
FP7-ICT-2013-C618075 Two!Ears Project

Deliverable 5.2: Second Intermediate Report
on Hardware/Software Integration

and Robotics Test Bed

WP5 ∗

November 30, 2015

∗ The Two!Ears project (http://www.twoears.eu) has received funding from the European
Union’s Seventh Framework Programme for research, technological development and demon-
stration under grant agreement no 618075.

(http://www.twoears.eu)

Project acronym: Two!Ears
Project full title: Reading the world with Two!Ears

Work package: WP5
Document number: D5.2
Document title: Second Intermediate Report on Hardware/Software Integra-

tion and Robotics Test Bed
Version: 1

Delivery date: 30th November 2015
Actual publication date: 30th November 2015
Dissemination level: Restricted
Nature: Report

Editor: Patrick Danès
Author(s): Sylvain Argentieri, Benjamin Cohen-L’Hyver, Patrick Danès,

Xavier Dollat, Thomas Forgue, Bruno Gas, Matthieu
Herrb, Anthony Mallet, Jérôme Manhès, Antonyo Musabini,
Jonathan Piat, Ariel Podlubne, Bertrand Vandeportaele

Reviewer(s): Dorothea Kolossa, Bruno Gas

Contents

1 Executive Summary 1

2 Introduction 3
2.1 Structure of the report and major achievements 3
2.2 Structure of the report vs Tasks Decomposition 4

3 Reminder on the Robotics Software Architecture and Upgrades 7
3.1 Reminder on the Two!Ears deployment system 7
3.2 General aspects . 9

3.2.1 A component-based software architecture 9
3.2.2 ROS , a software platform for robotics 10
3.2.3 GenoM3 , a tool to develop robotic components 11

3.3 Audio streaming . 13
3.3.1 Updates to the Binaural Audio Stream Server 13
3.3.2 Elements for clients of BASS . 14

3.4 Bridging ROS and MATLAB . 15
3.4.1 Brief assessment of existing solutions 15
3.4.2 The solution developed during Year 1 and its upgrade 16
3.4.3 Comparison between the Robotics System Toolbox and matlab-genomix 18

3.5 Installation and license . 19
3.5.1 Installation . 19
3.5.2 License . 19

4 Hardware and associated low-level software components 21
4.1 Binaural mobile robots . 21

4.1.1 Discard of the PR2 robot . 21
4.1.2 Off-the-shelf ROS stacks for SLAM and navigation 22

A Map building . 24
B Localization and Autonomous Navigation 25

4.1.3 Robot at CNRS : JIDO . 26
A Hardware . 26
B Software: a custom ROS stack for JIDO 27

4.1.4 Forthcoming binaural robot at UPMC 28
4.1.5 Condition for an omnidirectional head 28

iii

Contents

4.2 Incorporation of the visual modality on the KEMAR HATS 31
4.2.1 Image acquisition by a stereo camera 31

A Active vs passive image sensors 31
B Hardware . 32

B-1 Cameras . 32
B-2 Hardware synchronization 32
B-3 Lenses . 33
B-4 3D-printed glasses 34

C Low-level software . 35
C-1 Associated ROS software 35
C-2 Calibration . 35

4.2.2 Visual functions . 36
A Visual functions on people 36
B Visual functions on objects 38

B-1 Modeling . 39
B-2 Detection . 40

5 Components for audio and audio-motor functions 43
5.1 Bringing the Auditory Front-End into the ROS architecture 43

5.1.1 C/C++ implementation of the AFE algorithmic core 44
A Automatic C/C++ code generation under MATLAB . . 44
B Third-party audio processing libraries 45

5.1.2 C/C++ implementation of concurrency between processors 46
A Overview . 46
B Formal design . 46
C GenoM3/ROS implementation 50

5.1.3 A proof of concept . 51
5.2 Active audio-motor and information-based localization 52

5.2.1 Reminder . 52
5.2.2 Implementation . 53
5.2.3 Experiments . 55

6 Ingredients for a Binaural Robots Challenge 59
6.1 Robots, Environment and Rendering tools 60

6.1.1 The selected robots and their associated software 60
6.1.2 The small-scale environment . 60
6.1.3 The real time motion capture system and the 3D rendering on MORSE 61

6.2 Binaural spherical heads based on MEMS microphones 63
6.2.1 Low-cost solution for audio acquisition from MEMS microphones . 63
6.2.2 Integration in the ROS architecture 66

iv

Contents

7 Appendix 69
7.1 Two!Ears online documentation on the robotic architecture 69

List of Acronyms 93

Bibliography 95

v

1 Executive Summary

The computational framework of auditory perception and experience designed in Two!Ears
is implemented as a development software system primarily based on MATLAB. The
evaluation of the Two!Ears model for different scenarios implies a deployment system,
consisting in the interface of the development system with a robot. Work package WP5
is in charge of all the necessary ingredients to this deployment. To assess the active and
exploratory features of the computational model and its ability to handle multimodality,
robot platforms endowed with adequate mobility and multimodal sensor input must be
designed. Each of them must be accompanied by a comprehensive real time software
architecture, entailing a modular low “functional” layer, where components run concur-
rently under severe time and communication constraints, and a high “cognitive” layer,
where decisional processes take place. All the functional modules must be systematically
submitted to extensive tests.

This deliverable documents the progress made during Year 2 towards the deployment of
two robotics test beds, each one entailing the mounting on a differential wheeled robot of
the KEMAR head-and-torso simulator endowed with a controllable neck degree-of-freedom
and an anthropomorphic stereoscopic visual sensor. One of these is complete, up to the
delivery of the sensor lenses, and thus provides translational degrees-of-freedom for long-
range navigation as well as multimodality. The companion real time software architecture
has reached a mature, stable state, and is comprehensive enough to target ambitious
experiments transverse to all work packages. Its prominent elements are described, namely:
an improved, self-sufficient, MATLAB bridge to connect the functional layer with multiple
MATLAB cognitive processes; custom integrations of the low-level functions for locomotion
and sensor handling under standard interfaces, so as to enable a transparent interchange
of the robot; off-the-shelf widely used software for simultaneous localization and mapping
(SLAM) and planned/reactive navigation; components for audio and visual streaming
(including slight improvements w.r.t. Year 1); more involved sensory/sensorimotor functions
for multiple people detection/tracking, learning/detection/segmentation of objects, sound
source audio-motor binaural localization (azimuth & range) and binaural audio based
sensorimotor feedback control. The deployment of the functional layer has followed the
following rules, layed during Year 1: the selection of the celebrated ROS middleware; the
use of off-the-shelf ROS-compliant software iff it is suitable and has been successfully
tested by the robotics community; the design of components specific to the project by
means of the model-driven middleware-independent GenoM3 framework, for an improved

1

1 Executive Summary

robustness, sustainability, and code reusability. All the described implementations have
remained compliant with virtual simulations on MORSE .

Subsets of the real time software architecture have been successfully ported to TurtleBot
robots used in the “robotics challenge” during the Two!Ears Summer School in September
2015. This deliverable also reports low-cost, MEMS microphone based, spherical binaural
heads with system-on-chip acquisition and streaming, which were specifically designed and
deployed for this event.

Last, a proof of concept has been set up, for the transcoding of the Auditory Front End
(developed in WP2 for MATLAB based low-level audio processing) into a GenoM3/ROS
functional module with improved tasks concurrency. This work will be continued during
the first half of Year 3.

2

2 Introduction

The main objective of WP5 is to integrate the whole set of modules from WPs 2–4
into a physical test bed enabling the global evaluation of the Two!Ears computational
framework against the two applications constituting WP6. This implies the development of
three test beds: an anthropomorphic binaural head-and-torso simulator (HATS) endowed
with an azimuth degree-of-freedom on its neck; this same system complemented with
stereovision; the mounting of the binaural head of this HATS on a mobile robot so as
to offer translation degrees-of-freedom and enable long-range motions. A comprehensive
software modular architecture comes with this hardware. Its lower “functional” layer
is composed of components which run concurrently under severe time constraints and
communicate by control or data flow in real time. Via a specific bridge, it is connected with
the “cognitive” layer realized in the development system. Therein, decisional processes
take place, which handle symbolic data and are less subject to time-critical constraints.
Extensive “atomic” evaluations of all developed parts must be conducted so as to ensure
their satisfactory behavior when case studies are addressed through the whole, integrated,
deployment system.

2.1 Structure of the report and major achievements

WP5 is split into three tasks. However, for easier readability, the manuscript is not
organized along these. Rather, it is organized along the main achievements, starting from
hardware and going to software.

Chapter 3 reminds fundamental elements of the robotics software architecture. Gen-
eral considerations are first reviewed on how to bridge the gap between the Two!Ears
conceptual model and the functional and cognitive layer of the real time software architec-
ture supporting the deployed test beds. Elements of ROS and GenoM3 are also included
so as to make the report self-contained. Then, recent upgrades to this software architecture
are described. These consist in a minor upgrade to the binaural audio stream server, and
a fully redesigned, ergonomic and optimized GenoM3/ROS-MATLAB bridge, which can
constitute a valuable open-source alternative to very recent proprietary ROS-MATLAB
solutions.

3

2 Introduction

Chapter 4 reports the work conducted on hardware. The mounting on the differential
wheeled robot “Jido” (CNRS) of the motorized KEMAR head-and-torso simulator (HATS)
is first explained. A similar test bed will shortly be available at UPMC . The chapter follows
by the incorporation of an anthropomorphic stereoscopic visual sensor on this HATS. To
ease the reading, companion components of the software functional layer are also
described. These address issues such as: low-level locomotion, teleoperation and sensor
handling; simultaneous localization and mapping (SLAM), path planning, localization
and trajectory execution with reactive obstacle avoidance; visual data streaming, multiple
people detection and tracking, as well as visual based learning, detection and segmentation
of objects.

Chapter 5 describes specific components of the functional layer for audio and
audio-motor functions. First, insights are reported to the transcoding of the Auditory
Front End (AFE, developed in WP2 for MATLAB based low-level audio processing)
into a GenoM3/ROS component with improved tasks concurrency. This will constitute
the last part to be integrated in the deployment system. Then, audio-motor binaural
azimuth & range localization, as well as binaural audio based sensorimotor feedback are
presented, along their theoretical developments reported in Deliverable 4.2@month24.
Their implementations are outlined, together with experiments on the Two!Ears test
bed.

Last, Chapter 6 sketches the ingredients that have been specifically developed for
the “robotics challenge” of the Two!Ears Summer School organized at CNRS in
September 2015.

Appendix 7 concludes the manuscript.

2.2 Structure of the report vs Tasks Decomposition

The first task of WP5, Task 5.1 — Test bed: Robot platform and integrated au-
dio/audiovisual sensors was supposed to address the following items.

Design and deployment of an anthropomorphic binaural head mounted on a pan-tilt
unit and installed on a PR2 mobile robot This subtask has been completed with
changes. Instead of mounting a head on a pan-tilt unit, the neck of the KEMAR
head-and-torso simulator (HATS) has been endowed with a controllable azimuthal
degree-of-freedom, as explained in Deliverable 5.1@month12. In addition, due to
severe dependability problems on the two PR2 owned by CNRS , distinct differential
wheeled robots were selected instead at CNRS and UPMC , so as to carry the whole
HATS. This is argued and explained in Chapter 4.

4

2.2 Structure of the report vs Tasks Decomposition

Equipment of this binaural head with a stereoscopic pair of cameras This subtask
will be completed as soon as missing lenses are delivered to CNRS . Importantly, all
the software part is functional. Tests could be performed because CNRS has been
using similar micro-cameras for several months (but with fish-eye lenses, which are
not suited two the needs of Two!Ears).

Data acquisition and processing, to compute high-quality low-level audio or visual
cues Several versions of a binaural audio stream server have been designed, so that
a very good level of efficiency, versatility and ease-of-use has been reached. As
for vision, in addition to a generic component proposed in Year 1 for acquisition,
calibration, data streaming and point cloud computation from stereoscopic sensors,
an off-the-shelf component has also be used. Indeed, though less versatile, is is better
suited to the selected microcameras.

“System-on-a-programmable-chip” based integrated audio/audiovisual sensor No
specific need of such an integrated sensor has been identified for the Two!Ears
test beds. Nevertheless, a ROS-compliant system-on-chip prototype of a binaural
audio acquisition and streaming system for MEMS microphones has been designed
and manufactured into five copies for the needs of the Two!Ears Summer School on
Active Machine Hearing.

Less capable but more transportable HATS-based system The initially planned “wheel-
chair”-type platform as a back-up to the test beds of CNRS and UPMC was finally
not needed, due to the successful deployment of an alternative system at CNRS
and the design of an additional system at UPMC , both fully compatible with the
Two!Ears software. So, this subtask has been removed, with no consequence on
the project.

The end of Task 5.1 has been slightly delayed as UPMC will receive its Two!Ears robot
by December 2015.

The second task of WP5, Task 5.2 — Software architecture of the Two!Ears
framework addresses the design of a modular software architecture underlying the
implementation of the Two!Ears computational framework, on the basis of a “functional”
(low) and “decisional/cognitive” (high) layer, with adequates bridges in between. A
working full software architecture was expected at Year 2, which includes main functional
and cognitive modules. This task has been completed. Within the functional layer,
remaining work will be limited to the transcoding of the MATLAB based Auditory Front
End developed in WP2 into a single GenoM3/ROS component for task concurrency and
guaranteed computation time. Importantly, though this transcoding is planned to be ended
by the first semester of Year 3, ambitious experiments transverse to all work packages can
already be envisaged. Their pace may just have to be slowered in order to allow some
time-consuming low-level computations.

5

2 Introduction

Last, extensive tests have been conducted, along the requirements of Task 5.3 — Mod-
ular tests and evaluations, so that the current state of the deployment system can be
deemed robust and sustainable. As aforementioned, the subsets of the real time software
architecture needed for the Two!Ears Summer School “robotics challenge” have been
successfully ported to TurtleBot robots.

6

3 Reminder on the Robotics Software
Architecture and Upgrades

This chapter first recalls essential aspects of the Two!Ears Robotics Software Architecture,
so as to make the Deliverable self-contained. Then, we briefly describe important upgrades
brought during Year 2. Further detailed information can be found in the Two!Ears
documentation, partly included in Appendix 7.1.

3.1 Reminder on the Two!Ears deployment system

The Two!Ears computational framework of auditory perception and experience entails
low-level audio processing (developed in WP2), high-level feature extraction and reasoning
(WP3), and includes various sorts of feedbacks (WP4). The development system, primarily
implemented in MATLAB, enables the testing of these elements on simulated data,
e.g., generated in WP1. The work package WP5 is in charge of the synthesis of a deployment
system enabling the testing of concepts and algorithms against real-life scenarios defined in
WP6 and in connection with WP1. This deployment system is based on robotics test beds
endowed with mobility and multimodality. It is grounded in a comprehensive real time
software architecture, built on the top of their instrumentation and of the encapsulation of
their basic capabilities into standard interfaces. From a robotics viewpoint, this architecture
involves two layers:

• The functional layer is composed of components which can run concurrently under
severe time and communication constraints. These are in charge of sensorimotor
functions, such as locomotion, proprioceptive or exteroceptive data acquisition and
processing, obstacle avoidance, reactive navigation, localization, or even Simultaneous
Localization and Mapping (SLAM). As many components are in interaction with
the environment, several local perception-action or perception-decision-action loops
take place in this layer. Typical implementation languages are C or C++, on the
top of a dedicated software called middleware.

• Higher in the architecture, the decisional/cognitive layer hosts deliberation primitives
(learning, goal reasoning, task planning, deliberate action/perception and monitoring).
These abilities take place at a more abstract level, under lighter time constraints.

7

3 Reminder on the Robotics Software Architecture and Upgrades

WP5 TWO!EARS MEETING - TOULOUSE - 2015/09/17-18

ROBOTICS SOFTWARE ARCHITECTURE

How to organize into Functional/Cognitive/In-between levels?!

!

!

!

!

!

!

!

Underlying middleware: ROS — Generator of Modules: GenoM3, CNRS!
‣ Model-driven engineering - Decoupling architecture / algorithmic core!
‣ Reusability - Robustness - Sustainability - Middleware independency

Tw
o!

Ea
rs

 m
od

el

7

Visual Modalities dedicated to a Tour-Guide Robot 13

Fig. 18 Hand configurations tracking on a sequence involv-
ing cluttered background when fusing color and shape cues
in the particles likelihood.

where O (resp. C) gathers the indexes of the ROIs corre-
sponding to open (resp. closed) fingers, i = 0 indexes the
palm, and subscripts/superscripts k and ref have been
omitted for compactness reason. Pratically, the smaller
is the color discrepancy between a given ROI and hC

ref

or h¬C
ref (depending on the open fingers of the tested con-

figuration), the higher is its associated probability. The
tracker initialization logically involves skin-blobs detec-
tion.

Evaluations have been performed for this modality.
The state vector becomes Xk = (x′

k, c′
k)′, where the en-

try θk of the continuous part xk = (uk, vk, θk, sk)′ en-
codes the template orientation. The continuous state
components are assumed to evolve according to mutu-
ally independent Gaussian random walk models. The
discrete state entry ck indexes the hand configurations
and evolves according to the predefined transition prob-

abilities p(rk|r(i)
k−1).

Table 3 shows the results of a quantitative compari-
son with or without cues fusion for heavy cluttered back-
ground. It can be noticed that fusing shape and color
seldom leads to a posture misclassification. Figure 18
shows a recognition run for such a scenario.

Shape cue Shape and color cues

N= 100 200 400 100 200 400

61% 83% 83% 94% 94% 94%

0% 0% 0% 100% 100% 100%

8% 30% 17% 75% 80% 83%

41% 43% 43% 70% 96% 96%

100% 100% 100% 100% 100% 94%

1% 0% 7% 95% 95% 96%

0% 0% 0% 85% 97% 97%

Total 13% 18% 19% 89% 93% 94%

Table 3 Average recognition rate per configuration vs par-
ticles number on sequences including cluttered background
with or without multiple cues fusion.

Interaction

Localisation

Se
ns

ing

Motion generation

Environment maps

requests replies

(to PoM)

de
cis

ion
al

lev
el

openPRS Supervision

ha
rd

wa
re

lev
el

fun
cti

on
al

lev
elClone

talking head

LEDS

I See You

PoM

monocular loc
LuckyLoc

on quadrangles

lights control position manager

Camera
camera control PTU control

Pan−Tilt
laser control

Sick

navigation map

topological map

Zone

Aspect

map building &
loc on segments

Segloc NDD
local avoidance

trajectory planer

VSTP

SonO
Sonar Obstacles

detection

RFLEX
odo, servo, sonars
and gyro control

ICU

GEST

Fig. 19 Rackham’s layered software architecture.

8 Integration on Rackham robot

8.1 Outline of the overall software architecture

The above visual functions were embedded on the Rack-
ham robot. To this aim, Rackham is fitted with the
“LAAS” layered software architecture introduced on
Figure 19 and thoroughly presented in [1].

On the top of the hardware (sensors and effectors),
the functional level encapsulates all the robot’s action
and perception capabilities into controllable communi-
cating modules, operating at very strong temporal con-
straints. The executive level activates these modules,
controls the embedded functions, and coordinates the
services depending on the task high-level requirements.
Finally, the upper decision level copes with task plan-
ning and supervision, while remaining reactive to events
from the execution control level.

Passive and active interaction with human beings is
mainly established through the following components:
the dynamic ”obstacles” detectors (Aspect and SonO),
the 3D animated face with speech synthesis, displays
and inputs from the touch screen. The vocal synthesis is
highly enriched by a 3D animated head displayed on the
screen. This talking head, or clone (Figure 2), is devel-
oped by the Institut de la Communication Parlée4. It is
based on a very accurate articulatory 3D model of the
postures of a speaking locutor, and enjoys realistic syn-
thetic rendering thanks to 3D texture projection. From a
given text, the speech synthesizer produces coordinated
voice and facial movements (jaw, teeth, lips, etc.). The
directions of the head and of the eyes can be dynamically
controlled. The clone appears in front of the touch-screen
whenever Rackham speaks, making it more human-like.
Finally, during the guidance mission through the mu-
seum, the robot entertains and informs the public about
the encountered exhibits in documented, educationally
effective ways. More details regarding these modules can
be found in [3].

