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1 Introduction

The workplan of WP4 starts with the following statements.

‘Active listening entails bottom-up data processing as well as top-down mecha-
nisms. To capture them, a framework must be set up that can host suitable
feedback loops. It is the general task of WP4 to design an appropriate system
architecture for this requirement, investigate meaningful feedback paths, im-
plement them, and finally evaluate them regarding their functionalities. Input
from other modalities than the auditory one will also be considered as a source
of feedback information, particularly, position, direction and speed of head-&-
torso movements (proprioceptive and sensorimotor input), and of identified
optical objects (visual input)’.

In this context, the consortium has now made final decisions with regard to which possible
feedback loops to investigate. Consequently, the process of implementation and evaluation
of some of the selected loops has started. These activities belong to Task 4.2, the description
of which reads as follows.

Task 4.2 Implementation of feedback loops

‘This is not an isolated task. It can only be performed in close interrelationship
with WPs 1–3 & 5 (robotics component). Feedback loops will be designed
and implemented following the strictly functional approach outlined on pp.
14/15 of the proposal and based on the in- and outputs of feedback loops
as identified in Task 4.1. Implementation of feedback loops will be carried
out stepwise, depending on state of development of affected system modules
at various relevant stages of system. Stability problems will be investigated.
During the implementation phase, the architecture of the Two!Ears system or
at least of some of its modules will have to be suitably modified. Clearly, this
process will last during most of project duration. Functional implications of
the proposed feedback loops will be traced by analyzing responses to auditory
and multi-modal stimuli similar to those used in the final evaluation in Task
4.4. Results will allow for grading feedback loops according to their functional
relationships with possible brain mechanisms and thus provide means for their
calibration – which would hardly be possible otherwise.’
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1 Introduction

It is obvious that the implementation of feedback loops depends very much on functional
modules that have been set up and delivered by other workpackages. Consequently, the
major effort of WP4 will be taken in the last project year. Nevertheless, relevant work is
already going on, and some interesting results have already been achieved. Where necessary
modules are not yet available for a fully fletched implementation on the Two!Ears core
system, their function and output is simulated. To this end, a virtual testbed, the Bochum
Virtual Test Environment (BEFT), is in the process of being developed. A lean version
of it, (LVTE), which can already perform a number of relevant tasks, is described in
Sec. 2.1 and was uploaded to the Git-repository. The full BEFT will be functional in due
time. Nevertheless, it has to be stated that the results achieved so far with regard to
auditory feedback are still fragmentary. Actually, this does not come by surprise, since
a full integration of the feedback algorithms into the Two!Ears core system becomes
only feasible once all necessary modules are at hand. This will be the case during the next
months.

In the further course of this document, the sequence of Sections is structured according
to a recent list of feedback loops to be considered and explored in Two!Ears. This list
has been approved by the Project Board at the General Project Meeting in Toulouse,
France, September 16–18, 2015. In the title of each Section and Subsection of the current
document, reference is given to the respective feedback item in the following list.

Feedback loops to be considered and explored

• (A) Olivo-cochlear reflex (MOCR)

– (a1) Unilateral, contralateral and central control – RUB with TU/e, to be
implemented for future experimentation only

• (B) Insertion of supplementary signal-processing units, triggered by decisions based
on information taken from the blackboard

– (b1) Specific enhancement filters, such as for male voice, female voice, baby
voice – RUB with USFD and DTU

– (b2) Precedence-effect processor – RUB with RPI, TU/e and DTU

– (b3) HRIR deconvolution – RUB with URO and DTU

– (b4) Dereverberation algorithm – reserve item
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– (b5) Binaural noise-reduction algorithm – reserve item

– (b6) Machine-learned source identification: feedback-based selection of features
and classifiers – RUB with TUB

– (b7) Sensorimotor-cue processing – RUB with CNRS

• (C) Cognitive-level feedback, for example, on the basis of labeled environmental
maps as built from information taken from the blackboard and from experts

– (c1) Interpretation of scenes and assigning meaning to their elements – RUB
with UPMC, USFD and TUB

– (c2) Formation of attention and attention-based control of feedback processes –
RUB with UPMC and USFD

– (c3) Performing quality judgments from the listeners’ point of view, based on
internal references – RUB with TUB

– (c4) Initiating robot maneuvers for scene exploration, for example, for object–
distance determination, approaching sources, triangulation – RUB with CNRS

– (c5) Keyword spotting – RUB

– (c6) Requesting visual assistance through visual object localization and identi-
fication – RUB with CNRS

task section/subsection
a1 2.8.1
b1 2.7, 2.11
b2 2.8.2, 2.11
b3 2.11
b4 –
b5 –
b6 2.9
b7 2.10
c1 2, 2.3, 2.4, 2.7
c2 2.7
c3 2.12
c4 2, 2.2, 2.4
c5 –
c6 2, 2.3, 2.4, 2.13

Table 1.1: Coverage of the individual feed-
back loops considered by the sections and sub-
sections of the current deliverable D4.2
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2 Integrating selected feedback paths
into the TWO!EARS-system
architecture

(The following relates to c1, c4, and c6)

The current expansion stage of the Two!Ears framework incorporates a plain blackboard
system (cf. D3.1), which is intended to constitute the basis for feedback mechanisms of low
to moderate complexity. To that end, the current blackboard structure had to be enhanced
as to allow for multi-modal-feedback techniques and active exploration approaches. Herein,
the construction of new knowledge sources becomes mandatory as well as the modification
of existing expert subsystems.

In addition, a ‘lightweight’ component was developed to complement the Bochum Experi-
mental Feedback Testbed (BEFT) software package. This new component, Lean Virtual
Test Environment (LVTE), enables quick and reliable testing of basic feedback routines. It
integrates the Sound-scape Renderer (SSR) for auralization, and is enabled to communicate
seamlessly with the current blackboard architecture.

