errorbar(([humanLabels{:,2}]+1)./2, [humanLabels{:,3}]./2, 'og'); 
% Plot model predictions as line 
plot(prediction, '‐g'); 
axis([0 11 0 1]); 
xlabel('System'); 
ylabel('Coloration'); 
set(gca, 'XTick', [1:10]); 
set(gca, 'XTickLabel', ... 
    {'ref', 'st.', '67cm', '34cm', '17cm', '8cm', '4cm', '2cm', '1cm', 'anch.'}); 

 

  v: latest 



Fig. 66 Median of coloration ratings (points) together with conÖdence
intervals and model prediction (line). The centimeter values describe the

inter-loudspeaker distances for the investigated WFS systems.

To see the prediction results for all listening test data, go to the examples/qoe_coloration

folder. There you will Önd the following functions that you can run, and that will pop up

with a Ögure showing the results at the end:

colorationWfsCircularCenter 
colorationWfsCircularOffcenter 
colorationWfsLinearCenter 
colorationWfsLinearOffcenter 
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Prediction of localisation in spatial
audio systems

Getting the listening test data
Setting up the Binaural Simulator
Estimating the localisation with the Blackboard
Verify the results

As we have seen in the example on Prediction of coloration in spatial audio systems WFS

systems introduce errors at higher frequencies in the synthesized sound Öeld that are

perceivable as coloration compared to a reference sound Öeld, that was the goal of the

synthesis. Those errors do not exist at lower frequencies, which implies that localisation of

the synthesised sound source deviates only slightly from performance in the reference

sound Öeld.

We did a huge set of listening test investigating localisation performance in WFS and NFC-

HOA that are presented in 2013-11-01: Localisation of different source types in sound

Öeld synthesis.

In this example we choose the WFS system with a circular loudspeaker array and three

different number of used loudspeakers synthesising a point source in front of the listener.

The goal is to predict the perceived directions of that synthesised point source with the

Two!Ears model.

Getting the listening test data

The experiment provides directly BRS Öles and a xml-Öle with the settings for the Binaural

simulator. In the following we do an example run for one condition:

humanLabels = readHumanLabels(['experiments/2013‐11‐01_sfs_localisation/', ... 
                               'human_label_localization_wfs_ps_circular.txt']); 
brsFile = humanLabels{8,1}; 

 

If you look at the BRS Öle, you can easily decode the condition:
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>> brsFile 
 
brsFile = 
 
experiments/2013‐11‐01_sfs_localisation/brs/wfs_nls14_X‐0.50_Y0.75_src_ps_xs0.00_ys2.50.wav 

 

This means that we had a WFS system with a circular loudspeaker array consisting of 14

loudspeakers synthesising a point source placed at (0.0, 2.5) m. The listener was placed at

(-0.50, 0.75) m, which means slightly to the left and to the front inside the listening area.

Setting up the Binaural Simulator

Now, we start the Binaural simulator using the provided conÖguration Öle of the

experiment and make some Önal adjustments like setting the length of the noise stimulus

and rotate the head to the front as the localisation results will be relative to the head

orientation:

sim = simulator.SimulatorConvexRoom(['experiments/', ... 
   '2013‐11‐01_sfs_localisation/2013‐11‐01_sfs_localisation.xml']); 
sim.Sources{1}.IRDataset = simulator.DirectionalIR(brsFile); 
sim.LengthOfSimulation = 5; 
sim.rotateHead(0, 'absolute'); 
sim.Init = true; 

 

Estimating the localisation with the
Blackboard

For the actual prediction of the perceived direction we use the DnnLocationKS knowledge

source, limit its upper frequency range to 1400 Hz, and setup the Blackboard system for

localisation without head rotations, see Localisation with and without head rotations for

details:

bbs = BlackboardSystem(0); 
bbs.setRobotConnect(sim); 
bbs.buildFromXml('Blackboard.xml'); 
bbs.run(); 

 

Verify the results
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Now the prediction has Önished and we have to inspect the result and compare it to the

result from the listening test. The prediction is stored inside the Blackboard system and

can be requested with:

>> predictedAzimuths = bbs.blackboard.getData('perceivedAzimuths') 
 
predictedAzimuths = 
 
1x8 struct array with fields:
 
    sndTmIdx 
    data 

 

As the perceivedAzimuths  is a data structure containing the results for every time step of

the block-based processing, we provide a function that evaluates that data and provides us

with an average value over time:

>> predictedAzimuth = evaluateLocalisationResults(predictedAzimuths) 
 
predictedAzimuth = 
 
  ‐14.8087 

 

During the experiment a jitter was applied to the zero degree head orientation of the

binaural synthesis system in order to have a larger spread of possible perceived directions.

This jitter is stored as well in the results of the listening test and has to be added to the

predicted azimuth:

headRotationOffset = humanLabels{8,9}; 
predictedAzimuth = predictedAzimuth + headRotationOffset; 
perceivedAzimuth = humanLabels{8,4}; 

 

After that we can compare the result to the one from the listening test:

>> fprintf(1, ['\nPerceived direction: %.1f deg\n', ... 
               'Predicted direction: %.1f deg\n'], ... 
           perceivedAzimuth, predictedAzimuth); 
 
Perceived direction: ‐14.5 deg 
Predicted direction: ‐16.8 deg 
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If you would like to do this for all listening positions, you can go to the

examples/qoe_localisation  folder and execute the following command:

>> localisationWfsCircularPointSource 

 

This will predict the directions for every listener position and plots the results at the end in

comparison to the listening test results. Figure Fig. 67 shows the result.

Fig. 67 Localisation results and model predictions. The black symbols
indicate the loudspeakers. On every listening position an arrow is

pointing into the direction the listener perceived the corresponding
auditory event.
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