4 see the URL: www.icp.inpg.fr.

La
ye

rs
 o

f a
 r

ob
ot

ic
s

ar
ch

ite
ct

ur
e

``upper WP3´´ (MATLAB)

audio stream server, visual stream server,
locomotion, SLAM, path planning,
navigation… (C)

``lower WP3´´ (including visual low-level processing)
 
WP2 binaural processing!
 
etc. (MATLAB? C?)

M
AT

LA
B

br
id

ge

Figure 3.1: From the Two!Ears computational model (right) to a real time robotics software
architecture (left).

They are typically implemented under an interpreted language: symbolic reasoning
system, supervisor, etc. Quite uncommonly in comparison with robotics, MATLAB
has been selected in Two!Ears.

Ideally in robotics, a virtual environment simulator is also used, in which virtual platforms
are accessed in exactly the same way as real robots, through similar interfaces. This enables
the testing of decisional/cognitive concepts in fully controlled experimental conditions,
assuming perfect perception and mobility, prior to integrating the comprehensive architec-
ture on the real robots. The generic simulator MORSE (Modular OpenRobots Simulation
Engine)1, which development was initiated at CNRS and is now taken over by a worldwide
team, has been selected, see Chapter 7 of Deliverable D5.1@month12.

In Year 1, it was advocated that functions of the Two!Ears conceptual framework for
robot locomotion, streaming of binaural audio or visual signals, as well as localization,
navigation and SLAM, should come into the functional layer, and that the cognitive
part of WP3 straightly takes place within the deliberative layer. An intermediate set
of abilities can be identified in-between, whose MATLAB implementation can be used
in the short term, but which are planned to be incorporated into the functional layer
in order to tackle meaningful scenarios with maximum responsiveness. These include
the Auditory Front-End (AFE) developed in WP2 for monaural and binaural processing,
and visual low-level processing (e.g., object detection and segmentation, human detection
and tracking). Figure 3.1 outlines how to match the Two!Ears model with a real time

1 https://www.openrobots.org/wiki/morse/.

8

https://www.openrobots.org/wiki/morse/

3.2 General aspects

robotics software architecture. Note that a specific bridge was developed during Year 1
between the upper decisional and lower functional layers, i.e., between MATLAB and the
middleware supporting the functional layer.

This chapter is organized as follows. Section 3.2 recalls the basics of component-based
architectures, as well as the celebrated ROS middleware and GenoM3 framework, which
are the cornerstone of the deployment system. Then, Section 3.3 describes updates to the
streaming of binaural signals. Finally, Section 3.4 details a major upgrade in the interface
between ROS and MATLAB.

3.2 General aspects

3.2.1 A component-based software architecture

In robotics, component-based architectures, where components are concurrent and in-
dependent processes, have become the de facto standard. Each software component is
dedicated to a given task, from low-level control to high-level processing. Components of
the functional layer communicate with each other with the help of a software piece called
the middleware. Two essential concepts are involved:

Data flow refers to the exchange of data between components. Data routing from one
component to another is ensured by the middleware.

Control flow denotes calls to services that components typically provide to modify their
behavior. The availability of a component’s service is also handled by the middleware.

Calls to services can be emitted by any other component of the functional layer—referred
to as a Remote Procedure Call (RPC). They can also be emitted by a piece of software
of the decisional layer (software monitoring the state of the robot, supervisor,. . .) or by
a user by means of a generic interpreter. Figure 3.2 illustrates these concepts on a toy
model.

Component-based software architectures offer great benefits in robotics (Brooks et al.,
2005), addressing typical issues such as modularity (so that the architecture can be
distributed over a network of host machines), re-usability (common components can be
used across robots without having to recode them), scalability, and even formal proofs of
dependability.

9

3 Reminder on the Robotics Software Architecture and Upgrades

− Select a camera,

− Start/Stop the acquisition,

− etc.

− Set parameters (e.g. frame rate), − Set algorithm parameters

− etc.

− Connect to an image flow,

Monitoring system

or Supervisor

in the images

Object detection
DATA FLOW

from a camera

Image acquisition

COMPONENT 1

images objects

positions

RPC

COMPONENT 2

L
A

Y
E

R

D
E

S
C

IS
O

N
A

L

CONTROL FLOW

L
A

Y
E

R

F
U

N
C

T
IO

N
A

L

Figure 3.2: A simple component-based architecture to perform object detection in images. Two
components are involved: one acquires images from a camera and streams them; the other runs an
object detection algorithm. The data flow from the first component to the second one is shown in
blue. Both components provide services that the decisional layer can call, shown in red. A Remote
Procedure Call (RPC) is also illustrated here by a dashed red arrow.

3.2.2 ROS , a software platform for robotics

ROS (Robot Operating System) is a widely known software platform in robotics. It not only
provides a middleware, but also implements a wide range of commonly-used functionalities
into software components (such as localisation, mapping, path planning, obstacle avoidance,
etc.), with a build system and a packaging system for easy compilation and installation. As
claimed by the growing ROS community, ROS was built from the ground up to encourage
collaborative robotics software development. This makes ROS a common choice as a
robotic software platform, as it is for Two!Ears.

ROS embraces the principles of component-based software architectures, allowing con-
current and distributed computation, software reuse and rapid testing. The main ROS
terminology is summarized here:

Nodes Software components using ROS middleware are called ROS nodes.

Topics and messages Data flows are called topics. A node that outputs data publishes on
a topic. A node that inputs data subscribes to a topic. The data elements flowing on
topics are called messages. Each message is made of various data fields forming part

10

3.2 General aspects

of a data structure called message type. As a given topic only carries one message
type, the term topic type is equally used.

Services and actions Nodes can provide services to control them. A service may take
input parameters at its invocation, and may return output parameters upon its
completion. Services that take a long time to execute (e.g, image acquisition) are
rather defined as actions, which provide feedback mechanisms during their execution.

Software in ROS is organized in packages. A package can contain ROS nodes, useful
datasets, configuration files, etc. ROS packages are themselves organized into stacks,
which are the primary mechanism in ROS for distributing software. For instance, the
ROS navigation stack contains many packages dedicated to the navigation of a mobile
base in a learnt map of its environment.

The officially supported platform for ROS is GNU/Linux Ubuntu. Different versions of
ROS exist, with compatibility restrictions on Ubuntu versions2. During Year 1, ROS
groovy on Ubuntu 12.04 was used, as it was the configuration of the target PR2 robot
at that time. Now, using the PR2 is no longer considered (cf. Section 4.1.1), and the
target robot runs the latest stable version as of today, i.e., ROS indigo on Ubuntu 14.04
(cf. Section 4.1.3).

3.2.3 GenoM3 , a tool to develop robotic components

The process of developing robotic components can be significantly improved by the mean
of a tool called GenoM3 (Generator of Modules, version 3). As a result of two decades of
research on real time architectures for autonomous systems (Alami et al., 1998)(Mallet et al.,
2010), GenoM3 brings valuable properties to robotic components:

Middleware independence Components developed with GenoM3 are middleware indepen-
dent, i.e., they are not tied to a specific middleware and can be compiled for different
middleware solutions without changing their source code. A clear separation of
concerns between the algorithmic core and the middleware is thus conducted, helping
towards the good design of robotic components.

GenoM3 can create components for the ROS middleware. In this case, the program
built by GenoM3 is a genuine ROS node.

Model-driven design GenoM3 emphasises the clear definition of robotic components by
adopting a model-driven approach. A GenoM3 component is first defined by a
description file, called the dotgen file, with the .gen extension. This file gathers

2 cf. ROS Enhancement Proposal 3: http://www.ros.org/reps/rep-0003.html.

11

http://www.ros.org/reps/rep-0003.html

3 Reminder on the Robotics Software Architecture and Upgrades

in a single place all the definitions related to the component’s interface, needed to
interact with it, specifically:

• its ports in charge of data coming in and out of the component (analog to ROS
topics);

• its services, which are either called functions for small operations which should
be executed and finished almost instantaneously (analog to ROS services), or
activities for operations that need time to perform (analog to ROS actions).

Functions and activities implement the algorithmic core of the component. They
are made of atomic, non preemptable routines called codels (for “code elements”).
A function consists of a single codel, while an activity is defined by a finite state
machine, with one codel per state, running in a task that can be declared periodic or
aperiodic, synchronous or asynchronous. Any activity can be interrupted during state
transitions by any other function or activity, depending on their relative priorities.

On the basis of the model described in the dotgen file, GenoM3 automatically
generates real time code for tasks sequencing, as well as skeletons of codels run
by the services. So, the developer just has to fill them with its algorithms. The
corresponding algorithmic core is written in separate C or C++ source files, possibly
referring to external libraries.

Powerful framework GenoM3 facilitates the development of essential features for robotic
components, such as the definition of finite state automata with an optional clock as
mentioned above, task concurrency and memory sharing between concurrent tasks,
clean interruption mechanisms, and efficient error handling. It results in highly robust,
sustainable, reusable and middleware-independent robotic components. Though
not used in Two!Ears, GenoM3 can also be coupled with formal validation and
verification tools3.

3 BIP/D-Finder for instance, http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.
html.

12

http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html

3.3 Audio streaming

3.3 Audio streaming

3.3.1 Updates to the Binaural Audio Stream Server

The Binaural Audio Stream Server (BASS) is a GenoM3 component in charge of acquiring
binaural audio data from any ALSA4-compliant hardware sound device, and of making it
available to other components of the software architecture.

BASS offers services to parameterize/start/stop the acquisition, and streams the captured
data to an output port. In its capturing state, the sound device periodically delivers
chunks of new data to the BASS component. Their size, commonly given in amount of
frames5, is set before starting the acquisition. BASS then pushes every new chunk on its
port, so that a sliding window of the most recent data is published. For instance, the port
can be configured as a FIFO6-like buffer which contains the last two seconds of acquired
signals.

BASS was introduced in Deliverable D5.1@month12, and is now fully documented in
the online Two!Ears documentation (Section 1.2.1 in Appendix 7.1). The following
minor changes have been brought to Year 1 version, so that the software has reached
a definitive, mature state, fitting the objectives of versatility, performance and ease-of-
use:

• The component offers a new service—named ListDevices—to list the available
ALSA sound cards on standard output. Finding the proper card identity is thus
made easier.

• In order to enable its clients to keep track of the data and detect any frame loss, the
component used to publish on its port an index indicating the number of chunks
streamed since the beginning of the acquisition. This index is now expressed in
number of frames, rather than chunks, which eases data integrity checking by the
clients. The frame index is coded on 64 bits in order to prevent any overflow.

• In addition to the frame index, the possibility of adding accurate time stamping has
also been examined. The ALSA Application Programming Interface (API) provides
this feature for hardware devices that support it. The packaged version of ALSA
on Ubuntu 14.04 (alsa-lib version 1.0.27) allows time stamping with the system’s
boot time as origin. If Epoch time encoding turns out to be needed, for instance for

4 The Advanced Linux Sound Architecture (ALSA) is a part of the Linux kernel, providing drivers for
audio devices.

5 Here, a frame is defined as a pair of left and right samples at a common sampling time.
6 First In, First Out (FIFO).

13

3 Reminder on the Robotics Software Architecture and Upgrades

data synchronisation with other systems, one solution can be to upgrade ALSA to
the last version (alsa-lib version 1.0.29), which includes this type of time stamps.

• The component’s inner terminology has been revisited, including its name. Previously
called the audio stream server , the new name BASS emphasizes its use for binaural
audio capture.

Aside from the genuine Binaural Audio Stream Server , a specific version of the component
was also setup on a Raspberry PI on the occasion of the Two!Ears summer school, so as
to acquire audio signals from MEMS microphones instead of an ALSA-compliant sound
card, see Chapter 6.

3.3.2 Elements for clients of BASS

As recalled above, BASS publishes on its output port a sliding window of the most
recently acquired audio data. A typical client performs block-based processing (as stated
in Section 2.2 of Deliverable D2.2@month12), i.e., it regularly fetches a new block from the
port and processes it, then fetches the next block and so on7. All requested blocks usually
have a fixed size, but this is not mandatory. Each block has a start date and an end date,
that can be clearly defined thanks to the frame index introduced above. When reading
the port to get a new block, the client must ensure two points:

1. Two consecutive blocks must be contiguous, i.e., the start date of a block must just
follow the end date of its predecessor so that no frames are dropped between them.
To achieve this, the client’s fetching period must be at most the duration of one
block. Otherwise, an overrun8 will eventually occur, leading to data loss (e.g., an
overrun will occur if the client requests blocks of 50ms but only reads the port every
70ms).

2. The new block must have the requested size. A single access to the port may not
enable the client to get a full block. This happens if the end date of the requested
block is in the future. So the client must internally save fetched parts until the block
can be fully rebuilt. Naturally, the requirement, discussed in the above item, of no
dropped frames between consecutive blocks also applies between consecutive parts
of a single block.

A generic algorithm was written, allowing a client to fetch a block of a given size, from

7 These blocks are defined at the client level, somewhat independently of the nature of the chunks
delivered by the hardware device.

8 An overrun occurs when the FIFO on the port throws away data that were not received by the client
yet.

14

3.4 Bridging ROS and MATLAB

a given start date. It has been implemented in a sample GenoM3 component named
BASC (Binaural Audio Stream Client), and presented in the Two!Ears documentation
(Section 1.2.2 in Appendix 7.1).

3.4 Bridging ROS and MATLAB

3.4.1 Brief assessment of existing solutions

While being a popular need, the interface of MATLAB and ROS is a complex task that
many projects have tried to take on9. It appears that none of them has gained notable
popularity, mainly due to installation and usability concerns (Corke, 2015). Three main
approaches have emerged:

The MEX approach wraps the ROS C++ API in MEX files. This approach too often
leads to compile-time and runtime errors due to incompatibilities between the versions
of libraries (e.g., boost) and C++ compilers respectively used by ROS and MATLAB.
These can be solved at the cost of rebuilding ROS with the same version of compilers
and libraries used by MATLAB.

The Java approach uses the ROS Java API. This makes use of the possibility to write
Java code in MATLAB. Though this API is not officially supported in ROS , it is
mature enough. This approach leads to a close integration between MATLAB and
ROS , benefiting for instance from automatic conversion of Java data types in the
MATLAB workspace. The resulting solution is also cross-platform.

The bridging approach places a software interface between ROS and MATLAB. In this
approach, MATLAB is not directly interfaced with ROS . This solution provides
more flexibility, and can be easily made cross platform. The communication between
MATLAB and the interface can rely on a protocol such as TCP/IP.

In January 2014, The MathWorksTM provided official ROS support through the ROS
I/O Package. This Java based solution had notable drawbacks, such as the impossibility
to call ROS services10. This is why we decided during Year 1 of the project to design
a custom solution, using tools provided by GenoM3 . This bridging approach is recalled
in Section 3.4.2. In early 2015, The MathWorksTM released the Robotics System Toolbox

9 A ROS wiki page used to list existing solutions (http://wiki.ros.org/groovy/Planning/Matlab),
but is far from being up-to-date. Also, a mailing list was setup for this topic (https://groups.google.
com/forum/#!forum/ros-sig-matlab), but has only little activity.

10 cf. ROS I/O Package Getting Started Guide https://fr.mathworks.com/hardware-support/files/
ros-io-package-getting-started-guide.pdf.

15

http://wiki.ros.org/groovy/Planning/Matlab
https://groups.google.com/forum/#!forum/ros-sig-matlab
https://groups.google.com/forum/#!forum/ros-sig-matlab
https://fr.mathworks.com/hardware-support/files/ros-io-package-getting-started-guide.pdf
https://fr.mathworks.com/hardware-support/files/ros-io-package-getting-started-guide.pdf

3 Reminder on the Robotics Software Architecture and Upgrades

for MATLAB R2015a or later, featuring ROS support. This toolbox, also Java based,
replaces the former ROS I/O Package11, and circumvents most of its drawbacks. From
our side, we improved our approach using GenoM3 tools. Our resulting new bridge and
the Robotics System Toolbox are compared in Section 3.4.3.

3.4.2 The solution developed during Year 1 and its upgrade

Our first solution to bridge ROS and MATLAB was called the genomix matlab bridge.
The principle was to use genomix , a generic server that can receive HTTP GET requests,
for controlling GenoM3 components of the software architecture and reading their data
flows. Compared to a Java based approach, this choice allows to take full advantage from
the model-based design of GenoM3 components, bringing useful information about the
components directly into MATLAB. For instance, MATLAB functions to call/read each
service/port of a component are automatically created and documented according to the
component’s model12. Figure 3.3 shows the interface of MATLAB and ROS components
using genomix , along with other elements introduced further below.

Typically, two outputs are generated during the build of a GenoM3 component, namely,
the component itself and a middleware-independent C client library. This library provides
functions for calling services of the component and reading its ports. genomix implements
an HTTP interface to call functions of any component’s client library. It provides high
genericity through JSON serialization of data structures. The genomix matlab bridge
relied on this interface. HTTP communication was ensured by the Instrument Control
Toolbox13, and JSON serialization used the JSONlab14 open-source toolbox. A MEX based
implementation called matlab-json15 was also tested, but led to no significant performance
increase.

With this solution, only GenoM3 components could be accessed from MATLAB. Handling
standard ROS nodes of the architecture implied the design of a specific GenoM3 client, to
be then accessed via the genomix matlab bridge as any other GenoM3 component. To
overcome this limit, an additional server called rosix was developed during Year 2. rosix
implements the same HTTP interface as genomix. It uses the ROS Python API to call

11 The ROS I/O Package (for MATLAB R2014b or earlier) is no longer available, as
stated by The MathWorksTM in http://www.mathworks.com/matlabcentral/answers/
195837-why-am-i-not-able-to-find-the-ros-i-o-package-previously-available-on-matlab-central.

12 This information, including the name of services, their input and output type and description, comes
directly from the component’s dotgen file.

13 cf. http://www.mathworks.com/products/instrument/.
14 cf. http://iso2mesh.sourceforge.net/jsonlab.
15 cf. https://github.com/christianpanton/matlab-json

16

http://www.mathworks.com/matlabcentral/answers/195837-why-am-i-not-able-to-find-the-ros-i-o-package-previously-available-on-matlab-central
http://www.mathworks.com/matlabcentral/answers/195837-why-am-i-not-able-to-find-the-ros-i-o-package-previously-available-on-matlab-central
http://www.mathworks.com/products/instrument/
http://iso2mesh.sourceforge.net/jsonlab
https://github.com/christianpanton/matlab-json

3.4 Bridging ROS and MATLAB

matlab−genomix

MATLAB

control

data

genomix

HTTP

communication

component

GenoM3/ROS

ROS node

middleware

independent

rosix

Figure 3.3: Use of genomix and rosix to bridge MATLAB and ROS . genomix allows to control
GenoM3 components and read their data flows independently of the middleware, while rosix can
control and read data from any ROS node of the functional layer. matlab-genomix can be a client
of any genomix or rosix server.

services and read data from any ROS node16.

In addition, a new MATLAB client of genomix or rosix was designed, called matlab-
genomix . It replaces the genomix matlab bridge with a better design that fully implements
the HTTP interface, without relying on third-party toolboxes (such as the Instrument
Control Toolbox or JSONlab). HTTP communication and JSON serialization are now
coded in C and wrapped in MEX files. The matlab-genomix client currently runs on
GNU/Linux and Mac OS . In the same way as GenoM3/ROS and native ROS components
can be distributed across several Central Processing Units (CPUs), their clients via matlab-
genomix can consist in one or several instances of MATLAB, running on one or several
CPUs. For Microsoft Windows support, the socket interface will be adapted to use the
Windows Sockets API.

16 Note that GenoM3 components compiled for a ROS architecture are in fact ROS nodes, so they can
also be accessed through rosix like any other node.

17

3 Reminder on the Robotics Software Architecture and Upgrades

A sample use ofmatlab-genomix to access the Binaural Audio Stream Server fromMATLAB
can be found in the Two!Ears documentation (Section 2.1 in Appendix 7.1).

3.4.3 Comparison between the Robotics System Toolbox and matlab-genomix

We conducted a comparison of what we consider to be the two currently prominent solutions
for the integration of ROS features in MATLAB, namely, the matlab-genomix client or the
Robotics System Toolbox . Some prior facts are reported on Table 3.1.