Note that the methods and algorithms proposed in Secs. 2.1, 2.2, & 2.3 are fully inte-
grated in the Two!Ears framework and are available on the project’s internal repos-
itory. However, further in-depth testing will be necessary prior to public dissemina-
tion

The section below focuses on a comprehensive description of the LVTE and is followed by
in-depth analysis of the knowledge sources that were set up to enable basic multi-modal
feedback within the LVTE/blackboard system.

2.1 The Lean Virtual Test Environment (LVTE)

Intended as a direct descendant of the more powerful BEFT, LVTE avoids the overhead of
the former system by stepping away from high-end visual simulation. Instead, visual stimuli
are generated artificially through degradation of environmental ground-truth information,
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

following the proposals found in [43]. LVTE is intended to quickly perform experiments
with multi-modal feedback methods and active exploration procedures. The system is
solely based on MATLAB®, thus ensuring seamless integration into the Two!Ears project
framework. Note that the LVTE can readily be superseded by the fully fletched BVTE or the
physical robot, once the assessed routines become sufficiently stable.

2.1.1 System overview

Taking on the role of the robotConnect interface defined in the blackboard architecture,
the LVTE emulates the robotic front-end, thereby allowing dedicated knowledge sources to
initiate platform/head motion of the virtual robot. Moreover, the knowledge sources are
enabled to poll environmental data via the robotConnect interface. Such data is mandatory
for informed hypotheses generation and decision making. To achieve synchronization
between LVTE and the blackboard system, the UpdateEnvironment knowledge source –
see below – was introduced.

Directly interfacing with the SSR, LVTE allows for generating the virtual robot’s ear signals
and sends them to the blackboard system for further processing by the AuditoryFrontEnd
knowledge source. For better comprehensibility, Fig. 2.1 graphically subsumes the overall
structure of the proposed LVTE/blackboard system.

Figure 2.1: Integration of the LVTE into the current blackboard architecture
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2.1 The Lean Virtual Test Environment (LVTE)

The system architecture as depicted in the figure was completely set up using the
MATLAB® programming environment, thus ensuring compatibility across platforms
and with the generic Two!Ears framework.

2.1.2 Class structure

The following discussion re-assesses the system sketched in Fig. 2.1, getting granular on the
LVTE block. This block consists of multiple MATLAB® classes, which are analyzed in
detail below. Fig. 2.2 augments the following analysis by giving a comprehensive graphical
overview of LVTE’s class structure.

‘Environment’ class

The Environment class constitutes the basis of the LVTE system. It allows the programmatic
definition of arbitrary scenarios of low to medium complexity. The scenarios are standardly
situated in a shoe-box environment. The experimenter is enabled to define room dimensions
manually and to freely place the virtual robot within this room. The scenario duration
can be chosen within an interval of [0 . . . TS ].

Note that, currently, the SSR stops the auralization process as soon as there are no
active sound sources. Such a ‘silent’ condition will, however, often occur in upcoming
experiments and would cause early termination of the simulation. To counter this issue,
an auxiliary ‘silent’ source was introduced. This muted sound source generates no au-
dible data, yet remains active for [TS ] and ensures correct auralization of the complete
scenario.

To accommodate for the cognitive ideas pursued in Two!Ears, auditory stimuli used in
the auralization process are always related to a dedicated auditory category that is derived
from the IEEE sound database AASP – see [39]. The initial DASA-related set of auditory
categories is defined as SA = {‘speech’, ‘alert’, ‘knock’}. Note that for the testing done
here, sound samples from the corpus were used regardless of whether or not they had been
employed for classifier training. This method is a plain ‘proof-of-concept’ and has to be
re-assessed in upcoming system tests, using a wider variety of test data. Assume that SA [j]
allows to access the jth element of the category set, a shortcut, CAj = SA[j], then extracts
the jth category from the set and facilitates further notation.

For each category in SA, a subset of concrete stimuli instances can be defined, for instance,
I‘speech’ = {‘speech01.wav’, ‘speech02.wav’, ...}. This set of stimuli/instances will be
enlarged depending on the availability of appropriate sound data. In addition to the
auditory categories/instances, the Environment class stores a set of visual categories,
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

Figure 2.2: The LVTE class hierarchy in detail. The blackboard system is omitted for visual
clarity and indicated by the three dots on the right hand side

SV , as become mandatory in audio-visual experiments. Matching SA cognitively, the
set of visual categories is currently defined as SV = {‘person’, ‘siren’, ‘door’} and will
grow according to upcoming extensions of SA. As in the auditory case, SV [j] allows
to access the jth element of the visual category set. Again, the shortcut CVj = SV [j]
holds.

Adding up to the above, Environment maintains a set of audio-visual sources that can be
arbitrarily placed by the experimenter. Data from each inserted source is automatically
transferred to the SSR, thus transparently generating the auditory scene. Each audio-visual
source is represented by an instance of the class Source. This class is assessed below in
more detail.
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2.1 The Lean Virtual Test Environment (LVTE)

‘Source’ class

The Source class stores basic information concerning all defined audio-visual sources. Mind
that source locations are memorized together with the sources’ names and the acoustic
stimuli emitted. The latter can be altered at runtime, enabling simulation of sources with
multiple utterances. Each audio-visual source, i, maintains a time-line, Ti, controlling the
onset and offset of stimulus instances chosen from ICAi (t), where C

A
i (t) is the auditory

category of source i at time t.

This auditory schedule is used by the Environment class to control SRR-based auralization
in arbitrarily complex scenes. Note that auditory schedules can either be generated
manually or can be randomly created using task-specific setup routines. In addition to the
auditory schedule, each source comprises a visual schedule. This is useful for audio-visual
experiments in the virtual environment.