One major difference is that the Robotics System Toolbox considers MATLAB to be a
component of the software architecture, whereas matlab-genomix acts as a supervisor
(cf. Figure 3.2). Indeed, GenoM3 discourages the use of Remote Procedure Calls, to
guarantee that components can be controlled and will not interfere with the system. This
also increases components reusability, as they do not depend on third-party services (Mallet
et al., 2010). As a result of being a supervisor, the matlab-genomix client cannot directly
publish data on a ROS topic. Instead, the supervisor can request one component to
publish some data on a topic, by making a call to a service (the data being passed as a
parameter of the service).

Another notable difference lies in data handling. In the Robotics System Toolbox, strong
data typing enables fast data transfer and computation, but also requires data structures
to be known a priori. As a consequence, custom message types other than standard ROS
messages are not directly supported by the Robotics System Toolbox . A separate interface
must be installed in order to integrate them17. The matlab-genomix client does not have
this issue, as any data structure is encapsulated in a JSON object easily parsed into a
MATLAB structure.

17 The interface is available at http://www.mathworks.com/matlabcentral/fileexchange/
49810-robotics-system-toolbox-interface-for-ros-custom-messages.

18

http://www.mathworks.com/matlabcentral/fileexchange/49810-robotics-system-toolbox-interface-for-ros-custom-messages
http://www.mathworks.com/matlabcentral/fileexchange/49810-robotics-system-toolbox-interface-for-ros-custom-messages

3.5 Installation and license

ROS support from the Robotics System Toolbox ROS and GenoM3 support from matlab-genomix
with genomix and rosix

Proprietary and closed-source, developed by The
MathWorksTM.

Free and open-source, developed by CNRS .

For MATLAB ≥ R2015a. For any MATLAB version.
Works on all operating systems supported by MAT-
LAB.

Microsoft Windows will be supported soon.

Can publish data on ROS topics. MATLAB is
considered to be a component of the software ar-
chitecture.

Cannot publish data directly. MATLAB is seen
as a supervisor.

Message types must be known a priori, custom
messages are only possible through a separate in-
terface.

Highly generic, data structures are de-serialized
from JSON objects.

Strong data typing enables faster data transfer. Data marshalling requires extra processing.
Solution for ROS middleware only. Middleware-independent solution with GenoM3

components.

Table 3.1: Summary of differences between matlab-genomix and the Robotics System Toolbox for
ROS support in MATLAB.

3.5 Installation and license

3.5.1 Installation

The installation process for the needed tools of the robotic software architecture is simple
and detailed in the Two!Ears documentation (Section 1.1.2 in Appendix 7.1):

• ROS is installed following the standard procedure on GNU/Linux Ubuntu.

• GenoM3 , genomix , rosix and matlab-genomix , are installed through the compilation
framework and packaging system robotpkg18.

• GenoM3 components such as BASS are compiled from source (using the Autotools).

3.5.2 License

Most robotic software are released under permissive19, BSD-like licenses. ROS core
packages for instance have the BSD 3-Clause License. In Section 2.3 of Deliverable
D5.1@month12, it was stated that software from Work Package WP5 would be distributed

18 cf. http://robotpkg.openrobots.org/.
19 A permissive license allows software to be redistributed with restricted access to the possibly modified

code.

19

http://robotpkg.openrobots.org/

3 Reminder on the Robotics Software Architecture and Upgrades

under this same license. The BSD 2-Clause License20 has been eventually choosen, because
the third clause does not bring notable benefit.

Selecting a permissive license allows any other software piece to integrate or link to software
from Work Package WP5 with minimal requirements. Other Work Packages can select
a copyleft21 license without any legal issue, as Work Package WP5 will not link to this
software.

20 The license template is available at http://opensource.org/licenses/BSD-2-Clause.
21 A copyleft license requires that redistributed software remains free and open-source, and any modification

or extension made to the software preserves the original rights.

20

http://opensource.org/licenses/BSD-2-Clause

4 Hardware and associated low-level
software components

4.1 Binaural mobile robots

4.1.1 Discard of the PR2 robot

The PR2 was initially selected as the Two!Ears robotics test bed because it is an open,
versatile, and rather widely disseminated platform (CNRS and UPMC respectively own
2+1 units). However, retrospectively, it has appeared to be very fragile. Since 2011,
when CNRS received the first robot, more than forty problems have been reported on
its two platforms. Quite often there have been issues with the caster control boards,
arm control boards, EtherCAT hub, actuators, sensors or batteries. If such events kept
on occuring, this would limit the robots availability and maybe jeopardize the project.
In addition, the ClearPath Inc. support hotline fees, fixing costs and shipping costs are
significant.

Besides, when the temperature in the four-caster pseudoholonomic base gets high, the
associated fan (situated close to the ground) becomes very noisy. This known sporadic event
implied the design of a noise cancelling cover, outlined in Deliverable D5.1. Nevertheless,
the pause of experiments until the fan stops rotating could never be ruled out definitively.
Last, in spite of the dissemination of the PR2 robot advocated in the application and of
the fact that it is in some sense the priviledged ROS-based platform, the question has
remained whether it is really the right test bed for Two!Ears. Its mechanical structure is
very involved, and its arms are useless to demonstrate the project goals. The mounting of
the KEMAR head on the PR2 head is possible only if it is separated from the torso, what
significantly breaks human-like binaural perception. These points were briefly discussed
during Year 1 review.

Consequently, the PR2 has been discarded. It will be replaced by two robots introduced
below, namely a working platform at CNRS and a platform to be shortly available at
UPMC . Importantly, these test beds have similar kinematics, up to size: both of them
are non-holonomic, with two driving wheels, and will carry a KEMAR Head And Torso
Simulator (HATS). Although their low-level locomotion software differ from each other,

21

4 Hardware and associated low-level software components

their encapsulation into ROS nodes will result in a standard interface, so that both can
be accessed in exactly the same way from all the other functional modules and from
the cognitive level of the software real time architecture. This genericity will ensure a
smooth sharing of software between CNRS and UPMC during Year 3, and will enable
reproducible research inside and outside the consortium. The wide variety of sensors (laser,
vision, 3D,. . .) that can be used for ROS off-the-shelf Simultaneous Localization and
Mapping (SLAM) and navigation components even provides some degrees-of-freedom in
the equipment of the two platforms.

4.1.2 Off-the-shelf ROS stacks for SLAM and navigation

The nature and scenarios of Two!Ears imply that the robot can move around safely
and autonomously. It must be able to localize itself in the environment and navigate
between any set of location (x, y, θ) coordinates. This implies the planning of a reference
path in free space, complying with the robot’s kinematic contraints, as well as its reflexive
execution while avoiding unexpected or moving obstacles (people, etc.). Such algorithms
are now state-of-the-art, so that we used the off-the-shelf ROS navigation stack1, which
gathers some popular achievements. This set of packages takes as input the odometry,
laser data, and a goal pose, and outputs velocity commands sent to the robot mobile
base.

For the ROS navigation stack to work properly, the changes of frames describing the impor-
tant aspects of the geometry of the robot must be described in the Unified Robot Description
Format (URDF)2, which is published by the ROS node robot_state_publisher3 as a tree
in the TF4 format. This implies the identification of the locations (position and attitude)
with respect to the robot’s base frame of the laser rangefinders.

The ROS navigation stack can be broken into three main packages:

• amcl is the odometry and laser based localization algorithm;

• map_server provides a node that broadcasts map data on the ROS topic called
/map;

• move_base includes a global planner to compute an admissible path between two
locations, and a real time, reflexive, execution of such a path which includes the

1 http://wiki.ros.org/navigation
2 http://wiki.ros.org/urdf
3 http://wiki.ros.org/robot_state_publisher
4 ROS package that maintains the relationship between coordinate frames in a tree structure buffered in

time, and lets the user transform points, vectors, etc between any two coordinate frames at any desired
point in time.

22

http://wiki.ros.org/navigation
http://wiki.ros.org/urdf
http://wiki.ros.org/robot_state_publisher

4.1 Binaural mobile robots

detection of unexpected obstacles as well as local motion strategies to avoid them.

Figure 4.1 shows these components running on the robotic platform from CNRS , pre-
sented later in Section 4.1.3. Among the running components, one can see the /amcl,
/map_server, /move_base_node and /robot_state_publisher nodes.

Figure 4.1: Interaction between components during a navigation session. This sample graph was
obtained on the robotic platform from CNRS . ROS nodes and topics are respectively represented
by ellipses and boxes. Bigger boxes that surround nodes and topics are namespaces that gather
closely related resources.

Two costmaps5 are used to store information about the world. One is meant for global
planning, by creating long-range plans over the entire environment, and the other is used
for local motion and obstacle avoidance. Therefore, four groups of parameters need to be
configured.

• Common costmap parameters include parameters to set the thresholds on obstacle
information (e.g. range) and on the area (named footprint) of the robot.

• Global costmap parameters include the coordinate frame the global costmap runs
in, the reference frame of the base of the robot used by the global costmap and the
update frequency of the costmap.

• Local costmap parameters include the coordinate frame the local costmap runs in,
the reference frame of the base of the robot used by the local costmap, as well as

5 A costmap is a 2D map that maintains information about where the robot can navigate in the form of
an occupancy grid.

23

4 Hardware and associated low-level software components

the size (width and height in meters) and resolution (meters/cell) of the costmap
grid (each cell of this costmap being associated with an occupancy probability of an
obstacle).

• The motion parameters include the admissible maximum velocity of the mobile base
and the tolerances to reach the goal given a plan and a costmap.

A Map building

Once all aforementioned parameters have been well tuned, a map of the environment can
be built. A popular SLAM algorithm is implemented in the off-the-shelf ROS package
called gmapping6 included in a ROS stack dedicated to SLAM. It is a ROS wrapper for
OpenSlam’s Gmapping7. It relies on a Rao-Blackwellized particle filter assimilating laser
and odometer measurements and combining them with the movement of the robot (Grisetti
et al., 2007).

Once gmapping is launched, the robot must be driven around the environment, e.g., with
the help of the joystick. The consequent map can be viewed in real time on the 3D
visualization tool for ROS named rviz8, as shown in Figure 4.2. Once the user is satisfied
with the generated map, by checking in rviz that the area where the robot must navigate
has been entirely mapped and all the static obstacles (e.g., tables, chairs,. . .) have been
detected, he/she stores it in a file for further use by the localization and navigation
algorithms.

gmapping requires to finely tune some parameters (out of a total of 36), such as the
maximum range of the laser sensor, the dynamic noise of the prior motion model, the
number of beams to skip in each scan to reduce computation time, the number of particles
and the resolution of the map (meters per grid). Some of these parameters depend on
the size of the environment. For example, the resolution of the map plays a key role
when the robot has to plan a path going through a door. If it is too coarse, both sides
of the door may be mapped too close to each other, leaving no room for the robot to
go through. The admissible maximum velocity has to be reduced as well in a small
environment so as to prevent the robot from hitting a wall or having to recalculate a
trajectory in case of overshooting, i.e., when it undergoes a turn and cannot follow a given
path.

6 http://wiki.ros.org/gmapping
7 http://openslam.org/gmapping.html
8 http://wiki.ros.org/rviz

24

http://wiki.ros.org/gmapping
http://openslam.org/gmapping.html
http://wiki.ros.org/rviz

4.1 Binaural mobile robots

Figure 4.2: Side view of the map in rviz.

B Localization and Autonomous Navigation

The off-the-shelf amcl9 (for Adaptive Monte Carlo Localization) ROS package considers
a robot moving in a 2D environment which map has been built with gmapping. It
implements a stochastic estimation of the pose of the robot into this map by means of a
particle filter, on the basis of the time record of odometer and laser measurements. Three
categories of parameters are entailed in the configuration of amcl: overall filter (minimum
and maximum allowed number of particles,. . .), laser model (minimum and maximum
scan range to be considered,. . .) and odometry model (differential vs omnidirectional,
etc.)

The ROS navigation stack executes the following steps to safely navigate to a given
location, i.e., to a (x, y, θ) coordinate tuple expressed in the world frame. First, the
robot is localized in the environment map. If necessary, it executes a “recovery behavior”,
i.e., a 360◦ rotation around the vertical axis, to fulfill its localization. Then, the global
planner computes the admissible shortest path from the current location to the goal. A
trajectory controller ensures that the computed path is followed. It also runs a laser based
obstacle detection algorithm. If a detection occurs, then it brings local changes to the
trajectory planned by the global planner. In case of failure, the robot can even move
backwards.

The rviz graphical visualization interface allows the user to define a goal in an intuitive
way. Internally, it publishes such a tuple on a specific ROS topic from the ROS navigation
stack called move_base/goal. For the Two!Ears project, the goal situations of the robot

9 http://wiki.ros.org/amcl

25

http://wiki.ros.org/amcl

4 Hardware and associated low-level software components

must be often defined at the MATLAB level. Therefore, a GenoM3 component, named
sendPosition, has been coded, which provides the user with the possibility to control the
robot either in absolute mode (i.e., with respect to the world frame) or in relative mode
(i.e., with respect to its current location). In the first case, the coordinates (x, y, θ)absolute
entered by the client are just published on the aforementioned ROS topic. If the robot is
controlled in relative mode, then its current location (x, y, θ)current is combined with the
relative goal (x, y, θ)relative in order to deduce its desired absolute location (x, y, θ)absolute
along the following equations:

 xabs
yabs
θabs

 =

 xcur
ycur
θcur

 +

cos θcur − sin θcur 0
sin θcur cos θcur 0

0 0 −1

×
 xrel
yrel
θrel

 (4.1)

4.1.3 Robot at CNRS : JIDO

A Hardware

The currently fully functional robot, named JIDO, is based on a MP-700 mobile platform
from Neobotix10. This non-holonomic differential wheeled robot11 was part of the CNRS
fleet, but had not been used for some years. It has three caster wheels, two in the
front and one in the back to improve horizontal stability. Its maximum payload of
300 kg allows the mounting of the KEMAR HATS on top of it, as shown on Figure 4.3.

The driving motors and their relative encoders are connected to an Harmonica controller12

similar to the one used for the motor of the neck of the HATS. As slipping is reduced
and the encoder’s resolution is high, the robot odometry is fairly accurate. JIDO is also
equipped with two SICK LMS200 laser range finders13, one in the front and one in the
back.

To fit the needs of Two!Ears, JIDO has been remanufactured. The important upgrades
are as follows.

• The power distribution board was changed, and the batteries status was checked.

10 http://www.neobotix-robots.com/mobile-robot-mp-700.html
11 A differential wheeled robot is a mobile robot whose locomotion is based on two separately driven

wheels placed on either side of its body.
12 http://www.elmomc.com/products/harmonica-main.htm
13 http://sicktoolbox.sourceforge.net/docs/sick-lms-technical-description.pdf

26

http://www.neobotix-robots.com/mobile-robot-mp-700.html
http://www.elmomc.com/products/harmonica-main.htm
http://sicktoolbox.sourceforge.net/docs/sick-lms-technical-description.pdf

4.1 Binaural mobile robots

Figure 4.3: KEMAR HATS on JIDO. Figure 4.4: Re-wiring of JIDO.

• The robot was totally re-wired, with new power converters, cables, connectors, etc.
(Figure 4.4).

• The three caster wheels were replaced.

• A mechanical adaptater was designed and installed, so as to carry the KEMAR
HATS (Figure 4.3).

• A new fanless computer was inserted, featuring an Intel® CoreTM i7 CPU E610
2.53GHz processor and 4GB of RAM. Two Control Area Network (CAN) bus
interfaces were added, so as to connect sensors and actuators.

B Software: a custom ROS stack for JIDO

As the whole Two!Ears deployment system uses ROS , the base computer on JIDO
runs ROS indigo on GNU/Linux Ubuntu 14.04, and a ROS stack named jido_ros was
developed for low-level functions specific to this platform. Packages from the jido_ros
stack comply with the standard interface of the ROS navigation stack for odometry,
laser data, navigation goals and velocity commands. This allows clients to control the
platform in a highly generic way. The packages constituting the jido_ros stack are listed
below.

jido_description includes an XML representation of the robot’s model in the Unified
Robot Description Format (URDF).

27

4 Hardware and associated low-level software components

jloco provides a node to drive the wheels. It reads velocity commands from a ROS topic,
and publishes the robot odometry on another one.

jido_base is the main package of the jido_ros stack, providing launch files to quickly bring
the base in an operational state. These files launch nodes provided by other packages
either from jido_ros or standard ROS stacks. Notably, they load the drivers for the
laser rangefinders.

jido_teleop provides a node that receives inputs from a joystick and turns them into
velocity commands. It publishes the commands on the topic subscribed by the
/jloco node, letting the joystick control the motion of the base.

jido_2dnav handles navigation by executing functions of the off-the-shelf ROS navigation
stack described in Section 4.1.2.

Figure 4.1 introduced earlier shows components involved in a navigation session of
JIDO. Among them, one can notice the /jloco node that drives the wheels of the
robot, and the /jido/sensors/laser_front_driver node in charge of streaming laser
data.

4.1.4 Forthcoming binaural robot at UPMC

In parallel to the development of JIDO at CNRS , UPMC purchased (on its own funds)
a new non-holonomic differential wheeled robot dedicated to the Two!Ears project.
Its mobile base is endowed with batteries, an embedded computing unit and sensing
capabilities (proprioception, laser rangefinder) for autonomous navigation. It can move
with a maximum linear speed of about 1m/s, and a rotational speed of 0.5 rad/s. It
will carry the KEMAR HATS of UPMC , equipped with the neck motorization system.
Similarly to JIDO, all the hardware needed to control the neck rotation, the sound
acquisition, the microphone conditioning, etc. will be embedded on this platform. Like
many other recent commercial robots, the low-level software will be implemented on ROS ,
so that many standard ROS packages (for navigation, SLAM, etc.) can be used on the
top of it. The robot, shown on Figure 4.5, is expected to be shipped at the beginning of
December 2015. It will then be shortly made available to the consortium for experiments.

4.1.5 Condition for an omnidirectional head

The two mobile robots presented in Sections 4.1.3 and 4.1.4 are non-holonomic differential
wheeled bases with two degrees of freedom. For any one of these mobile bases, the non-
holonomic constraint imposes a zero linear velocity along the axis of the wheels, i.e., a

28

4.1 Binaural mobile robots

Figure 4.5: 3D preview of the robot which will be available at UPMC in December 2015.

zero velocity along the normal to the trajectory. We thus define vbase, the linear velocity
tangent to the trajectory (i.e., perpendicular to the axis of the wheels), and ωbase, the
angular velocity around the vertical axis.

The KEMAR HATS is mounted on top of the base. In Year 1, a system made of a motor,
an encoder and a micro-controller was designed and set up inside the torso to control
the rotation of the neck. Associated software for its position and velocity control was
encapsulated in a dedicated GenoM3 component. This endows the overall system with an
additional degree of freedom. The angular velocity of the head with respect to the base
and torso is noted ωhead.

Some applications, such as the active localization further exposed in Section 5.2, require
to express the velocity vector of the KEMAR head in its own frame (H,xH , yH , zH),
cf. Figure 4.6. We define vy, the linear velocity of the head along the inter-aural axis, vz,
its linear velocity towards the boresight direction, and ωx, its angular velocity around the

29

4 Hardware and associated low-level software components

D

q

xB

yB

zB

B

yH

H

H
Hx

z

W
xW

yW

Wz

Figure 4.6: Top view of the robot. The base and the head appear in blue. W , B, H despict
the world, the base and the head respectively. Points B and H are defined here in a common
horizontal plane, with D the distance between them.

vertical axis. These are velocities relative to the world but expressed in the head frame14.
An omnidirectional control of the head (vy, vz, ωx) implies a joint motion of the mobile
base and the KEMAR neck, through the three control inputs vbase, ωbase, ωhead. In some
sense, the head is driven, and the base follows so as to carry it. Classical computations
lead to (Cadenat, 1999):vy

vz

ωx

 =

− sin q D cos q 0
cos q D sin q 0

0 −1 −1


︸ ︷︷ ︸

J(q)

 vbase

ωbase

ωhead

 , (4.2)

where q is the angle of the head with respect to the torso, and D is the distance from the
midpoint of the wheels to the rotation axis of the head, cf. Figure 4.6. The determinant of

14 As a first approximation, the rotation axis of the head is assumed vertical and included in the
midperpendicular plane of the wheels. An accurate identification of the transform between the base
frame and the head frame will be refined shortly, but the principle remains the same.

30

4.2 Incorporation of the visual modality on the KEMAR HATS

J(q) is D, what gives a necessary and sufficient condition for the head omnidirectionality:
D 6= 0, i.e., the head rotation vertical axis must not pass through the midpoint of the
wheels.

Equation 4.2 allows to compute the theoretical velocity commands (vbase, ωbase, ωhead)
leading to any targeted head velocity (vy, vz, ωx). However, in practice, some limits
exist. In particular, the rotation of the head is constrained by left and right hardware
stops, required to endow the neck with a human-like rotation and to avoid harms on the
microphone cables. So, the resulting saturation on ωhead must be taken into account when
piloting the head.

Note that the locations (position and attitude) with respect to the robot’s base frame of the
KEMAR torso and head (as a function of the neck azimuth degree-of-freedom) are incorpo-
rated in the Unified Robot Description Format (URDF) mentioned above.

4.2 Incorporation of the visual modality on the KEMAR HATS

This section describes the final design and current state of implementation of a visual
system on the KEMAR HATS, and associated software. We decided to endow our HATSs
with anthropomorphic stereoscopic vision in a non-intrusive way, by fixing cameras on
3D-printed glasses. In addition, visual functions on people and objects have also been
implemented (Section 4.2.2).

4.2.1 Image acquisition by a stereo camera

A Active vs passive image sensors

Image sensors can fall into two main categories. Active image sensors have recourse to a
modulated light source and observe the reflected light, while passive image sensors observe
light regardless of its source.

On the one hand, when the aim is to recover geometric information about the scene, the
accuracy and repeatability of passive systems are sensitive to many parameters. First,
such systems have to be well calibrated. Second, for stereoscopic systems, textured images
taken under good lighting conditions are necessary for an accurate triangulation. On the
other hand, active systems such as Kinect-like 3D sensors are known to be more robust as
they generate controlled lighting and do not need particular texture in the scene. They
also require less complex software.

Some promising 3D point clouds based algorithms were tested on data generated by means

31

4 Hardware and associated low-level software components

of 3D sensors, see Section 4.2.2. Nevertheless, the incorporation of vision on the KEMAR
head has been selected to be in an anthropomorphic configuration. Therefore, point clouds
will be generated by a stereoscopic sensor, described below.

B Hardware

B-1 Cameras The cameras chosen for the stereo vision system are the UI-3241LE-C-
HQ µeye cameras15 from IDS (Figures 4.7 and 4.8), with a USB 3.0 interface. They
are endowed with a 1.3 megapixel, 1/1.8” CMOS sensor, with a 1280 x 1024 resolution.
They provide the option of selecting either a rolling shutter (for extremely low-noise,
high-contrast images) or a global shutter (for capturing moving objects). The optical size
is 6.784mm x 5.427mm and the pixel size is 5.3µm. Their size is 36.0×36.3×20.2mm
(H×W×L) and their mass is 12 g.

Figure 4.7: Front side of the µeye camera
UI-3241LE-C-HQ.

Figure 4.8: Back side of the µeye camera
UI-3241LE-C-HQ.

The manufacturer provides an API along with the drivers. It contains a vast number of
functions to access all the parameters and functions of the µeye camera16, as well as its
configuration.

B-2 Hardware synchronization By default, the µeye camera runs in freerun mode. In
this mode, the camera triggers itself at the frequency set by the user. For accurate 3D
reconstruction by stereovision, images have to be synchronized, which requires to run

15 https://en.ids-imaging.com/store/ui-3241le.html
16 https://en.ids-imaging.com/manuals/uEye_SDK/EN/uEye_Manual/index.html?c_programmierung.

html

32

https://en.ids-imaging.com/store/ui-3241le.html
https://en.ids-imaging.com/manuals/uEye_SDK/EN/uEye_Manual/index.html?c_programmierung.html
https://en.ids-imaging.com/manuals/uEye_SDK/EN/uEye_Manual/index.html?c_programmierung.html

4.2 Incorporation of the visual modality on the KEMAR HATS

the cameras in external trigger mode. In this mode, cameras are triggered by a periodic
external signal.

Each camera is endowed with eight accessible pins for hardware synchronization (Figure 4.9).
One camera, termed as the master, can deliver the trigger signal to both itself and the
other camera, termed as the slave. The trigger signal is usually sent through the flash
output. On the selected camera models, a General-Purpose Input/Output (GPIO) can be
used instead, with a Pulse Width Modulation (PWM) signal generated within the master
camera and routed to both cameras, as shown in Figure 4.10. This setting is preferred
over the flash output signal, providing a highly accurate number of frames per seconds
determined by the frequency of the PWM.

Figure 4.9: µeye camera UI-3241LE-C-HQ pinout.

Figure 4.10: Connections to use GPIOs and PWM for external trigger.

B-3 Lenses The lenses for the cameras will be either the Lensagon B16020S1217 or the
Lensagon BSM12016S1218. The first reason to select them is the size, mount type and
resolution of the µeye camera’s sensor. The second reason concerns the focal length, which
has been chosen to get a reduced field of view that corresponds to a high angular precision,
as each pixel corresponds to a little angle in the scene. This is to obtain 3D accuracy after
triangulation.

17 http://www.lensation.de/en/shop/detail/6-s-mount-m12x05-lenses/flypage/
30-lensagon-b16020s12.html?sef=hcfp

18 http://www.lensation.de/en/shop/detail/7-megapixel/flypage/149-lensagon-bsm12016s12.
html?sef=hcfp

33

http://www.lensation.de/en/shop/detail/6-s-mount-m12x05-lenses/flypage/30-lensagon-b16020s12.html?sef=hcfp
http://www.lensation.de/en/shop/detail/6-s-mount-m12x05-lenses/flypage/30-lensagon-b16020s12.html?sef=hcfp
http://www.lensation.de/en/shop/detail/7-megapixel/flypage/149-lensagon-bsm12016s12.html?sef=hcfp
http://www.lensation.de/en/shop/detail/7-megapixel/flypage/149-lensagon-bsm12016s12.html?sef=hcfp

4 Hardware and associated low-level software components

The main characteristics of the lenses are shown on Tables 4.1 and 4.2.

Image Format 1/2 inch
Mount Type S-Mount (M12x0.5)
Focal Length 16mm

Back Focal Length 12.3mm
Aperture (F) 2

M.O.D. 0.2 m
Angle of View (diag.) 27.8◦

IR correction No
Weight 4.2 g

Table 4.1: Technical data of the B16020S12
lens.

Image Format 1/2 inch
Mount Type S-Mount (M12x0.5)
Megapixel 1 MP

Focal Length 12mm
Back Focal Length 6.54mm

Aperture (F) 1.6
M.O.D. 0.2 m

Angle of View (diag.) 38.6◦

Angle of View (horiz.) 31◦

Angle of View (vert.) 23◦

IR correction Yes
Weight 6 g

Table 4.2: Technical data of the BSM12016S12
lens.

At the moment of writing this deliverable, the lenses have not arrived yet at CNRS . Tests
leading to the final selection will be displayed on http://homepages.laas.fr/danes/
TWOEARS/VisionOnKemar/.

B-4 3D-printed glasses A pair of glasses was designed so as to perfectly fit on the
KEMAR face at the level of the eyes, and to incorporate the pair of the aforementioned
micro-cameras with their wires and connectors. The 3D design, based on the KEMAR
CAD model, is displayed on Figure 4.11. The final product, manufactured at CNRS , is
shown on Figure 4.12.

Each camera has four mounting holes on the corners, as shown in Figures 4.7 and 4.8.
The 3D-printed glasses are endowed with matching screw threads, defining the cameras
final positions.

This provides a strong and steady structure to mount the cameras in a human-like manner,
as decided within the Two!Ears consortium, with an enlarged baseline (≈ 10 cm) for
an improved stereovision performance. The influence of this visual sensor on the genuine
Head Related Transfer Functions (HRTFs) will be evaluated.

34

http://homepages.laas.fr/danes/TWOEARS/VisionOnKemar/
http://homepages.laas.fr/danes/TWOEARS/VisionOnKemar/

4.2 Incorporation of the visual modality on the KEMAR HATS

Figure 4.11: 3D design of glasses for the KE-
MAR.

Figure 4.12: 3D printed glasses on the KE-
MAR.

C Low-level software

C-1 Associated ROS software To integrate the software for the µeye camera to the
Two!Ears architecture, the ROS open-source ueye19 package has been used. It provides a
driver node for IDS µeye camera. The acquisition setting in this ROS node uses the flash
output for master and the trigger input for slave. Therefore, slight changes were brought to
synchronize cameras using the GPIO rather than the flash output. As soon as images from
master and slave are retrieved by the ROS ueye package, they are associated with the same
time stamp (current ROS time) and then published on a ROS topic.

C-2 Calibration The stereo_image_proc20 ROS package is used to calibrate a pair of
cameras mounted in stereoscopic configuration. It uses the camera drivers to acquire
images, and stream them to the vision processing nodes. It also performs rectification21 of
raw stereoscopic images. Disparities and point clouds are obtained and published as well.
A diagram can be seen in Figure 4.13.

The calibration is based on the basic OpenCV 22 camera calibration algorithm23, which uses
the so-called pinhole camera model. In this model, a scene view is formed by projecting
3D points into the image plane using a perspective transformation.

19 http://wiki.ros.org/ueye
20 http://wiki.ros.org/stereo_image_proc
21 Stereo image rectification projects images onto a common image plane in such a way that the corre-

sponding points have the same row coordinates
22 http://opencv.org/
23 http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.

html

35

http://wiki.ros.org/ueye
http://wiki.ros.org/stereo_image_proc
http://opencv.org/
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

4 Hardware and associated low-level software components

Figure 4.13: Inputs and outputs of the ROS node stereo_image_proc

The intrinsic and extrinsic camera parameters are obtained by moving an object with
a known geometry and easily detectable feature points, as displayed in Figure 4.14, so
that the camera can capture it from different views, as shown in Figure 4.15. Such object
is called a calibration pattern. OpenCV has a built-in support for a chessboard-like
calibration pattern.

Figure 4.14: Detectable feature points during calibration

4.2.2 Visual functions

A Visual functions on people

The implementation for detection and tracking of humans is based on the open source
“Online Multi-Person Tracking by Tracker Hirarchy” algorithm24. It is based on “Tracking-
by-detection”, which is a commonly used paradigm for multi-person tracking. A classifier
is used to detect candidate instances of pedestrians in the current video frame. The

24 http://cs-people.bu.edu/jmzhang/tracker_hierarchy/Tracker_Hierarchy.htm

36

http://cs-people.bu.edu/jmzhang/tracker_hierarchy/Tracker_Hierarchy.htm

4.2 Incorporation of the visual modality on the KEMAR HATS

Figure 4.15: Different views of the calibration pattern

resulting detections are linked together, frame-to-frame, to reconstruct the trajectories of
pedestrians across time. Generally, the classifier can be trained offline or adapted via an
online retraining mechanism and it does not require calibration information (Zhang et al.,
2012). In our implementation this is done online.

This algorithm has been encapsulated into a GenoM3 component with one activity for
human detection. As the algorithm requires several parameters which can be set by the
user, the activity takes them as input. They are described below.

• frameRate: The sequence frame rate in frames per second.

• temporalSlidingWindowSize: The size of the temporal sliding window (number of
frames) for some statistic estimations. The higher it is, the longer it takes to initialize
and terminate trackers.

• detectorFrameRatio: The frame rescaling ratio for the detector.

• maxTrackNumber: The maximum number of tracks in the sequence.

• maxTemplateSize: The maximum template size for the tracker. Recommended value:
10 or lower to save computation.

• expertThreshold: The minimum template size for an expert tracker. This parameter
should be lower than maxTemplateSize.

• detectionRescalingFactor: The rescaling factor for the detection boundingbox.

• trackRescalingFactor: The rescaling factor for the track boundingbox.

The period of this activity is defined as 1/FPS, where FPS is the frequency of the PWM

37

4 Hardware and associated low-level software components

used to trigger the cameras. Tests showed that at 30 FPS, no frames are dropped
and a successful synchronization is achieved. Therefore, every time a new pair of
frames is available on the corresponding ROS topic, it is read by this GenoM3 com-
ponent.

Then, one frame at a time is passed as a parameter for the detection and tracking function
to obtain 2D coordinates of the detected people. With this information, it is possible
to obtain 3D coordinates by following a triangulation with the 2D coordinates obtained
from the master and slave frames. After this, they are published in a ROS topic to be
retrieved in MATLAB. An example of detection and tracking is shown in Figure 4.16.

Figure 4.16: People detected and tracked in one image frame.

B Visual functions on objects

Linemod is a multi-modal object detection algorithm. It is implemented in the OpenCV
library. As such, it relies on various modalities, in particular color gradients and surface
normals computed from a RGB-D point cloud (Figures 4.17 and 4.18). Therefore, all the
concepts displayed above about calibration are applied here too, as one of the outputs
from the calibration shown there is in fact a point cloud.

The linemod approach has been developed to detect known textureless objects in cluttered
scenes. It uses a template matching approach for object detection. An initial learning step
consists in acquiring RGB-D point clouds of the object from various viewpoints. They are
called templates and their union is named the object model. For each viewpoint, features
(color gradients and surface normals) are extracted from the point cloud and saved as a
template. The new templates are added to a database of templates.

38

4.2 Incorporation of the visual modality on the KEMAR HATS

Figure 4.17: Example of an RGB-D point cloud.

Figure 4.18: Features extracted from a point cloud.

At detection time, the templates are matched against the incoming point cloud with a
multi scale sliding window approach.

Figure 4.19: Template matched with incoming point cloud.

B-1 Modeling A ROS package was developed to build the models of the objects to be
detected. It takes a point cloud as argument. It segments the biggest visible plane and

39

4 Hardware and associated low-level software components

removes it from the point cloud. Anything more than 1m above the plane is removed.
Points closer than 30cm or further than 2m are also removed. What is left is just the
object.

rqt_reconfigure25 is a ROS Graphical User Interface (GUI) which allows the user to set the
parameters of a ROS node online. In this case, it is used to limit the area of the field of
view of the camera from where the object will be modeled. This is shown on Figures 4.20
and 4.21. In the first figure, the setup is shown. The object to be modeled can be seen, in

Figure 4.20: Modeling scenario. Figure 4.21: Bounding box around the de-
tected object.

this case a computer’s loudspeaker. It sits on top of a flat surface which is centered on a
turntable. In the second one, the result of the limited area is shown, as well as a bounding
box around the point cloud being segmented and modeled.

A fast processing requires a light model. Conversely, a model must also include as
many different views of the object as possible for an accurate detection. One strategy
to get a light and good model is to use various camera heights with respect to the
object.

Even though Figure 4.20 shows the modeling process with the Xtion 3D sensor from
Asus26, the approach remains based on point clouds. Consequently, it can be applied in
the same manner with a stereovision system.

B-2 Detection A ROS package has also been developed to perform the detection of
modeled objects. It takes as arguments a point cloud and the list of all the models that

25 http://wiki.ros.org/rqt_reconfigure
26 https://www.asus.com/3D-Sensor/Xtion_PRO

40

http://wiki.ros.org/rqt_reconfigure
https://www.asus.com/3D-Sensor/Xtion_PRO

4.2 Incorporation of the visual modality on the KEMAR HATS

have been modeled as described above. It outputs two 3D points in the sensor frame
which delimit a bounding box around the detected object. The position of the object in
the world frame is obtained based on these two values. Note that the axes of the above
bounding box are parallel to the sensor frame, so that no orientation of the object can be
extracted. Figure 4.22 shows several objects on a table. The ones that were previously
modeled are detected and tracked.

Figure 4.22: Two modelled objectes detected.

41

5 Components for audio and audio-motor
functions

5.1 Bringing the Auditory Front-End into the ROS architecture

Many aspects of the Two!Ears architecture are implemented in MATLAB. This is
especially the case for the higher, cognitive level, taking decisions based on the descriptors
extracted from the raw binaural signals. On the other hand, robotic components (such
as locomotion, audio acquisition and streaming) are part of the functional level of the
architecture, see Chapter 3. As such, all these operations must be performed in real
time to provide a robust and reactive system, able to face dynamic acoustic conditions.
Consequently, such a functional level is rooted on ROS .

The Auditory Front-End (AFE) is placed in-between. It is in charge of turning the
monaural/binaural input signals—originating from the functional layer—into auditory
cues and higher level features exploited by the decisional layer. For now, a MATLAB
implementation of the AFE is entailed in the Two!Ears development system. Its modu-
lar, object-oriented, design allows great flexibility. It provides bottom-up, signal-driven,
processors, together with a manager object to instantiate and route them, see Deliver-
able 2.2@month12. Top-down feedback is also supported, e.g., by enabling on-the-fly
changes in the values of the processor parameters. However, the AFE has not been
implemented with real time constraints in mind: no concurrency is available between
processors, and guaranteed computation time can hardly be satisfied when extracting a
lot of features. Its use in experiments involving reflexive behaviors (emergency routines,
obstacle avoidance, audio-motor functions, sensorimotor feedback, etc.) would thus imply
to dramatically reduce the pace of the scenarios, at the possible expense of making them
unrealistic. To target realistic search and rescue scenarios with maximum reactivity, the
Two!Ears deployment system thus requires an implementation of the AFE right at the
functional layer, supported by the ROS middleware.

43

5 Components for audio and audio-motor functions

5.1.1 C/C++ implementation of the AFE algorithmic core

To make the AFE processors exchange data with each other through shared memory
rather than by time-consuming TCP/IP communication, we have decided to implement
the AFE as a single ROS node. Various ways to produce the underlying algorithmic core
into C/C++ code are investigated in the following.

A Automatic C/C++ code generation under MATLAB

A first way to implement the algorithmic core of the AFE ROS node is to automatically
generate C/C++ code from the original MATLAB implementation. MATLAB can
perform such a task thanks to the MATLAB Coder toolbox1. This generates readable
source code which can then be compiled to form libraries or executable files. Importantly,
the resulting C/C++ code can also be straightly called from within MATLAB through
MEX files, what results in faster execution time. For instance, the C transcoding of
the ild processor from the original AFE toolbox leads to a shortening of the MATLAB
execution time by a factor of 5. Nevertheless multiple limitations make this solution
unworkable.

• The generated code is not optimized. One line of MATLAB code is generally replaced
by one line of C/C++ code coupled with dozens of files including type description,
while code refactoring could basically lead to far more efficient C/C++ coding.

• The generated code is not easily maintainable. The code generation system intro-
duces some new, non-standard data types, which are dedicated to a MATLAB use.
These data types are not well-documented and seem redundant with standard data
representation originating from the C/C++ standard libraries.

• Some specific functions provided by MATLAB toolboxes cannot be straightly trans-
lated into C/C++ code. These functions rely on closed-source MATLAB libraries
which must be linked with the object file obtained with the C/C++ code. The
resulting software cannot then be entirely open-source, since the automatically
generated code must be linked against proprietary MATLAB libraries.

For all these reasons, this automatic C/C++ code generation from MATLAB has been
discarded. Consequently, we decided to recode a specific AFE in C/C++ from scratch,
but keeping highly inspired by the structure of the genuine MATLAB implementation.
Interestingly, a lot of open source C/C++ APIs dedicated to audio processing already
exist in the literature, which can ease the implementation of basic processing algorithms.

1 http://fr.mathworks.com/products/matlab-coder/.

44

http://fr.mathworks.com/products/matlab-coder/

5.1 Bringing the Auditory Front-End into the ROS architecture

Some are listed below.