Visual scheduling allows for freely assigning all categories in SV to the constructed sources.
Note that the visual schedule currently does not enable the changing of any assigned
category at runtime. This feature will later be added – if deemed necessary for upcoming
experiments.

In addition to the list of audio-visual sources, the Environment class comprises a RobotCon-
troller interface class that acts as a proxy for the virtual robot. The following paragraph
focuses on the description of this interface class.

‘RobotController’ class

Mimicking the robotic front-end, the RobotController class is intended to emulate important
properties/capabilities of the physical device and to provide the LVTE with access to these
features. In its current construction stage, the RobotController entity simply maintains
the position of the robot and contains an interface to the virtual KEMAR head, which is
mounted on top of the simulated robotic platform.

Changes in the robot’s position are directly propagated to the SSR, in order to syn-
chronize the auralization with current scenario conditions. In forthcoming versions of
the system, the RobotController class will integrate information from laser scanners or
other sensors that provide environmental information. Further, the class interface is
readily expandable to handle kinematics that exceed pure head rotation and platform
translation.
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

Figure 2.3: 3–D visualization of a standard scenario. The green cone indicates the robot’s
head, with the cone’s tip indicating the looking direction. The green box represents the robotic
platform. Multi-modal sources are depicted as spheres. Red means that the source is muted. Green
corresponds to an active source. The dimension of the sketched shoe-box room is 10x10x2.4m

‘KemarHead’ class

Within the KemarHead class, the LVTE provides all functionality required to control the
rotation of the artificial Kemar head attached to the simulated robotic platform. The class
also maintains information concerning the HRTFs used for auralization by the Sound-Scape
Renderer (SSR). Currently, the virtual head is equipped with transfer functions as recorded
at TUB (azimuth resolution: 1 ◦, distance: 3m). Other HRTF datasets can be utilized if
necessary for future experiments.

‘Visualizer’ class

To visualize the simulation of moderately complex audio-visual scenarios in shoebox-
room geometries, the LVTE comprises a dedicated Visualizer class, which provides the
experimenter with a simplified 3–D view of the current scenario status. As stated above,
visualization in the LVTE is not geared towards high visual fidelity and speed. Instead,
cross-platform compatibility and ease of use are prioritized.

To that end, the 3–D visualization is completely based on MATLAB® routines, thus
avoiding the need for separate installation of bulky 3–D engines (such as OGRE [28]).
Despite their simplicity, the MATLAB®-based scenario sketches allow well to visually
track the robot’s behavior at runtime – as Fig. 2.3 demonstrates.
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2.2 Multi-modal feedback – forming audio-visual objects

2.2 Multi-modal feedback – forming audio-visual objects

With the LVTE block beeing analyzed, the focus of the following discussion now turns
to the Blackboard System (cf. Fig. 2.1). Speaking of the Blackboard System, please note
that this term comprises the blackboard core elements (including event managing and
scheduling) and all bound knowledge sources. The blackboard core has currently been left
unaltered (see D3.1 for details of the blackboard core structure).

The blackboard system has to seamlessly interact with the LVTE in order to acquire
audio-visual data and to provide basic attention/feedback mechanisms. To achieve these
goals, the creation/modification of knowledge sources and the definition of purposeful
‘binding schemes’ become mandatory.

The following overview concentrates on the knowledge sources. A basic, yet fully functional
blackboard system was constructed that at least fulfills the administrative chores listed
below.

– The system is able to step the LVTE simulation flow

– It is enabled to control the virtual robot in the LVTE

– Acquisition of simulated audio-visual data is supported

– The acquired data can be displayed on a per-time-step basis

In addition, the system has to solve a comparatively simple task in the multi-modal
feedback domain, as sketched in the next paragraph.

2.2.1 Knowledge sources – definition and binding pattern for audio-visual
object formation

Assume that three sources, q1...3, are set up at previously defined locations. These
sources emit stimuli with a duration of 2 s in a sequential pattern, q1 → q2 → q3.
Intervals between the single emissions last 1 s. The robot listens to the sources and
forms an auditory-object hypothesis for each of the overheard stimuli. It then uses the
interval between two consecutive emissions to turn into the direction of the formerly active
source.

Eventually, it finds the visual category of the focused source and, consequently, forms
an audio-visual-object hypothesis, namely, if and only if the estimated auditory and the
observed visual category coincide. Otherwise, the initial auditory-object hypothesis is
rejected and the experimenter will be informed. Below, the knowledge sources required to
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

address the above challenge are investigated in detail.

UpdateEnvironmentKS

The UpdateEnvironment knowledge source descends from the AbstractKS defined in the
current blackboard architecture. It constitutes the basis for communication with the LVTE,
namely, by initiating time-stepping of the LVTE from within UpdateEnvironmentKS. This
includes triggering the Visualizer mechanism that sketches the virtual environment at each
time step.

UpdateEnvironmentKS is executed continuously and is directly bound to the blackboard
scheduler. The knowledge source is triggered as soon as the blackboard agenda becomes
empty. By updating the environment in a cyclic way, UpdateEnvironmentKS constitutes a
necessary prerequisite for all knowledge sources that incorporate data from the LVTE system,
such as the VisualDisplayKS, the AuditoryDisplayKS or the VisualIdentity knowledge source
(see below).

The update schedule followed by UpdateEnvironmentKS directly depends on the block/chunk
size, B, (given in signal samples) and the signal sampling frequency, fS , used in the
SSR. In order to ensure audio-visual synchrony, the LVTE is triggered by the afore-
mentioned knowledge source every B/fS . Note that current setting are: fS=44100Hz,
B=2048 samples.

SignalLevelKS

This knowledge source descends from the AuditoryFrontEndDepKS and is responsible for
detecting the signal level in a processed audio chunk. To that end, assume that ci is an
auralized sound chunk sampled at simulation cycle i with the standard sampling rate fS .
Then, the variance of this chunk equals

σ2(ci) =
1

N

N∑
n=1

|xn − µx|2 , (2.1)

where N = B is the number of samples in the chunk, and xn is a value from c, sampled
at t = n

fS
s. The chunk variance represents the ‘power of the (partial) signal with its

mean removed’ [27]. Mind that this measure is only one option to express the signal
level. The total energy or the average power of the chunk could be used as well – compare
[27].

Note that the signal level provides a convenient measure to assess (on a per-chunk-basis)
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2.2 Multi-modal feedback – forming audio-visual objects

the reliability of the auditory classifiers currently used in the Two!Ears framework. This
renders the SignalLevelKS a mandatory precursor for several of the knowledge sources
discussed below.

LocalizerKS

LocalizerKS is nearly identical to LocationKS employed in the current blackboard archi-
tecture. However, LocalizerKS, contrary to LocationKS, is called in each simulation cycle.
Further, LocalizerKS is triggered by observing results posted by SignalLevelKS, namely,
when σ2(ci) > ε holds, then the former KS estimates the azimuth of the incoming signal.
Currently, ε is set to the limits of machine precision.

AuditoryIdentityKS

The auditory-identity knowledge sources engaged in the actual context also descend from
AuditoryFrontEndDepKS and are largely identical to IdentityKS-code fragments found in
the current Two!Ears architecture.

Going beyond the original formulation, AuditoryIdentityKS employs an energy criterion
for deciding whether or not to trust the results of its internal sound classifier. Actually, an
auditory identity hypothesis, Ha, as generated by this KS is trusted if and only if σ2(c) > ε.
Otherwise, the probability of Ha is clamped to zero. This practice avoids the processing of
false positive hypotheses in signal intervals with no audible data.

Since the LVTE/blackboard system has to function in a multi-modal environment, the
knowledge source generates an auditory-identity hypothesis (see above) in order to distin-
guish its estimates from visual-identity hypotheses as generated byVisualIdentityKS – see
below.

Note that the proposed system currently comprises three different auditory knowledge
sources, that is, SpeechIdentityKS, KnockIdentityKS, and AlertIdentityKS. So far, these
entities have to be called in a daisy-chain manner. This issue remains to be addressed in
later system versions.

VisualIdentityKS

Complementing the auditory identity knowledge sources, VisualIdentityKS was created
from scratch – inheriting from AbstractKS in order to capture visual-identity information
from the current scenario. To that end, the knowledge source re-uses the approach found
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

in [43] as follows. Let Q = [q1, ..., qNQ ] be the set of all sources in the LVTE. Further,
let pi define the position of audio-visual source i in the azimuthal plane. Be CVi the true
visual category of source i, that is, this category stems from the set SV . In addition, define
r as the current position of the robot.

Now, let di = pi − r be a vector that extends from the robot’s center to the center
of source i. With that, set up the distance, di = ||di||, from the robot to source i.
Further, let hr be the current looking direction (that is, the heading vector) of the robot.
Define

φi = arccos

(
hr ·di

||hr|| · ||di||

)
(2.2)

to be the relative azimuth between the robot’s looking direction and source i. Based on
the above definitions, let

Dd(di) = 1− 1

1 + e
di−10

2

(2.3)

represent a degradation function that relates the leveling of visual sensor reliability to an
increasing distance between the robot and source, i. Let further

Da(φi) = e−0.5(
φi
90

)2 (2.4)

constitute a degradation function that sketches the loss in sensor reliability caused by
an increase in the relative azimuth between the robot and source i. Unifying the above
degradation functions, let

vP,i = vP,i(di, φi) = Dd(di) ·Da(φi) (2.5)

be the visual perceptibility of source i – compare [43]. Let further CVj sample all visual
categories in SV . With that, a bifurcating function

pi(C
V
j , vP,i) =

0.5 + 0.5

e
20 ·(vP,i−0.5)

, if CVi = CVj

0.5− 0.5

e
20 ·(vP,i−0.5)

, if CVi 6= CVj
(2.6)

can be set up that computes the category membership estimates for source i as follows.
If the robot is spatially close to the source and looks directly towards it, the estimate
for the source’s true category, CVj = CVi , approaches 1.0, whereas the estimates for all
other categories, Cvj 6= CVi , tend to zero. If the device turns/steps away from source
i, the estimates for all categories, pi(CVj , vP,i), settle around 0.5, thus becoming equally
distributed.
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2.2 Multi-modal feedback – forming audio-visual objects

Equation 2.6 intuitively approximates the information content that can reasonably be
expected from simulated or physical vision sensors. Note that the above list of degradation
functions can easily be extended. It would, for instance, be straightforward to define sensor
degradation caused by diminished illumination or by fog.

With the above, the visual-identity knowledge source computes the observation probability,
p(CVk ), for a dedicated visual category with index k as follows,

p(CVk ) = arg max
i

pi(C
V
k , vP,i) . (2.7)

The observation probabilities for all visual categories are eventually stacked into a vector
and pushed to the blackboard. Mind that the visual-identity knowledge source generates
all category hypotheses simultaneously. Therefore this KS needs to be called only once per
time step in the blackboard-scheduling scheme, contrary to the auditory-identity knowledge
sources, which have to be fired sequentially.

ReactToStimulusKS

Inheriting from AbstractKS, ReactToStimulusKS allows to form auditory-object hypotheses
in the following way. The knowledge source monitors the level of the audio signal as provided
by SignalLevelKS. Assume that σ2(ci) exceeds the trigger threshold, ε, in simulation cycle
ion and remains above the threshold until cycle ioff . Assume further that exactly one
audio-visual source, qs, can be active in each simulation cycle. Consequently, source
activation is postulated to be sequential.