B Third-party audio processing libraries

The cornerstone of the proposed C/C++ implementation of the AFE is the C++ Standard
Template Library (STL)2, which is designed to exploit templates and handle generic
types. This library is recognized by the Internal Organization for Standardization, and
provides a set of common C++ classes implementing vectors, maps, lists, complex data,
etc. Audio signal buffers can be coded by using the circular buffer implementation of the
BOOST library3. Among other features, BOOST provides smart pointers to instantiate
C++ objects, which are very useful to prevent memory leak problems. In addition, the
GNU Scientific Library (GSL)4 provides a wide range of mathematical routines, like Fast
Fourier Transform (FFT) computations based on the Fortan FFTPACK library. FFT
computations can also be provided by the FFTW library5, which is actually used inside
MATLAB fft and ifft functions.

All the above libraries are devoted to generic mathematical or coding considerations.
The following ones are more specific to audio processing. The JUCE library6 provides a
wide-range of C++ classes for building rich cross-platform applications. While it can be
used for other purposes than audio processing, it provides a large set of functionalities
dedicated to audio, like the audio graph, which is very similar to the manager object in the
MATLAB implementation of the AFE. Though very promising, the JUCE library mostly
proposes single-threaded implementations, what prevents tasks concurrency. In the same
vein, the Audio Processing Framework (APF)7 is a collection of C++ code for multichannel
audio applications. Originally developed by URO and TUB, this library proposes bi-quad
and cascade filters design, convolution algorithms, multiple input/multiple output audio
processors, etc.

For now, all those libraries have been selected since they provide data representations,
filters and algorithms which are suited to the re-encoding of the genuine MATLAB AFE.
The original MATLAB implementation of the AFE and some libraries cited here (GSL,
FFTW , JUCE , APF) are released under the copyleft GNU General Public License. So,
the same license is given to the GenoM3/ROS AFE component.

2 https://www.sgi.com/tech/stl/index.html.
3 http://www.boost.org/doc/libs/1_59_0/.
4 http://www.gnu.org/software/gsl/.
5 http://www.fftw.org/.
6 http://www.juce.com/.
7 http://audioprocessingframework.github.io.

45

https://www.sgi.com/tech/stl/index.html
http://www.boost.org/doc/libs/1_59_0/
http://www.gnu.org/software/gsl/
http://www.fftw.org/
http://www.juce.com/
http://audioprocessingframework.github.io

5 Components for audio and audio-motor functions

5.1.2 C/C++ implementation of concurrency between processors

A Overview

A C/C++ version of the AFE requires a clear definition of how a processor can connect to
other processors, how processors can be executed concurrently to optimize computational
cost, etc. The AFE structure comes as a tree of processors, an instance of which is shown in
Figure 5.1. A processor whose output is routed to another processor’s input is henceforth
called parent while the second one is called child. A processor can have multiple children,
and multiple parents as well8. Only the root processors, i.e., those which have no parents,
can read ports of other components of the robotics architecture. From this structure, two
kinds of concurrency between processors can be highlighted.

Vertical concurrency While a processor works on a resource delivered by its parent, the
parent can already prepare the next resource. This kind of concurrency is outlined
in red in Figure 5.1.

Horizontal concurrency Children of a processor are mutually independent and can process
concurrently their parent’s output. This kind of concurrency is outlined in blue in
Figure 5.1.

B Formal design

A processor takes an input resource from its parent and produces an output resource to
its children. Each child could make its own local copy of the output resource, but this
would lead to high memory needs in a tree that involves many children of a processor.
Instead, we propose that children of a same parent share read access to a single memory
zone, managed by the parent. In addition, the parent processor owns a private memory
zone for its internal computation. With this memory management plan, each processor
can be formalized by a state machine, as shown in Figure 5.2. A processor goes through
four distinct states, in a loop:

Ready The processor is ready to read a new input resource, coming from its parent.

Process As soon as its parent releases the resource, the processor performs its computation.
It reads the input resource from its parent’s shared memory zone, and stores the
result of the computation—its output resource—in its own private memory zone.

8 If one processor has multiple parents, then the structure of the AFE is not a tree, but an oriented
graph. In this case, the only constraint is that the graph, oriented from parent(s) to child(ren), has no
cycle.

46

5.1 Bringing the Auditory Front-End into the ROS architecture

WP5 TWO!EARS MEETING - TOULOUSE - 2015/09/17-18

Reminder!

• Structure of the AFE: TREE OF « PROCESSORS"!

• A running processor!
‣ takes an input signal from a unique parent!
‣ produces an output signal for 0 or more child/ren!
!
!
!
!
!
!
!

!

• Concurrent processing can be applied to the structure

30

BIG ISSUE: “INTERMEDIATE LEVEL” (WP2�WP5)

Figure 5.1: Tree of processors. Each processor is represented as a box, which can be connected
to one other. In this tree, innerhaircell is the child of gammatone, and gammatone is then
the parent of innerhaircell. A processor can have multiple children (see the innerhaircell
processor) and multiple parents (not illustrated here).

Wait The processor stays in a waiting state while its children are still processing the
previous output resource it has released. Children lock the processor’s shared memory
zone.

Release Once all children are done processing the previous output resource, the processor
can release the new one: it copies the content of its private memory zone to its
shared memory zone.

Ready Wait

Processor’s memory

Process

Private Shared

Release

Figure 5.2: State machine and memory management of a processor

On this basis, the two aforementioned kinds of concurrency work as follows.

47

5 Components for audio and audio-motor functions

Vertical concurrency Figure 5.3 illustrates vertical concurrency through adequate syn-
chronization between processors. processor 2, whose state machine appears in the middle,
has one parent on its left and one child on its right. In this Petri net, interaction between
the processors is outlined in red by several synchronization states:

1. While in Ready state, processor 2 needs a token issued after the Release state of
its parent—processor 1—in order to fire the transition to the Process state.

2. While in Wait state, processor 2 needs a token issued after the Process state of its
child—processor 3—in order to fire the transition to the Release state.

In view of the sample tree in Figure 5.1, this case could be applied for instance to the
time, gammatone and innerhaircell processors.

Ready

Process

Wait

Release

processor 1 processor 2 processor 3

Figure 5.3: Petri net for a serial chain of three processors (vertical concurrency). processor 1
is a parent of processor 2, itself parent of processor 3. Tokens are displayed here in the initial
marking position.

48

5.1 Bringing the Auditory Front-End into the ROS architecture

Horizontal concurrency Figure 5.4 illustrates horizontal concurrency using the same
synchronization mechanisms:

1. When the parent processor—on the left—leaves its Release state, it issues individual
tokens allowing each child—on the right—to fire the transition from Ready to Process
state.

2. Once a child leaves its Process state, it issues one token. The parent processor needs
as many tokens as it has children (two, here) to fire the transition from Wait to
Release state.

This case could be applied to an innerhaircell parent processor with two different ild
child processors.

Ready

Process

Wait

Release

Parent

Child 1

Child 2

2

Figure 5.4: Petri net for a parallel chain of two processors (horizontal concurrency). Tokens are
displayed here in the initial marking position.

49

5 Components for audio and audio-motor functions

C GenoM3/ROS implementation

In the MATLAB implementation of the AFE, all processors run in sequence in a single
thread. So, any processor must wait until all other instantiated processors have ended
up their local processing before it can move on with its next block of data. Contrarily,
GenoM3/ROS enables concurrent processing. In view of the many concurrency and
synchronization properties that must occur within the ROS node implementing the AFE,
the common approach would be to use a dedicated library to handle these aspects, such
as POSIX Threads. Nevertheless, we decided as a first step to resort to GenoM3 as it
brings invaluable benefits for rapid prototyping, thanks to the synthetic description of the
component in its dotgen file and the automatic generation of real time code for the used
middleware (Section 3.2.3). Three of them are recalled below.

Task concurrency Each activity of a GenoM3 component is associated to a task in charge
of its progress. The concurrency of multiple tasks entailed in a component is included
in the automatically generated real time code, and is transparent to the user. For
the ROS middleware, this is implemented as the concurrent execution of one thread
per task.

We propose an architecture in which the processors are distributed on independent
tasks, i.e., independent threads when using GenoM3/ROS . Depending on the number
of cores, the host machine can either perform parallel processing or task switching
to run these threads concurrently.

Specification of an activity as a state machine An activity is specified as a standard finite
state automaton, which can include the sequence of states composing its nominal
behavior and the transitions relating them, as well as degenerated situations (in-
terruptions, failures, etc.). Changes to this design are effortless as they imply no
additional programming.

As it appeared previously, vertical and horizontal concurrency can easily be formalized
with state machines. Thus we propose to take advantage of the definition of GenoM3
activities as finite state automata for a straightforward implementation of the design
exposed in Section B.

Memory sharing between concurrent tasks A GenoM3 component can contain an Internal
Data Structure (IDS), defined in its dotgen file. Data in the IDS are shared between
tasks of the component. Concurrent access to this memory area is safely handled by
the automatically generated code.

By nature, vertical and horizontal concurrency reveal the need of synchronization
signals between processors. The best way to synchronize state-machines of different

50

5.1 Bringing the Auditory Front-End into the ROS architecture

processors is by using locks and semaphores9. As aforementioned, these thread
control mechanisms can be handled by a library such as POSIX Threads. In order
to have a quick and lightweight prototype, we rather attempted an active polling
approach. A set of flags is defined in the IDS of the GenoM3/ROS AFE component,
by which parents notify their children that a new resource is available, and children
notify their parents that they are ready to read a new resource. In Ready and Wait
states, processors periodically check a flag and, when it reaches an adequate value,
enable the transition to the next state.

The resulting version of the GenoM3/ROS AFE component is closely integrated with the
state machines which specify the activities of the component. A second ongoing version
will include modern thread communication systems through a dedicated API which will
define all the communications between processors in a normalized and generic way. But
whatever the approach to implement threads control, the architecture, state machines, etc.
will remain the same.

5.1.3 A proof of concept

In order to demonstrate the effectiveness of the model, a Proof of Concept (PoC) has
been written. It implements the state machine previously exposed. It is described in
a dotgen file, which is then used to generate the skeleton of the GenoM3/ROS AFE
component. This node is then connected to the Binaural Audio Stream Server . Only
one kind of processor is used in this PoC: a basic Butterworth filter, whose parameters
can be freely chosen. Its implementation relies on the C/C++ libraries mentioned in
Section 5.1.1-B. The PoC relies on the active pooling method for concurrency, with all
processors verifying every 100ms the state of the synchronization flags. In short, the PoC
is able to:

• choose the origin of the incoming audio chunk, between a real acquisition device
(RME Babyface endowed with two microphones as inputs), or simulated data;

• add/modify processors from the process tree: processors can be added at any time to
the process tree and connected to any already existing processor; multiple processors
can be connected to the same output (i.e. to the same parent) without any problem;
the parameters of the processors (in the PoC, the filters parameters) can be changed
at any time too;

• plot and listen to the signals in MATLAB: all the information present into the buffer

9 A lock will ensure that only one single thread has access to a resource at the same time, while semaphores
are kind of switches which can deactivate a thread until it should run. Importantly, a deactivated
thread then consumes zero CPU cycle when waiting for new resources.

51

5 Components for audio and audio-motor functions

of any processor can be plotted and listened to directly from the graphical interface.

A screen capture of the PoC GUI is shown in Figure 5.5. A video presenting its functioning
is available at the URL https://goo.gl/djRuuW.

4.8 The final architecture for end 2016

processor. He can plot the data and listen it too.

All those functions can be controlled from the graphical control program seen in the right
side of the figure 4.7.

Figure 4.7: The Proof of Concept. Left Side : Terminals. 1st terminal : The audio source simulator.
2nd terminal the openAFE software which prints the names of processors. 3th terminal : Binaural
Audio Stream Server. Right Side : The graphical control program

A bigger screen capture of the GUI application is available in appendix B.1.

4.8 The final architecture for end 2016

The proposed API should be finished by end 2016. The final version should be able to process
all the possible demands of the experts and the active looping method should be replaced by
semaphores.

The other partners should be able to use this novel API instead of the Matlab version, without
any modification on theirs works.

29

Figure 5.5: The ROS AFE Proof of Concept (PoC). Left Side : Terminals. 1st terminal: The
audio source simulator. 2nd terminal: the ROS AFE node software printing the names of processors
every time their task is run. 3th terminal: Binaural Audio Stream Server . Right Side: the PoC
GUI.

5.2 Active audio-motor and information-based localization

5.2.1 Reminder

A three-stage framework to active binaural localization is described in Section 2.8 of
Deliverable 4.2@month24 (Bustamante et al., 2015). As it is situated at the sensorimotor
level of the Two!Ears model, it takes place within the functional layer of the software
architecture, and has thus led to the integration of a GenoM3/ROS component. The

52

https://goo.gl/djRuuW

5.2 Active audio-motor and information-based localization

aim is to jointly process and/or interweave binaural sensing and motor commands of the
KEMAR head so as to localize one source in the horizontal plane, by disambiguating front
from back and recovering its range.

The overall framework is reminded on Figure 5.6. Stage A implements the maximum
likelihood estimation of the source azimuth and the information-theoretic detection of
its activity from the short-term channel-time-frequency decomposition of the binaural
stream (Portello et al., 2013)(Portello et al., 2014a). Stage B assimilates these azimuths
over time and combines them with the motor commands into a stochastic filter, leading
to the posterior probability density function (pdf) of the head-to-source relative situa-
tion (Portello et al., 2012)(Portello et al., 2014b). Stage C provides a feedback controller,
which, on the basis of the output from Stage B, can move the head so as to improve
the quality of the localization, i.e., of the output from Stage B (Bustamante et al.,
submitted).

5.2.2 Implementation

The binauloc GenoM3/ROS component has been developed from a working MATLAB
code and successfully tested offline. Its data flow connections with other components
of the functional layer are sketched on Figure 5.7. binauloc takes as input the audio
stream from the Binaural Audio Stream Server (BASS) and the motor flow from the
modules in charge of the displacement of the kemar head and the locomotion of the
mobile base. It processes all these data, following the Stage A and Stage B algorithms,
so as to compute a Gaussian mixture approximation of the posterior probability density
function (pdf) of the head-to-source relative situation (azimuth & range). The weights,
posterior means and posterior covariances involved in this approximation are published on
a port. Another component has been written to display the result of the localization on

Figure 5.6: Three-stage framework to active binaural localization

53

5 Components for audio and audio-motor functions

the screen from these parameters. It plots the 99%-probability confidence ellipses of the
hypotheses constituting the posterior pdf, with a color expressing their weights. binauloc
also publishes the velocities to be applied on the left and right wheels of the robot and
on the neck of the KEMAR HATS so as to improve the localization, as per Stage C. As
the feedback control problem is stated into the frame related to the KEMAR head, these
velocities are obtained from (4.2), which explains the incorporation of the angular position
from the head.

component

Display

Head rotation

control

Base

Locomotion

Binaural Audio

Stream Server

command

audio data

angular position

of the head

velocity

angularcommand

angular velocity

linear and

Posterior pdf

for Active Localization

binauloc component

Figure 5.7: The binauloc GenoM3/ROS component for active binaural localization and its
interaction with other modules of the functional layer.

Some technical details are as follows. Stage A takes as input a 1 second sliding window of
the binaural audio stream. It outputs a pseudo-likelihood of the source azimuth every 58ms.
Stage B runs at approximately 6Hz. The update stage of the underlying stochastic filter
entails an approximation of the azimuth pseudo-likelihood produced by Stage A by an
unnormalized Gaussian mixture. The variances of the hypotheses of this mixture and the
noise statistics of the prior dynamic model have been empirically tuned so as to ensure
reproducible and slightly conservative conclusions.

54

5.2 Active audio-motor and information-based localization

5.2.3 Experiments

Figures 5.8–5.11 show snapshots of live experiments, where the sound source is a white
noise signal filtered by a bandpass filter of [1000Hz, 2000Hz] bandwidth. The corre-
sponding information measure at the end of each sequence is reported on Figure 2.28 of
Deliverable 4.2@month24. Videos are available at http://homepages.laas.fr/danes/
ICASSP2016/.

55

http://homepages.laas.fr/danes/ICASSP2016/
http://homepages.laas.fr/danes/ICASSP2016/

5 Components for audio and audio-motor functions

Figure 5.8: Visualization of the posterior head-to-source pdf for an open-loop rectilinear transla-
tion motion of the head. The uncertainty is reduced, but front and back cannot be disambiguated.

Figure 5.9: Visualization of the posterior head-to-source pdf for an open-loop rotation motion of
the head. Front-back ambiguity is removed but range cannot be recovered.

56

5.2 Active audio-motor and information-based localization

Figure 5.10: Visualization of the posterior head-to-source pdf for an open-loop circular motion.
The localization is improved.

Figure 5.11: Visualization of the posterior head-to-source pdf when the head motion is delivered
by the sensorimotor feedback of Stage C. This strategy outperforms the above three other ones.

57

6 Ingredients for a Binaural Robots
Challenge

From September 21st to September 25th 2015, the Two!Ears consortium organized a Sum-
mer School on Active Machine Hearing, see its http://twoears2015.sciencesconf.org
website and the pictures of the event in https://www.flickr.com/photos/twoearsproject/.
It took place at LAAS-CNRS, Toulouse, France. Its first part was dedicated to theoretical
lectures, with programming exercices in-between in order to put theory into practice.
A special feature was the introduction of a “robotics challenge”. The delegates were
put into teams, each of which was provided a similar small (80cm-tall) binaural mobile
robot. After getting increasingly familiar with the middleware and with basic functional
modules (locomotion, navigation, audio streaming, etc.), they had to integrate during two
half days some functions studied during the theoretical part of the training. The aim
was to enable the robot to perform a list of milestones composing some active auditory
functions.

CNRS was in charge of the local organization of this Summer School. With regard to the
robotics challenge, this included:

• renting five commercial robots, their equipment with adequate ROS stacks, the
design and manufacturing of a small-scale environment, and the development of a
real time motion capture and 3D rendering on the MORSE simulator;

• the design and manufacturing of spherical binaural heads based on Micro Electrome-
chanical Systems (MEMS) microphones; their mounting on the robots;

• the adaptation of the Binaural Audio Stream Server (BASS) to the MEMS technology
together with (and thanks to) its integration on a system-on-chip architecture.

This chapter summarizes these achievements, which were made possible thanks to the
experience gained during the project.

59

http://twoears2015.sciencesconf.org
https://www.flickr.com/photos/twoearsproject/

6 Ingredients for a Binaural Robots Challenge

6.1 Robots, Environment and Rendering tools

6.1.1 The selected robots and their associated software

The robotic platform chosen for the Two!Ears Summer School was the low-cost turtlebot1.
It is composed of a Kobuki mobile base2, a depth “3D” sensor (Asus Xtion3 or Microsoft
Kinect4) and a netbook with GNU/Linux and ROS installed.

Figure 6.1: The turtlebot robot

Due to the fact that the turtlebot relies on the same ROS
stacks for SLAM and navigation as JIDO does, their use
for this platform is carried out exactly as described in Sec-
tion 4.1.2. However, the input data to the locomotion and
navigation algorithms differs between the two robots. The
odometry of the turtlebot incorporates the data provided
by low-quality encoding wheels and by a gyroscope. In
addition, the turtlebot is not equipped with a laser, so the
output from its depth camera is used instead for naviga-

tion, and converted into laser-like data5. In view of the limited embedded computing power,
the frequency to process the incoming data has to be slowed down.

Some of the internal parameters should be re-tuned, due to the distinct size of these
robots and of the reduced-scale environment. The locomotion velocity limits in the ROS
navigation stack should be significantly reduced to prevent the robot from hitting the
walls, in view of the fact that depth measurements generated by the embedded 3D sensor
are less accurate than with lasers and are provided at a lower rate.

The SendPosition GenoM3 component described in Section4.1.3–B was reused “as is” to
make the robot navigate into the map either in absolute or in relative mode.

6.1.2 The small-scale environment

Considering that the robot’s footprint is a disk of 30 cm radius (with only 24 cm between
the driving wheels) and its height is 42 cm, its total height with its embedded binaural head
can hardly be greater than 80 cm. However, the interaural axis of the embedded binaural

1 http://www.turtlebot.com
2 http://kobuki.yujinrobot.com/home-en
3 https://www.asus.com/3D-Sensor/Xtion_PRO
4 https://dev.windows.com/en-us/kinect
5 A ROS package is dedicated to this conversion, available at http://wiki.ros.org/depthimage_to_

laserscan.