With that, it can reasonably be expected that the sound data sampled in the interval
Iact = [ion ... ioff ] corresponds to exactly one stimulus emitted by source qs. Following this
reasoning, ReactToStimulusKS accumulates auditory information within the aforementioned
interval in order to formulate a hypothesis concerning the location and identity of the
perceived stimulus. To that end, the azimuth posterior distribution, pi(φ), computed by
LocalizerKS, is retrieved at each i ∈ Iact and added to the source’s location accumulator,
ps(φ), according to

ps(φ) =
1

|Iact|

ioff∑
n=ion

pi(φ) . (2.8)

Further, identity information is acquired from all available AuditoryIdentityKS as follows.
Assume there exist auditory-identity-knowledge sources, K1

Aud. . . . K
|SA|
Aud.. Let Haj,i =

H(Kj
Aud.) be the auditory-identity hypothesis computed by Kj

Aud. in simulation cycle
i. Then, Haj,i reflects the probability for the overheard stimulus at cycle i to belong to
auditory category j. From that the average category membership for the stimulus emitted
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

by source qs can be synthesized as follows,

Haj (qs) =
1

|Iact|

ioff∑
n=ion

(
Haj,i

)3
. (2.9)

Note that the cubic extension in the above formula was chosen empirically in order to
assign higher weight to sharply peaked probability distributions.

With the above, let

φs = arg max
φ

ps(φ), with φ ∈ [0..2π] , (2.10)

KA
s = SA

[
arg max

j
Haj (qs)

]
, with j ∈ [1, ..., |SA|] (2.11)

be the putative azimuth of qs, respectively, the source’s expected auditory category label.
Given φs and KA

s , ReactToStimulusKS forms an auditory-object hypothesis, Hos = {φs,KA
s },

for the active source and sends this hypothesis to the blackboard memory. Note that the
integration method used above renders quite robust azimuth/category estimations. The
results as generated in anechoic conditions appear to be reliable, even without integration
of ConfusionKS or ConfusionSolvingKS.

TurnToKS

The TurnToKS descends from AbstractKS and reads from blackboard memory the auditory
object hypothesis as generated by ReactToStimulusKS. Given the putative azimuth, φs,
for an active sound source, qs, TurnToKS triggers robot rotation in the LVTE. This
rotation is executed by the robot simulator in a completely transparent manner, which
means that the blackboard is not blocked while the platform homes in on φs. Note
that the simulator always computes the most time-efficient-rotation pattern, taking into
account the maximum angular velocity of the robot device. Once φs is reached, the LVTE
broadcasts a notification event, which is received byBuildAudioVisualObjectKS described
below.

BuildAudioVisualObjectKS

As soon as the above TurnToKS focused a hypothetical acoustic source at φs, BuildAu-
dioVisualObjectKS takes over and tries to fuse audio and visual information. To that end,
the knowledge source reads the category estimate stored in Hos and compares it to the the
most plausible visual category inferred from the results delivered by VisualIdentityKS. For
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2.2 Multi-modal feedback – forming audio-visual objects

the focused source qs, this category is found via

KV
s = SV

[
arg max

k
p
(
CVk
)]

. (2.12)

To verify or falsify audio-visual category pairs, the blackboard is primed with a list of
correct pairs, Lok. For the current experiment, let

Lok = {(‘person’, ‘speech’), (‘door’, ‘knock’), (‘siren’, ‘alert’)} . (2.13)

If the pair {KA
s ,K

V
s } is in Lok, BuildAudioVisualObjectKS acknowledges correctness of

the initial auditory hypothesis and builds a blackboard entry for a new audio-visual object,
{KA

s ,K
V
s }, at φs ◦ azimuth. If {KA

s ,K
V
s } /∈ Lok, the initial auditory hypothesis is assumed

to be wrong, causing the knowledge source to notify the experimenter and discard the
inferred audio-visual object. At this point, low-level algorithms could be called to enhance
auditory-feature extraction and correct the erroneous inference.

VisualDisplayKS and AuditoryDisplayKS

VisualDisplayKS and AuditoryDisplayKS enable the experimenter to continuously ob-
serve the hypotheses generated by VisualIdentityKS and the auditory-identity knowledge
sources. The auditory-display knowledge source descends from AuditoryFrontEndDepKS.
Its structure and purpose are inspired by IdTruthPlotKS found in the current Two!Ears
framework.

In contrast, the visual-display knowledge source was constructed from scratch and inherits
from AbstractKS. Note that neither VisualDisplayKS nor AuditoryDisplayKS are knowledge
sources in the literal sense. They should instead be considered as auxiliary mechanisms that
enable straightforward debugging in the LVTE/blackboard system.

It remains to set up a purposeful binding scheme for linking the knowledge sources listed
above. Even for the comparatively straightforward task of audio-visual-object formation,
the resulting connection pattern becomes quite complex – as Fig. 2.4 shows. Note that
the activation pattern of the network is indicated by the arrow tips. An arrow pointing
from knowledge sourceA to knowledge sourceB means that the latter is activated after the
former. The depicted blackboard scheduling is experimental and is going to be re-assessed
in upcoming system versions.
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ReactToStimulusKS TurnToKS

Figure 2.4: The basic LVTE/blackboard system configured for solving the audio-visual-object
formation task (see running text). Colors indicate additional connectivity. Red means that the
tinted KS can communicate with LVTE via the robotConnect variable of the blackboard. Green
means that the corresponding KS is dependent on the blackboard’s AFE connection
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2.2 Multi-modal feedback – forming audio-visual objects

2.2.2 Experiments regarding audio-visual object formation

To assess the the above audio-visual-object-formation scheme with respect to localiza-
tion precision and auditory categorization, plain test conditions were defined as follows.
NT = 100 scenarios (10 x 10m, anechoic conditions) were auto-generated with a ran-
domly placed single source, qtest. Let pGTtest represent the randomly chosen ground-truth
coordinates of qtest in the x–y plane. Assume that the onset of source activity is at
t = 0 s, its offset at t = 1.5 s. The stimulus emitted by qtest is randomly selected from
IEEE’s AASP categories {‘speech’, ‘alert’, ‘knock’} as found in the Two!Ears data
repository. The complete duration of the scenario is TD = 3 s. The robot is placed at
r = [5, 5]T .

In each of the NT scenarios, the task is to acquire the unknown stimulus, locate it by
means of its global azimuth angle and form an auditory-object hypothesis. Then, the
robot platform turns towards the estimated location of the putative auditory object and
uses simulated visual information to verify the auditory-object hypothesis. If auditory and
visual information coincide, the system forms a new audio-visual object and sends it to the
blackboard.

Figure 2.5: Experimental localization performance of the Two!Ears system in audio-visual
object formation. The error in φ (azimuth) accumulates around 0.0103 rad (0.5889 ◦). See running
text for details
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

If, however, the acquired visual information does not comply with the initial auditory-object
hypothesis, the latter is falsified. Please note that with the above, performance measures
can be set up for the proposed audio-visual-object-formation routines in the following
way. First of all, ReactToStimulusKS should localize qtest as precisely as possible. To
that end, assume that the estimated azimuth of qtest is φEtest. Then, define the vector
vEtest[cos(φEtest), sin(φEtest)]

T that describes the direction vector pointing from the robot
towards the expected position of qtest.

Let further vGTtest =
(
pGTtest − r

)
/||pGTtest − r|| be the normalized direction vector pointing

from the robot’s position towards the known, true position of qtest. With that, the azimuth
error in each scenario i becomes

Errφi =
∣∣arccos

(
vGTtest ·v

E
test

)∣∣ . (2.14)

For good localization performance, Errφi should be as small as possible for all test scenarios.
Figure 2.5 shows a histogram of the azimuth errors acquired in the randomly generated
test scenarios described above. Obviously, localization is constantly precise, with a mean
error of 0.0103 rad (0.5889 ◦) and a standard deviation of 0.0192 rad (1.0985 ◦). Note that
the outliers in Fig. 2.5 can likely be attributed to the challenging quality of the employed
stimuli.
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2.3 Active exploration – building environmental maps

2.3 Active exploration – building environmental maps

(The following relates to c1, c4, and c6)

Besides the formation of audio-visual objects and multi-modal feedback, the Two!Ears
project aims at a system architecture that allows for active exploration. With this goal in
mind, the robot has to wander the environment in order to acquire additional information
about the scenario. In the current context, active exploration will be employed to retrieve
the world coordinates of each active sound source in the x–y plane.

Assume, as above, that Q = [q1, ..., qNQ ] is the set of all active (static) sources in the
LVTE. Further, let pGTi define the ground-truth position of acoustic source, i, in the
azimuthal plane. Note that currently a bijective relation between the physical sound
sources and the emitted acoustic stimuli is postulated. That is, if any qi emits a stimulus
of category KA

i , stimuli emitted by all other sound sources have to be chosen from SV \KA
i .

In conclusion, define rt as the position of the robot at time t.

All sources in Q are activated in a sequential, repetitive pattern of the following form,
q1 → q2 → . . . qNQ → q1 → . . . . Intervals between consecutive source activations
are set to 0.2 s. This pattern is required to let ReactToStimulusKS cleanly lock on an
active source, thereby providing reliable category/azimuth information. Enhanced localiza-
tion/segmentation methods – such as sketched in D3.2 – will be tested in later system ver-
sions in order to allow for simultaneous activation of multiple sources.

2.3.1 Knowledge sources – definition and binding pattern for
environmental map formation

Applying the LVTE/blackboard system to the active-exploration domain requires a number
of additional knowledge sources, which are assessed in detail below. Adding up to that, a
redesign of the blackboard wiring – shown in Fig. 2.4 – becomes necessary. The required
modifications are also described in the following discussion.

MoveToKS

MoveToKS inherits from AbstractKS and reads from the blackboard-memory positionRequest
entries, generated by MemoryFormationKS described below. Assume that a given position
request demands the robot to reach some goal position, pgoal. Then MoveToKS triggers
robot motion in the LVTE framework, guiding the robot towards pgoal along a a straight
line. Mind that in the current version the robot follows this path as if it were equipped with
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

omniwheels in order to significantly facilitate motion planning. In later system versions,
more complex motor patterns will be installed.

Similar to rotation, translatory motion is executed in a completely transparent manner, that
is, the blackboard is not blocked while the robot platform approaches pgoal. The system
always computes the shortest translatory path, taking into account the maximum linear
velocity of the robot device. Once pgoal is reached, the LVTE broadcasts a notification
event that is received by MemoryFormationKS.

MemoryFormationKS

Descending from AbstractKS, MemoryFormationKS generates memory representations
encoding the auditory categories and positions of the sound sources that are active in a
given scenario. Assume that the knowledge source maintains a memory set, M, which
expands with the arrival of novel memory patterns. To actually form such memory patterns,
results from ReactToStimulus knowledge source are monitored. Given an auditory object
hypothesis, Hoi,h = {φi,h,KA

i,h}, observed at time th for some putative source, qi, the short-
term memory compares KA

i,h to the categories of all memory patterns already available
inM. If the category is not found, a new memory representation, mKA

i
, is formed and

primed with the observation oh = {rh, φi,h} – where rh ≡ rth for notational simplicity.
Eventually, mKA

i
= {oh} is appended toM. For notational convenience assume that oj

represents the jth element of the memory set and K(oj) retrieves the auditory category
that oj belongs to.