60

http://www.turtlebot.com
http://kobuki.yujinrobot.com/home-en
https://www.asus.com/3D-Sensor/Xtion_PRO
https://dev.windows.com/en-us/kinect
http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/depthimage_to_laserscan

6.1 Robots, Environment and Rendering tools

sensor should be much higher in order to address a conventional environment, shaped for
humans, with openings typically above 1.20m. This is why a small-scale environment
was specifically designed for the Two!Ears Summer School challenge, see Figure 6.2.
Its size (L×l×H) is 5m×3m×1m. It is made out of 16mm-thick plywood, which leads to
clean reverberations. It includes a fairly wide open space as well as a narrower room and
a corridor, to increase the variability of experimental conditions as the robot navigates.

Figure 6.2: Side and top views of the small-scale environment specifically designed for the
Two!Ears Summer School Challenge.

6.1.3 The real time motion capture system and the 3D rendering on MORSE

Figure 6.3:
Optitrack camera
with 96 infrared
leds around its lens.

A motion capture system was used to get the position of the turtlebots
in real time within the reduced-scale environment. It is an OptiTrack6

system deployed in the robotics hall of the ADREAM building7 at
CNRS . At least 6 infrared cameras, as the one shown in Figure 6.3
were used for the challenge, out of the 28 ones composing the connected
network over the ADREAM hall. Each camera is endowed with an
infrared illuminator around its lens. The tracking is based on a series
of passive markers made with a retroreflective material which reflects
light with minimum scattering. An algorithm extracts the centroids
of their projections in the image planes of the infrared cameras. If
each marker is seen by at least two cameras, then its 3D position can
be recovered. The OptiTrack software allows the user to create “rigid

6 http://www.optitrack.com
7 https://www.laas.fr/public/en/adream

61

http://www.optitrack.com
https://www.laas.fr/public/en/adream

6 Ingredients for a Binaural Robots Challenge

bodies”, composed of at least three markers, and to localize them as wholes. Therefore,
one rigid body composed of four markers was added on top of each turtlebot. The pattern
drawn by the configuration of each such rigid body was distinct in order to localize with
no ambiguity any set of robots in the environment.

The software installed on the OptiTrack server multicasts the locations (positions and
attitudes) of the bodies defined by the user. These are defined in the reference frame
of the cameras network, which is obtained by calibrating the system. The GenoM3
component named optitrack-genom3 , previously developed at CNRS , retrieves these data
and publishes them on a port. Besides, a virtual 3D environment which matches the
small-scale environment described above in Section 6.1.2 was designed in Blender8 and
incorporated in MORSE9, the generic simulator for robotics used in the project (Figure 6.4).
As objects are placed in MORSE with respect to a frame originating at the center of the
virtual scene, two bodies composed of three markers were stuck at opposite corners of
the small-scale environment in order to compute the rigid transform from the OptiTrack
reference frame to that frame.

Figure 6.4: 3D rendering of the small-scale environment with one turtlebot

The positions of the turtlebots present in the scene were read every 100ms on the port of
the optitrack-genom3 component. Their counterparts expressed in the reference frame
of the 3D virtual environment were also published every 100ms, so that MORSE could
update the positions of the virtual robots therein. This enabled a smooth 3D rendering of
their navigation.

8 https://www.blender.org/
9 MORSE was introduced in Chapter 7 of Deliverable 5.1@month12.

62

https://www.blender.org/

6.2 Binaural spherical heads based on MEMS microphones

6.2 Binaural spherical heads based on MEMS microphones

Figure 6.5: The binau-
ral spherical head and its
mounting on the turtlebot

A binaural sensor was designed, on the basis of a polystyren
solid ball of 15 cm diameter. It was mounted on a 30cm-tall
tube, itself attached to the top of the turtlebot, see Figure 6.5.
So, the height of the interaural axis was about 80cm from the
ground. Considering that the walls of the small-scale environ-
ment are 1m height, all the reflections from any sound source
located within these walls could be captured without any is-
sue.

Each of the five binaural turtlebots had to embed the Binau-
ral Audio Stream Server (BASS , cf. Section 3.3) on a compact
and cheap processing unit which could cope with MEMS micro-
phone technology and could integrate ROS components. This
section summarizes how an original system-on-chip solution,
entailing a Logi PI 10 Field-Programmable Gate Array (FPGA)
board plugged onto a Raspberry PI 211 computer running un-
der GNU/Linux, fulfilled these constraints, with a volume of
9×6×3 cm3 and cost less than 150€.

6.2.1 Low-cost solution for audio acquisition from MEMS microphones

Two MP34DT01 microphones from STMicroelectronics12 were selected to equip the
spherical head. These are ultra-compact, low-power, omnidirectional, microphones, based
on Micro Electromechanical Systems (MEMS) technology. These digital devices are built
with a capacitive sensing element and an Integrated Circuit (IC) interface manufactured
using a CMOS process. They have an acoustic overload point of 120 dB of sound pressure
level (dBSPL) with a 63 dB signal-to-noise ratio and -26 dB relative to full scale (dBFS)
sensitivity. We designed two dedicated circuits so as to provide a digital output signal
in Pulse Density Modulation (PDM) format. They were assembled into a homemade
1/2-inch diameter cylinder with an adequate connector. The whole design is shown on
Figure 6.6.

The MEMS microphones could not be directly connected to the turtlebot’s netbook. Indeed,
the standard for digital audio interfaces is Pulse Code Modulation (PCM) (Figure 6.10),

10 http://valentfx.com/logi-pi/
11 https://www.raspberrypi.org
12 http://www.st.com/web/en/resource/technical/document/datasheet/DM00039779.pdf

63

http://valentfx.com/logi-pi/
https://www.raspberrypi.org
http://www.st.com/web/en/resource/technical/document/datasheet/DM00039779.pdf

6 Ingredients for a Binaural Robots Challenge

WP5 TWO!EARS MEETING - TOULOUSE - 2015/09/17-18

Install of the deployment system on Turtlebots (x5)

Binaural sensors

• Cylindrical MEMs-based microphones

Real time motion capture and 3D rendering

17

ROBOTICS TESTBEDS :  
PLATFORMS FOR THE SUMMER SCHOOL

• Spherical heads (polystyren, ∅15cm)

(∅1/2"×7cm)
Figure 6.6: Typical 1/2-inch cylinders manufactured at CNRS , housing a MEMS microphone, a
digital circuit, and a connector. The upper and lower right diagrams portray the electronics of the
two small boards constituting the digital circuit.

so a conversion from PDM to PCM was required. This need could be fullfiled by a Logi
PI on a Raspberry PI 2, as detailed below.

The Raspberry PI 2 is a low cost, credit-card sized computer13 that can use a standard USB
keyboard and mouse, and be connected to a computer monitor or TV. It embeds a quad-
core ARM Cortex-A714 CPU @ 900Mhz and 1GB of RAM. Besides, it includes 4 USB
ports, 40 GPIO pins as well as a full HDMI port and Ethernet interface. Persistent storage
for the File System can be provided by a SD card, thanks to the presence of a MicroSD
slot. Due to the fact that the Raspberry PI 2 has an ARMv7 processor, it can run the full
range of ARM GNU/Linux15 distributions. Consequently, a dedicated off-the-shell Ubuntu
image was installed16. It combines the 14.04 release with Personal Package Archives (PPA)
containing kernels and firmware suited to the Raspberry PI 2.

To enable acquisition from the pair of MEMS microphones, a prototyping platform that
could be migrated to a System on a Chip (SoC)17 has been designed, and implemented

13 https://www.raspberrypi.org
14 http://www.arm.com/products/processors/cortex-a/cortex-a7.php
15 http://www.arm.linux.org.uk/docs/whatis.php
16 https://wiki.ubuntu.com/ARM/RaspberryPi
17 From now on the term “SoC” will refer as this prototype.

64

https://www.raspberrypi.org
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.linux.org.uk/docs/whatis.php
https://wiki.ubuntu.com/ARM/RaspberryPi

6.2 Binaural spherical heads based on MEMS microphones

Figure 6.7: The Raspberry PI 2 Figure 6.8: The LogiPi.

on the Logi PI 18. The Logi PI , a shield for the Raspberry PI , features a Spartan 6 LX9
FPGA from Xilinx19. It includes thirty-two GPIOs by means of four Peripheral Module
Interface (PMOD) compatible headers. The MEMS microphones are connected to these
I/Os.

Credit:Wikipedia

Figure 6.9: PDM of 100 samples of one period
of a sine wave. White stands for 0 and blue is 1.

Credit:Wikipedia

Figure 6.10: Digitization (sampling and quan-
tization) of a sine wave on 4-bit PCM.

The processing chain shown in Figure 6.11 is implemented within the SoC. The PDM to
PCM conversion constituting its second block is detailed on Figure 6.12. Its last block,
the Wishbone Bus, is an open-source hardware computer bus intended to enable the
communication between parts of an integrated circuit, i.e., to enable the connection of
different cores to each other within a chip.

18 http://valentfx.com/logi-pi
19 http://www.xilinx.com/

65

http://valentfx.com/logi-pi
http://www.xilinx.com/

6 Ingredients for a Binaural Robots Challenge

PDM_INTERFACE

pdm_in

mic_clk

sy
s_
cl
k

sy
s_
re
se
t

pdm_sample_out

sample_out_valid

PDM_TO_PCM

pdm_sample_in

sample_in_valid

sy
s_
cl
k

sy
s_
re
se
t

pcm_sample_out[16]

sample_out_valid

WISHBONE_FIFO

fifo_write

data_in[16]

sy
s_
cl
k

sy
s_
re
se
t

wishbone_slave
MIC

Figure 6.11: Processing chain within the SoC.

pdm_sample_in[1]

sample_in_valid

sy
s_

cl
k

sy
s_

re
se

t

pcm_sample_out[16]

sample_out_valid

FIR

Half-band
8x downsampler

din[16]
nd
ce

dout[32]
rdy

sc
lr

cl
k

CIC

3 stages
8x downsampler

din[2]
nd
ce

dout[11]
rdy

sc
lr

cl
k

'1''1'

sy
s_

cl
k

sy
s_

re
se

t

sy
s_

cl
k

sy
s_

re
se

t

-1

+1 M
U

X

1bit@1.56MHz 11bit@195kHz 16bit@24.415kHz

DC-suppressor

Half-band
8x downsampler

din[32]
nd

dout[16]
rdy

sc
lr

cl
k

Figure 6.12: PDM to PCM

6.2.2 Integration in the ROS architecture

The ability for the SoC to be part of the robotic software architecture was a decisive
requirement in adopting the exposed solution. Indeed, audio signals acquired by the MEMS
microphones needed to be streamed to other components of the architecture, implying the
adaptation of the Binaural Audio Stream Server (Section 3.3) to the current system. A
robust, thoroughly tested, ROS version is available for the GNU/Linux version installed
on the Raspberry PI . Together with the set up of GenoM3 on the system, it allowed
BASS to be compiled and run on the Raspberry PI . By connecting the Raspberry PI
and the turtlebot’s netbook over Ethernet, the ROS architecture could be distributed on
both computers, with the Raspberry PI in charge of audio streaming and the turtlebot’s
netbook in charge of locomotion and navigation.

After a successful attempt to acquire audio data from an ALSA device plugged into the
Raspberry PI , BASS was consequently adapted to retrieve audio data through the Logi
PI . ALSA-related functions of BASS were replaced by similar functions using the Serial
Peripheral Interface (SPI) of the Raspberry PI , enabling data transfer from the Logi PI
to the GenoM3 component. The resulting version of BASS differs from the original one
on the following items:

66

6.2 Binaural spherical heads based on MEMS microphones

• The sampling frequency is fixed to 24414Hz. This constraint comes from the
frequency of the oscillator included in the Logi PI .

• The size of captured chunks must be a power of 2.

• The audio samples depth is 16 bits, instead of 32 bits within the original version.

With a fully functional Binaural Audio Stream Server in the software architecture, the
short term azimuth localization of sound sources, presented in Section 5.2, could be
integrated as is on the turtlebot. The underlying HRTF model was just replaced by
a model complying with the geometry of the embedded binaural sensor. It basically
consisted in the well-known analytical expressions of the left and right HRTFs to two
microphones placed antipodally on a spherical head of adequate size (Morse and Ingard,
1987).

67

7 Appendix

7.1 Two!Ears online documentation on the robotic
architecture

The following pages are an extract of the full Two!Ears documentation, available online
at http://twoears.aipa.tu-berlin.de/doc. They deal with robotic aspects of the
project.

69

http://twoears.aipa.tu-berlin.de/doc

CONTENTS

1 Robotic platform 1
1.1 Getting started . 1
1.2 Audio streaming . 7

2 Examples 17
2.1 Stream binaural signals from BASS to Matlab . 17

i

ii

CHAPTER

ONE

ROBOTIC PLATFORM

1.1 Getting started

• Introduction
– Component-based software architectures in robotics
– ROS, a software platform for robotics
– GENOM3, a tool to develop robotic components

• Installation of the robotic tools
– Install ROS
– Install the GENOM3 tools through robotpkg

* Get robotpkg on your system
* How to install a robotpkg package
* Install packages for GENOM3

– Install a GENOM3 component from the sources
* Instructions
* Example: installing the BASS (Binaural Audio Stream Server) component

1.1.1 Introduction

Component-based software architectures in robotics

Robots are highly complex systems that embed numerous sensors and actuators, in the service of a variety of algorithms
performing heterogeneous tasks. They often have to deal with severe requirements (timing constraints, limited energy,
memory and processing resources, etc.) and must show a robust conception as uncertainty about their environment is
high, and unexpected events can have critical consequences.

To facilitate the development of robotic software, component-based architectures, where components are indepen-
dent processes, have become the de facto standard in robotics. Each software component is dedicated to a given task,
from low-level control to high-level processing. Components communicate with each other with the help of a software
piece called the middleware.

For instance, consider a robot embedding a camera and performing object detection in the images. One component
could be in charge of acquiring the images using the camera’s driver, and would output them. Another component
could input the images and run an algorithm on them to detect objects, producing the detection result as output for any
other component in need of this information. Routing data from the output of the first component to the input of the
second one is ensured by the middleware, this is called data flow.

Components offer services to the user to modify their behaviour and adapt to different situations. To follow with the
example above, the component acquiring images could provide a service to select which camera to use, another one
to configure parameters such as the image size and the number of frames per second, a third one to explicitly request

1

The Two!Ears Auditory Model Documentation, Release latest

the start of the acquisition, etc. The component detecting objects could have a service to change some parameters in
the detection algorithm, another one to choose which image stream to take as input (because there could be several
components streaming images from different cameras), etc. Making services available to the user is again handled by
the middleware, this is called control flow.

Note: The user mentioned here is not necessarily a physical person. For autonomous robots, it will probably be a
detached software piece, supervising the state of the robot and choosing to start a given service to accomplish a new
goal. This software piece belongs to the decisional level, while other components make up the functional level.

Component-based software architectures offer great benefits in robotics, in particular 1:

• Modularity

– As many operations handled by a robot require to have their own thread of execution (e.g. data
acquisition for sensors, motion control for actuators), having them in separate programs eases their
concurrent execution.

– The architecture can be adapted to the needs of the robot: adding a new hardware piece such as a
sensor will result in running a new software component to drive it.

– The system can be distributed over a network, as the middleware seamlessly ensures communication
between components running on different host machines.

• Re-usability

– Common components can be used across robots without having to recode them from scratch.

– Components can be packaged and easily shared in the robotics community, where open source soft-
ware prevails.

– Re-usable components reduce development cost and time, while improving software quality and sus-
tainability.

ROS, a software platform for robotics

The previous section identifies the middleware as the software piece ensuring data flow between functional compo-
nents, and allowing their control.

ROS is a widely known software platform in robotics, providing not only a middleware, but also implementing a
wide range of commonly-used functionalities into software components (such as localisation, mapping, path-planning,
obstacle avoidance, etc.), with a build system and a packaging system for easy compilation and installation. ROS
benefits from a large community of users and developers, and runs on many robots today. This makes ROS a common
choice as a robotic software platform, as it is for Two!Ears.

ROS embraces the principles of component-based software architectures, allowing distributed computation, software
reuse and rapid testing 2. If you will be a user of a robotic platform running ROS, the core tutorials can help you to
get familiar with the ROS environment. The main ROS terminology, introduced in the tutorials, is recalled here:

Nodes Software components using ROS middleware are called ROS nodes.

Topics and messages Data flows are called topics. A node that outputs data publishes on a topic. A node that inputs
data subscribes to a topic. The data elements flowing on topics are called messages. Each message is made
of various data fields forming part of a data structure called message type. As a given topic only carries one
message type, the term topic type is equally used.

Services and actions Nodes can provide services to control them. Some special services that can take a long time to
execute are called actions.

1 A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Ore- back. Towards component-based robotics. In IEEE International Conference
on Intelligent Robots and Systems, pages 163–168, Tsukuba (Japan), 2005.

2 Jason M. O’Kane. A Gentle Introduction to ROS. http://www.cse.sc.edu/~jokane/agitr/, 2014.

2 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

Note: In spite of its name, ROS does not replace, but instead works alongside a traditional operating system. As it
provides features such as hardware abstraction and low-level device control 3, ROS has some similarities with an OS
(Operating System), hence its name.

GENOM3, a tool to develop robotic components

The process of developing robotic components can significantly be improved by the mean of a tool called GENOM3.
As a result of two decades of research on real time architectures for autonomous systems 4 5, GENOM3 brings valuable
attributes to robotic components:

• Middleware independence

Components developed with GENOM3 are middleware independent, i.e. they are not tied to a specific
middleware and can be compiled for different middlewares without changing their source code.

This is achieved through the notion of templates: a GENOM3 template is a set of instructions which,
when applied to the component’s source files, automatically generates the code related to middleware
communication. A clear separation of concerns between the algorithmic core and the middleware is
thus conducted, helping towards the good design of robotic components.

ROS appears among the middlewares supported by GENOM3. When using ROS templates to com-
pile a GENOM3 component, the resulting program is a genuine ROS node. Only the development
process differs from what could be done by writing a ROS node without the GENOM3 tool.

• Model-driven design

GENOM3 emphasises the clear definition of robotic components by adopting a model-driven ap-
proach. A GENOM3 component is first defined by a description file, called the dotgen file, with
the .gen extension. This file gathers in a single place all the definitions related to the component’s
interface, needed by a user to interact with it.

Each GENOM3 component has its own dotgen file, mainly including the definition of its services
and its data flows by the mean of ports (either from the component to the outside, or the other way
round). Each service is defined by a name and a list of input and output parameters with their related
data type. Each port is defined by a name, a direction (either in or out), and a data type for the data
elements it uses. The dotgen file often include in-line documentation to help the understanding of the
component’s features (for instance, the role of a given service parameter).

On the basis of the model specified in the dotgen file, GENOM3 automatically generates real time
code as well as skeletons of functions run by the services. So, the developer just has to fill these
functions, called codels (for code element) with its algorithms. The corresponding algorithmic core
is written in separate C or C++ source files or libraries.

• Powerful framework

GENOM3 facilitates the development of essential features for robotic components, such as:

– the definition of finite state automata with an optional clock,

– clean interruption mechanisms,

– efficient error handling.

3 http://wiki.ros.org/ROS/Introduction
4 R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An Architecture for Autonomy. In Int. Jour. on Robotics Research 17, pages

315–337, 1998.
5 A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand. GenoM3: Building Middleware-independent Robotic Components. In IEEE

Int. Conf. on Robotics and Automation, Anchorage (Alaska), 2010.

1.1. Getting started 3

The Two!Ears Auditory Model Documentation, Release latest

If you decide to be a user of GENOM3 components, the tutorial GenoM3 through an example will help you to learn
how to read dotgen files. For a developer of GENOM3 components, the documentation defines the whole grammar for
writing dotgen files, and how dotgen specifications are mapped into C or C++ codels.

Note: GENOM3 components are often called modules (hence the name Generator of Modules). The words module
and component refer to the same entity: an independent program that can run on a host machine where the robotic
software architecture is distributed.

1.1.2 Installation of the robotic tools

The robotic tools should be installed on any system that hosts components of the software architecture for the Robotic
platform. This section details the installation process.

Note: For all the guidelines gathered here, we will assume that you are using Ubuntu GNU/Linux as it is the supported
distribution for ROS (though any other UNIX platform should be suited to the GENOM3 tools). Many commands
given here are intended for the bash shell. If you use a different shell, you should adapt the bash-related commands
accordingly.

Install ROS

The ROS distribution you can install will depend on your Ubuntu version:

• If you have Ubuntu 14.04 LTS or 13.10, follow the ROS Indigo installation instructions.

• Otherwise, follow the ROS Hydro installation instructions.

Install the GENOM3 tools through robotpkg

This section will guide you through the installation of the GENOM3 tools. GENOM3 is open-source software (avail-
able at https://git.openrobots.org/) and can be compiled from source, but the common installation uses robotpkg, a com-
pilation framework and packaging system for robotics software (more information at http://robotpkg.openrobots.org/).

Get robotpkg on your system

Note: The following instructions invite you to download two git repositories. If the given URLs using git://
protocol fail, try https:// protocol as instructed here and there. If you need an introduction to git have a look at
Git for beginners.

First, get the robotpkg repository in your home folder (you can choose another location, but we recommend this
one):

cd
git clone git://git.openrobots.org/robots/robotpkg

You will also need the wip subset of robotpkg, it contains some work in progress that is not officially released, but
already available:

cd ~/robotpkg
git clone git://git.openrobots.org/robots/robotpkg/robotpkg-wip wip

4 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

Next, set the installation path. The tools that you will soon install will be placed in your home folder under a dedicated
folder named openrobots. Installing robotic components in your home folder ensures that you do not need root
privileges for the installation (you can choose another location with a different prefix, but we recommend this one):

cd ~/robotpkg/bootstrap
./bootstrap --prefix $HOME/openrobots

To finish, update your environment variables to include the installation folder:

Note: In the following commands, note the use of an environment variable ROBOTPKG_BASE to indicate your
installation path, set to $HOME/openrobots. If you have selected a different location at the previous step, you
should modify the corresponding command accordingly.

echo >> ~/.bashrc
echo '# ROBOTPKG' >> ~/.bashrc
echo 'export ROBOTPKG_BASE=$HOME/openrobots' >> ~/.bashrc
echo 'export PATH=$PATH:$ROBOTPKG_BASE/bin:$ROBOTPKG_BASE/sbin' \

>> ~/.bashrc
echo 'export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:\

$ROBOTPKG_BASE/lib/pkgconfig' >> ~/.bashrc
echo 'export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:\

$ROBOTPKG_BASE/src/ros-nodes:$ROBOTPKG_BASE/share' >> ~/.bashrc
echo 'export PYTHONPATH=$PYTHONPATH:\

$ROBOTPKG_BASE/lib/python2.7/site-packages:\
$ROBOTPKG_BASE/lib/python3.2/site-packages' >> ~/.bashrc

echo '# ROBOTPKG END' >> ~/.bashrc
source ~/.bashrc

How to install a robotpkg package

Your ~/robotpkg directory contains a tree of packages, grouped into main categories. In the next part, we will
invite you to install some of those packages. Here, we expose you the guidelines to follow for each package.

1. Add options to the package

If you are asked to add options option-1 option-2 ... to the package pkg-name, edit
the file ~/openrobots/etc/robotpkg.conf and add a line (near the beginning for instance)
looking like:

PKG_OPTIONS.pkg-name+= option-1 option-2 ...

You will get a better idea about this step with an actual example in the next part.

2. Move to the package’s directory

You will be given the path to the package, such as robotpkg/category/pkg-name. Change
to this directory:

cd ~/robotpkg/category/pkg-name

3. Install possibly missing system dependencies

Run the following command to list the dependencies for the package you are about to install:

make show-depends

At the end of the command’s output, the dependencies are separated into Robotpkg
dependencies and System dependencies. If any robotpkg dependency is missing, it will

1.1. Getting started 5

The Two!Ears Auditory Model Documentation, Release latest

be automatically installed. If any system dependency is missing, you need to install it (commonly
with apt-get under Ubuntu). Iterate this step until no system dependency is missing.

You may skip this step, but if a system dependency is missing, the package installation will stop at
some point and you will be asked to install it.

4. Install the package

Run the following command:

make update

This will download the sources, compile them locally on your system, and install the output files in
the ~/openrobots directory.

Install packages for GENOM3

• Install the package demo-genom3 from robotpkg/wip/demo-genom3 with options codels
ros-server ros-client-ros ros-client-c.

This package will install the demo component. It is a sample component distributed with GENOM3,
serving as an example, simply controlling the motion of a fictional robot. The aim of installing the
demo component is twofold: first, it automatically installs all the dependencies for using GENOM3
(the provided options specifying that we will use the ROS templates); second, you get a GENOM3
component ready to be run to start using the robotic tools.

For your convenience, here is how applying the above steps could look like:

1. Add options to the package
echo 'PKG_OPTIONS.demo-genom3+= codels ros-server ros-client-ros ros-client-c'\

>> ~/openrobots/etc/robotpkg.conf
or better, edit the file manually and add the line near the beginning

2. Change to the package's directory
cd ~/robotpkg/wip/demo-genom3

3. Install missing system dependencies
make show-depends
Let's say that `make show-depends` revealed two missing system
dependencies named 'bison' and 'flex'. Next step would be:
sudo apt-get install bison flex
make show-depends
No missing system dependency left

4. Install the package
make update

• Then, install the packages genomix from robotpkg/net/genomix and rosix from
robotpkg/net/rosix.

genomix and rosix are HTTP servers providing an interface for some clients to control GENOM3
components and generic ROS nodes respectively.

• Then, install the packages tcl-genomix from robotpkg/wip/tcl-genomix and matlab-genomix
from robotpkg/supervision/matlab-genomix.

These are clients of genomix and rosix servers. The tcl-genomix client allows to control components
using the Tcl language. Its installation is not mandatory (we will rather use the matlab-genomix
client), but recommended as a common package distributed with GENOM3. The matlab-genomix
client allows to control components from Matlab.

6 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

Note: You need a Matlab installation on your system in order to install the matlab-genomix
package. If you encounter a missing dependency for mex (the MEX compiler from Matlab), you
need to add the path to Matlab executables to the PATH environment variable. For example, with
Matlab R2013a installed in /usr/local/MATLAB/R2013a, it would be done with:

export PATH=$PATH:/usr/local/MATLAB/R2013a/bin

The GENOM3 tools are now installed on your system. If you want to try the Matlab bridge, you can follow the official
tutorial using the demo component. You can also follow the instructions below to install BASS, an audio streaming
server component and later on follow the tutorial Stream binaural signals from BASS to Matlab.

Note: The Matlab bridge is installed in ~/openrobots/lib/matlab. To follow the tutorials using matlab-
genomix, you need to add this path to the Matlab path.

Install a GENOM3 component from the sources

Instructions

The software part of the Two!Ears robotic architecture includes several GENOM3 components. You may have to install
them from their source files. Each GENOM3 component has its own folder, containing a description file named after
the component with the .gen extension (something like component.gen). These steps will install the component
in your ~/openrobots folder:

cd path/to/component/folder
genom3 skeleton -i component.gen
./bootstrap.sh
mkdir build && cd build
../configure --prefix=$ROBOTPKG_BASE --with-templates=ros/server,ros/client/c
make install

Example: installing the BASS component

BASS is a component for binaural audio streaming. The folder for this component is named bass-genom3, under
the RoboticPlateform folder of the software repository. Applying the above commands to install BASS gives:

assuming that you are in the software repository
cd RoboticPlateform/bass-genom3
genom3 skeleton -i bass.gen
./bootstrap.sh
mkdir build && cd build
../configure --prefix=$ROBOTPKG_BASE --with-templates=ros/server,ros/client/c
make install

1.2 Audio streaming

1.2. Audio streaming 7

The Two!Ears Auditory Model Documentation, Release latest

• BASS, an audio streaming server component
– BASS terminology
– Services
– Output port
– Example of use

• Writing a client of BASS
– An algorithm for clients of BASS
– Sample implementation in a GENOM3 component

* Services
* Execution example

1.2.1 BASS, an audio streaming server component

BASS is a GENOM3 component in charge of acquiring binaural audio data from a hardware sound interface, and
making it available to other components, henceforth termed as its clients. It relies on the ALSA (Advanced Linux
Sound Architecture) library to communicate with the hardware interface, hence working with any ALSA-compliant
interface.

The component offers services to start and stop the acquisition of audio data, and streams the captured data on an
output port. A sliding window of the most recent data is kept on the port, the size of which can be set at runtime (for
instance, the port can be configured so as to keep the last 2 seconds of acquired signals).

The folder containing source files of the component is named bass-genom3 and is located in the
RoboticPlatform folder of the software repository. All files that are referred to in this section are in the
bass-genom3 folder.

BASS terminology

This section defines the notions and the vocabulary that BASS uses.

Interface and device They are synonyms for the hardware board in charge of converting analog sound signals into
digital streams.

Acquisition and capture They are synonyms for retrieving audio data from microphones through an audio interface.

Binaural audio and channels Binaural audio signals consist of two channels (like stereo audio), corresponding to
left and right ears.

Samples and frames A sample is a digital value encoding the signal on one channel at one point in time. A frame
is a vector of samples, one from each channel, at one point in time (thus for binaural audio, a frame is two
samples).

Chunks In capturing state, the sound device regularly delivers blocks of new data to the BASS component. These
blocks are called chunks. The size of these chunks (commonly given in number of frames) can be selected at
the start of a new acquisition, and is fixed until its end.

Note: The above definitions can differ from other applications where the word frame may refer to data blocks of a
few milliseconds. Here, these blocks are rather called chunks, a frame being a single point in time.

Services

The services offered by BASS are defined and documented in the description file bass.gen. This section lists them
and provides additional details.

8 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

• The ListDevices service can be called to display on standard output stream (stdout) the available sound
devices that can be selected for the acquisition.

• The Acquire service starts the acquisition of audio data and updates the output port with the captured data
(see details about the port in section Output port). This service expects 4 input parameters, shown in Table 1.1.

Table 1.1: Input parameters of the Acquire service of BASS

Name Data type Default value Documentation
device string "hw:1,0" ALSA name of the sound device
sampleRate unsigned long 44100 Sample rate in Hz
nFramesPerChunk unsigned long 2205 Chunk size in frames
nChunksOnPort unsigned long 20 Port size in chunks

The device parameter is the identifier of a sound device to use. The value for one connected device can be
retrieved with the aforementioned ListDevices service. The nFramesPerChunk parameter is important,
as smaller chunks will lead to shorter latency but also higher communication needs between the component and
the device. Last, the nChunksOnPort parameter sets the number of chunks kept on the port. With the default
values given above, 20 chunks of 2205 frames is a total of 44100 frames kept on the port, i.e. 1 second of audio
data at the default sample rate.

The Acquire service can return an exception if the configuration of the interface fails (e.g. the requested
sample rate is not supported), if a problem occurs during the acquisition (e.g. the interface gets unplugged), etc.
If an exception occurs, the user can get more information by reading the error message flushed on standard error
stream (stderr).

• The Stop service stops the acquisition of audio data. Note that the Acquire service also interrupts itself, so
a new acquisition with different parameters can directly be started from a running one without having to call
Stop.

Output port

The data captured by the Acquire service are streamed on an output port named Audio (defined in file
bassInterface.gen). They are gathered in two arrays, one for each channel, updated with a FIFO design:
every time a new chunk is retrieved from the hardware interface, the content of the arrays is shifted, deleting the oldest
chunk of data and making room to the newest one, as detailed below.

At the beginning of the acquisition, the arrays are filled with zeros and the first captured chunks are progressively
added. For instance, the state of one array before and after adding the 4th chunk is illustrated here (assuming that the
port is longer than 4 chunks):

+-------+-------+-------+-------+-------+-------+-------+-------+
| zeros | 1 | 2 | 3 |
| | | | |
+-------+-------+-------+-------+-------+-------+-------+-------+

/ / /
/ / /

/ / /
+-------+-------+-------+-------+-------+-------+-------+-------+
| zeros | 1 | 2 | 3 | 4 |
| | | | | (new) |
+-------+-------+-------+-------+-------+-------+-------+-------+

The length of the port is a round number of chunks, set with parameter nChunksOnPort of the Acquire
service (noted 𝑛𝐶𝑂𝑃 below). The size of one chunk is also set when calling Acquire, with parameter
nFramesPerChunk (noted 𝑛𝐹𝑃𝐶 below). Thus, the left and right arrays contain 𝑛𝐹𝑃𝐶 * 𝑛𝐶𝑂𝑃 samples each.
Once the port is entirely filled with data (all beginning zeros have been erased), the oldest chunk is deleted as a new
chunk arrives:

1.2. Audio streaming 9

The Two!Ears Auditory Model Documentation, Release latest

+-------+-------+-------+-------+-------+-------+-------+-------+
| 1 | 2 | 3 | ... | nCOP-1| nCOP |
| (old) | | | | | |
+-------+-------+-------+-------+-------+-------+-------+-------+

/ / /
/ / /

/ / /
+-------+-------+-------+-------+-------+-------+-------+-------+
| 2 | 3 | 4 | ... | nCOP | nCOP+1|
| (old) | | | | | (new) |
+-------+-------+-------+-------+-------+-------+-------+-------+

/ / /
/ / /

/ / /
+-------+-------+-------+-------+-------+-------+-------+-------+
| 3 | 4 | 5 | ... | nCOP+1| nCOP+2|
| | | | | | (new) |
+-------+-------+-------+-------+-------+-------+-------+-------+

In order to let the clients keep track of the data and detect any loss, the port also publishes an index that indicates
the number of frames that have been streamed since the beginning of the acquisition. In other words, it is the index
of the last streamed frame, noted lastFrameIndex. The data structure of the Audio output port (defined in file
bassStruct.idl) is summarised in Table 1.2.

Table 1.2: Data structure of the Audio output port of BASS

Name Data type Comment
sampleRate unsigned long sample rate in Hz
nChunksOnPort unsigned long number of chunks on the port (𝑛𝐶𝑂𝑃)
nFramesPerChunk unsigned long number of frames per chunk (𝑛𝐹𝑃𝐶)
lastFrameIndex unsigned long long index for tracking data
left sequence<long> audio data from left channel
right sequence<long> audio data from right channel

• The fields sampleRate, nChunksOnPort and nFramesPerChunk are set as input parameters of the
Acquire service.

• The fields left and right are dynamic arrays (sequence<long> type) of 𝑛𝐹𝑃𝐶 * 𝑛𝐶𝑂𝑃 samples.
Samples are signed integers coded on 32 bits (long type).

• The index for tracking data is stored in the field lastFrameIndex. As this index is incremented by 𝑛𝐹𝑃𝐶
frames every time a new chunk is published on the port, it is important to check that it will not overflow. The
index is therefore coded as an unsigned integer on 64 bits (unsigned long long type. With a sample rate
of 192kHz for instance, the order of magnitude of the index overflow is a million years).

Example of use

The tutorial Stream binaural signals from BASS to Matlab is an example of use of BASS, using the matlab-genomix
bridge. It shows how to invoke its services and how to retrieve the streamed audio data in Matlab.

1.2.2 Writing a client of BASS

This section provides information about designing clients of the BASS component. It first defines a formal algorithm
that clients could use, and shows a sample implementation in a GENOM3 component called BASC (Binaural Audio
Stream Client).

10 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

An algorithm for clients of BASS

A client of BASS can face many different situations:

• It may need just a single block of data (e.g. we could think of a client requesting 2 seconds of audio data to learn
noise properties), and the block may be longer than the total size of the port.

• It may indefinitely request new blocks of data, with the requirement that they follow each other without frame
loss between two consecutive blocks.

• It may request data faster than the port update rate. Or conversely, it may not read the port often enough, leading
to data loss. And in case of data loss, it must know how many frames were lost.

Let us define 𝑛𝐹𝑂𝑃 as the total number of frames on the port. The data structure used on the Audio port, of type
portStruct, is recalled in Table 1.3.

Table 1.3: Formal definition of the data type portStruct used on the Audio port of BASS

Field Data type Comment
sampleRate unsigned integer sample rate in Hz
nChunksOnPort unsigned integer number of chunks on the port (𝑛𝐶𝑂𝑃)
nFramesPerChunk unsigned integer number of frames per chunk (𝑛𝐹𝑃𝐶)
lastFrameIndex unsigned integer index for tracking data
left[nFOP] array of integers arrays of 𝑛𝐹𝑂𝑃 samples, with 𝑛𝐹𝑂𝑃 = 𝑛𝐹𝑃𝐶 * 𝑛𝐶𝑂𝑃
right[nFOP] array of integers

The left and right fields are arrays of 𝑛𝐹𝑂𝑃 samples each, updated as FIFOs (c.f. related section in BASS
documentation). What the client need is to copy blocks of given size 𝑁 from these arrays. Let us define a function
getAudioData, taking 𝑁 as input and returning one copied block.

In order not to miss any frame between blocks retrieved with two consecutive calls, the getAudioData function
also takes both as input and output an index of the next frame to be read, noted 𝑛𝑓𝑟. For instance, the client get a first
block of 𝑁 frames starting from a given index 𝑛𝑓𝑟. The function must return, along with the block of data, the new
value of the index, corresponding to the next frame right after the first retrieved block. Then, the client can call the
function again with this new value for 𝑛𝑓𝑟, so as to get the second block starting from this point.

For the very first block, the client can choose 𝑛𝑓𝑟 according to the current value of the lastFrameIndex.

• If it wants to pick data from the existing frames on the port, 𝑛𝑓𝑟 is chosen to be less than lastFrameIndex.

• If it wants to get fresher data (frames that are not yet on the port but will be published shortly on it), 𝑛𝑓𝑟 is
chosen to be greater than lastFrameIndex.

With a call to getAudioData, the client requests a block of given size 𝑁 , but the function may not be able to return
a full block of 𝑁 frames. Indeed, the ending point for the desired block may be a frame that is not yet published by the
server. So, the function returns the number 𝑛 of frames it can get (𝑛 ≤ 𝑁). The client can then call the function again
and ask for the remaining frames in a loop until the requested block is complete. Here are examples of when this can
occur:

• The client requests data more often than they are captured by the microphones (which should be the regular
case, because a slower client will end up losing data).

• The client requests a block which is longer than the total number of frames on the port (𝑁 > 𝑛𝐹𝑂𝑃).

• At first call, if the client sets 𝑛𝑓𝑟 to a greater value than lastFrameIndex, then getAudioData will not
return any available frame (𝑛 = 0). But the client can keep calling the function in a loop until it gets the
requested frames.

Finally, in case of data loss, getAudioData also returns the number of frames that were lost. The retrieved block
then starts at the first frame that is still available on the port (the oldest one).

Below is the getAudioData function written with formal syntax:

1.2. Audio streaming 11

The Two!Ears Auditory Model Documentation, Release latest

function: getAudioData
|
| inputs: integer N (number of frames the client wants to get)
| portStruct Audio (data from the the output port of bass)
|
| outputs: integer n (number of frames the function was able to get)
| integer loss (number of lost frames, 0 if no loss)
| array(int) l[n] (the retrieved data block from left channel)
| array(int) r[n] (the retrieved data block from right channel)
|
| in&out: integer nfr (index of the Next Frame to Read)
|
| local: integer nFOP (total number of Frames On the Port)
| integer lfi (Index of the Last Frame on the port)
| integer ofi (Index of the Oldest Frame on the port)
| integer pos (current position in the left and right arrays)
|
| algorithm
| |
| | nFOP <- Audio.nFramesPerChunk * Audio.nChunksOnPort
| | lfi <- Audio.lastFrameIndex
| | ofi <- max(0, lfi - nFOP + 1) //if the acquisition just started and the
| | //port is not full yet, ofi equals 0
| | /* Detect a data loss */
| | loss <- 0
| | if (nfr < ofi)
| | | loss <- ofi - nfr
| | | nfr <- ofi
| | end if
| |
| | /* Compute the starting position in the left and right input arrays */
| | pos <- nFOP - (lfi - nfr + 1)
| |
| | /* Fill the output arrays l and r */
| | n <- 0
| | while (n < N AND pos < nFOP)
| | | l[n] <- Audio.left[pos]
| | | r[n] <- Audio.right[pos]
| | | n <- n + 1
| | | pos <- pos + 1
| | | nfr <- nfr + 1
| | end while
| |
| | return (l[], r[], n, nfr, loss)
| |
| end algorithm
|
end function

Sample implementation in a GENOM3 component

BASC is a GENOM3 component that acts as a client of BASS. It can be connected to the output port of BASS, and
implements the above generic algorithm to retrieve blocks of audio signals. BASC does not perform any processing
on the data. It only shows what a GENOM3 client of BASS could look like.