If, however, the category KA
i,h can be retrieved from the memory-data set, all observations

oj = {rj , φj} in the corresponding entry, mKA
i
, are compared to the new observation

{rh, φi,h}, that is,

arg max
j

∣∣rh − rj
∣∣ < 0.5 ∧ arg max

j

(
arccos

(
vh ·vj

))
< 0.0175 , (2.15)

with vh = [cos(φi,h), sin(φi,h)]T and vj =
[
cos(φj), sin(φj)

]T .
If Eq. 2.15 holds, oh comprises no newinformation content and can safely be discarded.
Otherwise, the corresponding memory representation has to be augmented according to
mKA

i
= mKA

i
∪ {rh, φi,h}. This basic form of non-trival learning [29] keeps the memory

footprint as small as possible while simultaneously ensuring correct memorization of all
overheard category-related information.

Note that in the current version, release of previously acquired information (forgetting)
is not implemented in MemoryFormationKS. This feature is envisaged for forthcoming
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system versions together with the evolution of a ShortTermMemoryKS and a LongTer-
mMemoryKS.

The data stored inM can be used for source triangulation. Assume that sound source
pi emits a stimulus of category KA

i . Postulating that mKA
i

comprises more than one
observation and recalling the bijective correspondence between auditory cateories and
physical sources, the most likely position of the sound source corresponding to mKA

i

can be inferred in the x–y plane. To that end, information from all oj = {rj , φj} ∈
mKA

i
is used. Let lj = rj + l

[
cos(φj), sin(φj)

]T represent a line emanating from the
robot’s position in observation j and pointing along the direction vector derived from φj .
Finding the approximate intersection point of all lj – by means of least-square estimation
– then yields the most probable origin, pi, of the stimulus related to auditory category
KA
i . As the auditory categories are bijectively coupled to the sound sources – compare

above – pi is also the position of sound source qi. The list of inferred positions for all
overheard sources is eventually pushed to the blackboard memory as a triangulatedLocations
entry.

Note that the triangulation scheme as decribed above will fail without active exploration.
Given a passive robot and static sources, the KS would still learn all overheard auditory
categories. However, no oj with j > 1 would pass the criterion in Eq. 2.15, thus negating
the triangulation precondition

∣∣∣mKA
i

∣∣∣ > 1.

Consequently, MemoryFormationKS triggers an exploratory motion of the robot if, (a), no
further observation was made for TD = 5 s or, (b), observations for all active sources were
processed with regard to the current robot position. To enable evaluation of the latter, Nq

is passed to the knowledge source and the bijective correspondence between sources and
stimuli is exploited.

Computation of the optimal direction for the triangulation path follows an information-
maximization paradigm as follows. Given that the above condition (b) holds for the first
time, the putative azimuth angles for all observed sources are approximately known and
can be retrieved fromM. To that end, let φ1k describe the azimuth extracted from the
first observation in mKA

k
. With that, define a set of vectors, vk =

[
cos(φ1k), sin(φ1k)

]T with
k = 1 . . . NQ. The unit vector of the optimal triangulation path is then chosen according
to

vopt = arg min
v

NQ∑
k=1

(vk ·v) . (2.16)

This practice generates a triangulation path that is ‘as perpendicular as possible’ to
all given vk and thus maximizes the efficiency of follow-up triangulation. The length
of the path is currently chosen as

∥∥vopt∥∥ = 1.0m. For completeness note that com-
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Figure 2.6: The basic LVTE/blackboard system configured for solving the multi-source triangu-
lation task (see running text). Colors indicate additional connectivity. Red means that the tinted
KS can communicate with LVTE via the robotConnect variable of the blackboard. Green means
that the corresponding KS is dependent of the AFE connection of the blackbord
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putation of ideal exploration paths will become even more reliable if
∣∣∣mKA

i

∣∣∣ > 2, with
i = 1, ..., NQ.

The computed path is then transformed into a positionRequest and pushed onto the black-
board. At this point, MoveToKS takes over and guides the robot to the goal position deter-
mined by rcur + vopt, where rcur is the current position of the robot.

It may be argued that MemoryFormationKS should not be responsible for the compu-
tation of ideal exploration vectors. Therefore, future system versions will comprise a
dedicated ActiveExplorationKS that autonomously plans exploration paths using data from
MemoryFormationKS.

EnvironmentalMapKS

To visualize the results achieved by active exploration, EnvironmentalMapKS monitors the
blackboard memory for triangulatedLocations provided byMemoryFormationKS.

Once that such an entry has been found, a bivariate Gaussian, σ2 = 1.0, is placed
at each retrieved location in a two-dimensional probability map representation of the
environment. Note that, currently, the measured locations are not weighted according
to their reliability. Fig. 2.7 shows results from environmental-map formation in a basic
triangulation scenario.

Currently, EnvironmentalMapKS acts as a plain visualization unit. This role is intended to
be changed in upcoming system versions by augmenting the environmental-map knowledge
source with capabilities regarding multi-modal-cue fusion, autonomous map analysis and
information weighting.

As in audio-visual-object formation, it remains to provide the wiring scheme used to
interconnect the above knowledge sources. Figure 2.6 provides an overview of the binding
structure employed for triangulation and environmental map formation. Again, arrows
indicate the firing sequence for the single knowledge sources. Note that, as above, the
depicted blackboard scheduling is experimental and will be re-assessed in future system
versions.