The folder containing source files of the component is named basc-genom3 and is located in the
RoboticPlatform folder of the software repository. All files that are referred to in this section are in the

12 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

basc-genom3 folder.

Services

BASC runs the above algorithm in a service called GetBlocks, defined in description file basc.gen. It expects
the following input parameters:

Name Data type Default value Documentation
nBlocks unsigned

long
1 Amount of blocks, 0 for unlimited

nFramesPerBlock unsigned
long

12000 Block size in frames

startOffs long -12000 Starting offset (past < 0, future > 0)

The first parameter nBlocks sets the number of blocks that the service must get, or can be set to 0 to run the service
indefinitely. The second parameter nFramesPerBlock sets the block size (𝑁 in the previous section). Last, the
startOffs parameter sets the index of the first frame to read, relatively to the current value of the Last Frame Index
on the port. For instance, if startOffs is -1000 and lastFrameIndex is 43000 when the service is called, then
the first frame to read (𝑛𝑓𝑟 in previous section) will have index 42000. With the given default values, GetBlocks
will get 1 block of 12000 frames, taking the last 12000 frames on the port.

At any moment, the GetBlocks service can be interrupted by calling a service named Stop.

Execution example

Assume that the GetBlocks service runs at a period of, say, 250ms (defined in the dotgen file). So every
250ms, it calls the getAudioData function, either to request a new block or to complete the current block if
the previous call could not return a full one. Depending on the sample rate, if the requested block size (parameter
nFramesPerBlock) is too small so that one block is less than 250ms, then the client will eventually loose some
frames. On the other hand, if a block lasts more than 250ms, then the client will request data at a rate higher than their
update frequency, which should be fine.

This can be tested: assume that the sampling rate is 44100Hz. So, 250ms is 11025 frames. Calling GetBlocks with
nFramesPerBlock < 11025 leads to data loss. Following is an example with the matlab-genomix client.

% The middleware, genomix, bass and basc should be running

% Connect to genomix
>> client = genomix.client

% Load the server BASS and the client BASC
>> bass = client.load('bass')
>> basc = client.load('basc')

% Connect the input port of BASC to the output port of BASS
>> basc.connect_port('Audio', 'bass/Audio')

% Start the acquisition (using default values)
rAcquire = bass.Acquire('-a', 'hw:1,0', 44100, 2205, 20)

%%% EXAMPLE 1: get one block of 2 seconds (88200 frames at 44100Hz)
>> basc.GetBlocks(1, 88200, 0)

% In the terminal where it runs, BASC prints:
%
% Requested 88200 frames, got 11025.

1.2. Audio streaming 13

The Two!Ears Auditory Model Documentation, Release latest

% Requested 77175 frames, got 11025.
% Requested 66150 frames, got 11025.
% Requested 55125 frames, got 11025.
% Requested 44100 frames, got 11025.
% Requested 33075 frames, got 11025.
% Requested 22050 frames, got 11025.
% Requested 11025 frames, got 11025.
% A new block is ready to be processed.
%
% Each line 'Requested N frames, got n.' indicates the number N of frames
% requested by BASC, and the number n it got in return. The component keeps
% requesting frames until it has formed a block of 88200 frames.

%%% EXAMPLE 2: get unlimited number of blocks, with nFramesPerBlock < 11025
>> rGetBlocks = basc.GetBlocks('-a', 0, 10000, 0)

% After a few seconds, BASC prints:
%
% Requested 10000 frames, got 10000.
% !!Lost 1025 frames!!
% A new block is ready to be processed.
% Requested 10000 frames, got 10000.
% !!Lost 1025 frames!!
% A new block is ready to be processed.
%
% At each attempt to get the following block, some frames are lost because
% BASC does not read the port of BASS often enough.

% Stop the running GetBlocks service
>> basc.Stop()

%%% EXAMPLE 3: get unlimited number of blocks, with nFramesPerBlock > 11025
>> rGetBlocks = basc.GetBlocks('-a', 0, 12000,0)

% Here, as BASC reads the port slighlty faster than its update rate, the
% retrieved block is sometimes incomplete, for instance:
%
% Requested 12000 frames, got 12000.
% A new block is ready to be processed.
% Requested 12000 frames, got 12000.
% A new block is ready to be processed.
% Requested 12000 frames, got 11550.
% Requested 450 frames, got 450.
% A new block is ready to be processed.
% Requested 12000 frames, got 12000.
% A new block is ready to be processed.
%
% The two consecutive lines 'Requested...' show that a first call only get
% 11550 frames, so the component makes a second request to get the remaining
% part of 12000 - 11550 = 450 frames.

% Stop the running GetBlocks service
>> basc.Stop()

% Kill the components
>> bass.kill()
>> basc.kill()

14 Chapter 1. Robotic platform

The Two!Ears Auditory Model Documentation, Release latest

% Remove the used objects in Matlab
>> delete(bass)
>> delete(basc)
>> delete(client)

% The remaining processes (the middleware and genomix) can be killed

The getAudioData function in charge of getting the requested block is written in C in file
codels/basc_read_codels.c. The codels of the GetBlocks service are also written in this file, with
comments to explain the overall process followed by BASC.

1.2. Audio streaming 15

The Two!Ears Auditory Model Documentation, Release latest

16 Chapter 1. Robotic platform

CHAPTER

TWO

EXAMPLES

2.1 Stream binaural signals from BASS to Matlab

This tutorial shows an example of how to control the BASS component and retrieve audio streams in Matlab, using
the matlab-genomix bridge.

• Preliminary steps
• Control BASS to start an acquisition

– Connect to genomix and load BASS
– Get the name of your sound interface
– Start an acquisition

• Get audio data in Matlab
• End the session

2.1.1 Preliminary steps

In order to follow this tutorial, you will need:

• A Linux system with the robotic tools and BASS installed (c.f. Installation of the robotic tools). We will call
this system the BASS host.

• An ALSA-compliant sound acquisition interface with at least two input channels, and two microphones plugged
into it. The interface must be connected to the BASS host.

Note: Alternatively, if you do not possess an external sound interface but the BASS host has an integrated
sound card and microphone, you still might be able to follow the tutorial. Keep in mind though that if there is
only one microphone, you will not have a genuine stereo signal, but a simulated one from your mono input.

• A computer with Matlab and the matlab-genomix bridge installed. We will call it the remote client. The BASS
host and the remote client could possibly, but not necessarily, be the same computer.

On the BASS host, open 3 new terminals. In the first terminal, run the command:

$ roscore

This launches the ROS middleware. ROS nodes can now connect to this node called the ROS master. In the second
terminal, run the command:

$ genomixd

17

The Two!Ears Auditory Model Documentation, Release latest

This launches a genomix server, now waiting for incoming connections from clients on port 8080 by default. In the
third terminal, run the command:

$ bass-ros

This is the BASS component, now running on the system. The name bass-ros specifies that this GENOM3 com-
ponent uses the ROS middleware. So it is actually a ROS node, connected to the ROS master running in the first
terminal.

For the moment, the BASS component is not doing anything. It is waiting for requests from a client (which will be
Matlab here) to start services. This is the followed process:

1. The client emits a HTTP message destined for the genomix server, requesting to call a service of the BASS
component.

2. genomix executes the call directed at the BASS component.

3. When the service is completed, BASS returns its output to genomix, and genomix relays it back to the client.

Keep the third terminal running BASS visible on the screen. When we will call some services, we will notice their
effect on the component’s standard output stream (stdout).

2.1.2 Control BASS to start an acquisition

On the remote client, start a Matlab session and make sure that matlab-genomix is in the Matlab path (c.f. Installation
of the robotic tools).

Connect to genomix and load BASS

If you have Matlab on the same computer where the genomix server is running, you can simply connect to genomix
with:

>> client = genomix.client
client =

client with no properties.

This will attempt a connection on localhost:8080 by default. Otherwise if your BASS host and your remote
client are two different computers, get the IP address of the BASS host and override the default value with:

>> client = genomix.client('xxx.xxx.xxx.xxx:8080') % write the IP address of BASS host

Then, load BASS:

>> bass = client.load('bass')

bass =

component with properties:

genom_state: [function_handle]
kill: [function_handle]

connect_port: [function_handle]
connect_service: [function_handle]

Stop: [function_handle]
ListDevices: [function_handle]

DedicatedSocket: [function_handle]
Audio: [function_handle]

18 Chapter 2. Examples

The Two!Ears Auditory Model Documentation, Release latest

abort_activity: [function_handle]
Acquire: [function_handle]

CloseSocket: [function_handle]

The returned handle bass has a list of properties either corresponding to services (e.g. Acquire) or ports (e.g.
Audio) of the component.

Get the name of your sound interface

Invoke the ListDevices service to get the name of your ALSA device:

>> bass.ListDevices();

The detected sound devices are listed on the components’s standard output stream (stdout). On the BASS host, look
in the terminal where the component is running, and find a line that matches your interface, something like:

hw:1,0 [Babyface2361116] [USB Audio]

The leading string, hw:1,0 in the example, is the name of your ALSA device.

Start an acquisition

We will now use the Acquire service to start an acquisition.

Caution: By default, services are invoked synchronously, i.e. the command to invoke them only returns after
completion of the service. As the acquisition runs indefinitely, the Acquire service never completes unless you
explicitly stop it. So you must invoke this service asynchronously, i.e. the command invoking the service returns
immediately and the service output can be retrieved later on. Otherwise you will be blocked in the Matlab command
window without control, including stopping the service. If this happens, a solution is to kill the Matlab process and
start again.

The service can be invoked asynchronously by providing the ’-a’ option:

>> r = bass.Acquire('-a')
string device: ALSA name of the sound device (hw:1,0) >

The Acquire service expects input arguments. As we did not passed them to the function directly, they are prompted
interactively. Enter values according to your sound interface (see the example below):

• For the device parameter, take the value you obtained at the previous step.

• For the sampleRate parameter, choose a sampling rate that your device supports. The default value (44100
Hz) is most likely to work.

• For the nFramesPerChunk parameter, choose a chunk size that your device supports. Some devices only
support powers of 2 (e.g. 512, 1024, 2048...), refer to your device manual.

• For the nChunksOnPort parameter, choose a value that is big enough so that the output port of BASS streams
a few seconds of audio data. For instance, with the default values (44100 Hz for the sampling rate and 2205
frames for the chunk size), keep 80 chunks on the port to have 4 seconds:

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑛𝐶ℎ𝑢𝑛𝑘𝑠𝑂𝑛𝑃𝑜𝑟𝑡 * 𝑛𝐹𝑟𝑎𝑚𝑒𝑠𝑃𝑒𝑟𝐶ℎ𝑢𝑛𝑘/𝑠𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒

= 80 * 2205/44100
= 4𝑠

2.1. Stream binaural signals from BASS to Matlab 19

The Two!Ears Auditory Model Documentation, Release latest

>> r = bass.Acquire('-a')
string device: ALSA name of the sound device (hw:1,0) > 'hw:1,0'
unsigned long sampleRate: Sample rate in Hz (44100) > 44100
unsigned long nFramesPerChunk: Chunk size in frames (2205) > 2205
unsigned long nChunksOnPort: Port size in chunks (20) > 80

r =

request with properties:

status: 'sent'
result: []

exception: []

If starting the acquisition succeeded, you should see the status ’sent’ in the returned handle. Otherwise, the status
would be ’error’, check then the error message printed in the terminal on the BASS host. It could be an invalid
input parameter.

Note: The parameter prompts like string device: ALSA name of the sound device (hw:1,0)
> contains valuable information, i.e. the data type of the parameter, its name, a short description and a default value
between parenthesis that will be used if you press enter without specifying another value. All this information comes
from the dotgen file of the component, and is part of its definition.

2.1.3 Get audio data in Matlab

You can read the output port of BASS, named Audio, in Matlab:

>> p = bass.Audio()
p =

Audio: [1x1 struct]

>> p.Audio
ans =

sampleRate: 44100
nChunksOnPort: 80

nFramesPerChunk: 2205
lastFrameIndex: 251370

left: {176400x1 cell}
right: {176400x1 cell}

The data structure shown here is retrieved when reading the port with function bass.Audio(). The audio signals
are stored in the left and right fields. Note the presence of the index lastFrameIndex for keeping track of
the data.

If your remote client computer has speakers, you can listen to the retrieved signals:

% Speak in the microphones for a few seconds

% Read the last few recorded seconds
>> p = bass.Audio();

% Play the recorded sound, on left channel for instance
>> soundsc(cell2mat(p.Audio.left), p.Audio.sampleRate);

20 Chapter 2. Examples

The Two!Ears Auditory Model Documentation, Release latest

Notice how the duration of the sound matches the one you selected with parameter nChunkOnPort when starting
the acquisition.

2.1.4 End the session

When you are done, you can clear the used objects in Matlab:

>> delete(bass);
>> delete(client); % This closes the connection to genomix

On the BASS host, you can kill processes roscore, genomixd and bass-ros by typing Control-c in each
terminal.

2.1. Stream binaural signals from BASS to Matlab 21

List of acronyms

AFE Auditory Front-End. .8
ALSA Advanced Linux Sound Architecture . 13
API Application Programming Interface . 13
CAN Control Area Network . 27
CPU Central Processing Unit . 17
FIFO First In, First Out . 13
FPGA Field-Programmable Gate Array . 63
GPIO General-Purpose Input/Output . 33
GUI Graphical User Interface . 40
HATS Head And Torso Simulator .21
HRTF Head Related Transfer Function . 34
IC Integrated Circuit . 63
IDS Internal Data Structure . 50
MEMS Micro Electromechanical Systems . 59
PCM Pulse Code Modulation . 63
PDM Pulse Density Modulation . 63
PWM Pulse Width Modulation. .33
PoC Proof of Concept . 51
RPC Remote Procedure Call . 9
SLAM Simultaneous Localization and Mapping . 7
SPI Serial Peripheral Interface . 66
SoC System on a Chip. .64
URDF Unified Robot Description Format . 22
pdf probability density function . 53

93

Bibliography

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998), “An Architecture
for Autonomy,” Int. Jour. on Robotics Research 17, pp. 315–337. (Cited on page 11)

Brooks, A., Kaupp, T., Makarenko, A., Williams, S., and Ore-back, A. (2005), “Towards
component-based robotics,” in IEEE Int. Conf. on Intelligent Robots and Systems,
Tsukuba, Japan. (Cited on page 9)

Bustamante, G., Danès, P., Forgue, T., and Podlubne, A. (submitted), “Towards
Information-Based Feedback Control for Binaural Active Localization,” in IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP’2016). (Cited on page 53)

Bustamante, G., Portello, A., and Danès, P. (2015), “A Three-Stage Framework to Active
Source Localization from a Binaural Head,” in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP’2015). (Cited on page 52)

Cadenat, V. (1999), “Commande referencee multi-capteurs pour la navigation d’un robot
mobile,” Master’s thesis, Universite Paul Sabatier de Toulouse. (Cited on page 30)

Corke, P. (2015), “Integrating ROS and MATLAB,” Robotics & Automation Magazine,
IEEE 22, pp. 18–20. (Cited on page 15)

Grisetti, G., Stachniss, C., and Burgard, W. (2007), “Improved Techniques for Grid
Mapping with Rao-Blackwellized Particle Filters,” Transactions on Robotics, IEEE 23,
pp. 34–46. (Cited on page 24)

Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand, F. (2010), “GenoM3:
Building Middleware-independent Robotic Components,” in IEEE Int. Conf. on Robotics
and Automation (ICRA’2010), Anchorage, AK. (Cited on pages 11 and 18)

Morse, P. and Ingard, K. (1987), “Theoretical Acoustics,” Princeton University Press.
(Cited on page 67)

Portello, A., Bustamante, G., Danès, P., and Misfud, A. (2014a), “Localization of Multi-
ple Sources from a Binaural Head in a Known Noisy Environment,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Chicago, Il.
(Cited on page 53)

95

Bibliography

Portello, A., Bustamante, G., Danès, P., Piat, J., and Manhès, J. (2014b), “Active
Localization of an Intermittent Sound Source from a Moving Binaural Sensor,” in Proc.
Forum Acusticum, Kraków, Poland. (Cited on page 53)

Portello, A., Danès, P., and Argentieri, S. (2012), “Active Binaural Localization of
Intermittent Moving Sources in the Presence of False Measurements,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal.
(Cited on page 53)

Portello, A., Danès, P., Argentieri, S., and Pledel, S. (2013), “HRTF-Based Source
Azimuth Estimation and Activity Detection from a Binaural Sensor,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan.
(Cited on page 53)

Zhang, J., Presti, L. L., and Sclaroff, S. (2012), “Online multi-person tracking by tracker
hierarchy,” in Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth
International Conference on, IEEE, pp. 379–385. (Cited on page 37)

96

	1 Executive Summary
	2 Introduction
	2.1 Structure of the report and major achievements
	2.2 Structure of the report vs Tasks Decomposition

	3 Reminder on the Robotics Software Architecture and Upgrades
	3.1 Reminder on the Two!Ears deployment system
	3.2 General aspects
	3.2.1 A component-based software architecture
	3.2.2 ROS, a software platform for robotics
	3.2.3 GenoM3, a tool to develop robotic components

	3.3 Audio streaming
	3.3.1 Updates to the Binaural Audio Stream Server
	3.3.2 Elements for clients of BASS

	3.4 Bridging ROS and MATLAB
	3.4.1 Brief assessment of existing solutions
	3.4.2 The solution developed during Year 1 and its upgrade
	3.4.3 Comparison between the Robotics System Toolbox and matlab-genomix

	3.5 Installation and license
	3.5.1 Installation
	3.5.2 License

	4 Hardware and associated low-level software components
	4.1 Binaural mobile robots
	4.1.1 Discard of the PR2 robot
	4.1.2 Off-the-shelf ROS stacks for SLAM and navigation
	A Map building
	B Localization and Autonomous Navigation

	4.1.3 Robot at CNRS: JIDO
	A Hardware
	B Software: a custom ROS stack for JIDO

	4.1.4 Forthcoming binaural robot at UPMC
	4.1.5 Condition for an omnidirectional head

	4.2 Incorporation of the visual modality on the KEMARHATS
	4.2.1 Image acquisition by a stereo camera
	A Active vs passive image sensors
	B Hardware
	B-1 Cameras
	B-2 Hardware synchronization
	B-3 Lenses
	B-4 3D-printed glasses

	C Low-level software
	C-1 Associated ROS software
	C-2 Calibration

	4.2.2 Visual functions
	A Visual functions on people
	B Visual functions on objects
	B-1 Modeling
	B-2 Detection

	5 Components for audio and audio-motor functions
	5.1 Bringing the Auditory Front-End into the ROS architecture
	5.1.1 C/C++ implementation of the AFE algorithmic core
	A Automatic C/C++ code generation under MATLAB
	B Third-party audio processing libraries

	5.1.2 C/C++ implementation of concurrency between processors
	A Overview
	B Formal design
	C GenoM3/ROS implementation

	5.1.3 A proof of concept

	5.2 Active audio-motor and information-based localization
	5.2.1 Reminder
	5.2.2 Implementation
	5.2.3 Experiments

	6 Ingredients for a Binaural Robots Challenge
	6.1 Robots, Environment and Rendering tools
	6.1.1 The selected robots and their associated software
	6.1.2 The small-scale environment
	6.1.3 The real time motion capture system and the 3D rendering on MORSE

	6.2 Binaural spherical heads based on MEMS microphones
	6.2.1 Low-cost solution for audio acquisition from MEMS microphones
	6.2.2 Integration in the ROS architecture

	7 Appendix
	7.1 Two!Ears online documentation on the robotic architecture

	List of Acronyms
	Bibliography