2.3.2 Experiments regarding multi-source triangulation

To evaluate the precision of the proposed multi-source localization method, NT = 100
simple test scenarios (anechoic conditions, 10 x 10m) are generated. Assume that NQ = 3
sources, q1...3, are randomly distributed in every created scene. Let pGT1, ..., 3 represent the
ground-truth coordinates of q1...3 in the x–y plane. Note that these coordinates, despite
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Figure 2.7: An environmental map computed by EnvironmentalMapKS, using data from Memo-
ryFormationKS. The image shows estimates for a typical triangulation scenario. For visual clarity,
the true positions of all observed sources are overlaid (red dots) as well as the robot’s position
(green rectangle). Source labels and auditory categories {‘speech’, ‘alert’, ‘knock’} are manually
provided for completeness. Estimated sound-source positions are encoded as a ‘heat-map’, whereby
blue tones indicate low probability for the presence of a source and yellow tones represent likely
source locations. Room dimensions are 10 x 10m

their random nature, are forced to stay within a concentric ring with an inner radius of
ri = 2m and an outer radius of ro = 4m. The minimum azimuth difference between two
neighboring sources is ∆φ degree. The center of the ring is identical to the robot’s initial
position, r = [5, 5]T .

This practice allows the robot to move freely within the perimeter described by ri and
prevents sources to be placed too close to the periphery of the scene. Setting ∆φ to 30 ◦

ensures that the localizer will be able to cleanly lock on to each perceived sound source.
The activation schedule of the sources is sequential, using q1 → q2 → ...qNQ → q1 → . . .
as its standard pattern.

Intervals between source activations are chosen to equal 0.2 s, allowing ReactToStimulusKS,
and MemoryFormationKS to reliably process each overheard stimulus. With that, let pE1...3
represent the positions of the sound sources as estimated by the triangulation system. The
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Figure 2.8: Experimental results from triangulation experiments. The distance error accumulates
around 0.0793m. See running text for details

position estimation error for scenario i is then described by

ErrPosi =
1

NQ

NQ∑
j=1

∣∣|pEj − pGTj
∣∣| . (2.17)

Figure 2.8 shows the distribution of ErrPosi for all NT scenarios.

The position estimation errors accumulate about 0.0793m, with a standard deviation of
0.0578m. This documents a fair precision of the proposed multi-source triangulation scheme.
Note that the error metric in Eq. 2.17 does not disclose outliers with respect to single
sources. Indeed, such rare outliers exist. However, they are attributed to weak stimulus
quality and/or geometric source configurations that cannot reliably be triangulated with
the one-step exploration pattern proposed above. In upcoming system versions, multi-step
exploration will alleviate this issue.
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2.4 Attention-controlled head turning

(The following relates to c1, c4, and c6)

2.4.1 Introduction

A low-level attention module, HeadTurningModulationKS (HTMKS), was developed that
aims at modulating the head movements of the robot by inhibiting purely reflexive
behavior, such as moving the head every time that a sound pops up. Inhibition of this
reflexive movement relies on the following principle. The more an object is observed in
an environment, the more likely it is to appear in the future. Thus, HTMKS represents a
real-time learning algorithm that makes the robot learn the probability distribution of all
the objects that have been observed during the exploration of an environment. This learning
enables the robot to steer its attention (by means of head turning) to important sound
sources only, that is, to sound sources that have a low probability of occurrence. This notion
of importance was formalized through the concept of Congruence of an object with regards
to the explored environment – compare Sec. 2.4.4. In addition, HeadTurningModulationKS
embeds a multi-modal-fusion algorithm that can correct wrong audio-visual inputs or infer
a missing modality. Further, the algorithm triggers head movements in order to achieve a
step-by-step refinement of modality inference.

The HeadTurningModulationKS descends from the AbstractKS, and consists of two modules:
the Multi-modal Fusion and Inference module (MFImod), and the Dynamic Weighting
module (DWmod) – as described in [9, 43]. The focus is computed separately by these two
modules and the results are then fused in order to trigger a head movement. Figure 2.9
shows the integration of the HTMKS within the blackboard system, together with a
simplified scheme of the internal architecture of the HTMKS.

2.4.2 Definitions

Before describing these two modules, it is necessary to introduce the definitions and
notations that they rely on. Let R and E , respectively, be the robot and environment sets
with

E = {e(1), e(2), . . . , e(Ne)} , (2.18)

where e(i) ∈ E represents the ith environment explored by R, and Ne represents the number
of considered environments. Each environment, e(i), is defined as a set of objects, oj ,
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Figure 2.9: The basic LVTE/blackboard system configured for testing the HeadTurningModu-
lationKS. Red and green colors indicate additional connectivity: red means that the tinted KS
can communicate with the LVTE, via the robotConnect variable of the blackboard. Green means
that the corresponding KS is dependent on the AFE connection to the blackboard . Blue color
indicates Matlab®classes
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such that
e(i) = {o1, o2, . . . , oNi} , (2.19)

with Ni the number of detected objects in the environment, e(i). Each object, oj , is defined
by its relative angle to the robot, θj , an auditory label, aj , and a visual label, vj , so
that

oj = {θj , aj , vj}. (2.20)

The relative angle, θj , between the object and the robot is provided by LocalizerKS. The
multi-modal labels, aj and vj , are provided by AuditoryIdentityKS and VisualIdentityKS
and will be sent to MFImod. Now define the audio-visual categories c(i)(a, v) of the ith

environment by
c(i)(a, v) = {oj ∈ e(i), aj = a, vj = v}. (2.21)

The term c(i)(a, v) basically represents the collection of objects sharing the same auditory
and visual labels a and v respectively. All categories of the ith environment are gathered
into a set of categories C(i) such that C(i) = {c(i)(a, v)}.

2.4.3 Multi-modal fusion and inference module

The multi-modal fusion and inference module (MFImod) is responsible for the creation of
relevant audio-visual objects as needed by the Dynamic Weighting module – see Sec. 2.4.4.
It receives data from both AuditoryIdentityKS and VisualIdentityKS. MFImod is a real-
time-learning algorithm that aims at associating audio stimuli with visual stimuli and vice
versa by addressing the two following questions.

– How can bad or wrong classifier output be dealt with?

– How can the robot internally create a multi-modal object when one modality is
missing?

Actually, before transmitting outputs from classification experts to DWmod, these data
have to be correct. If not, the reaction of the robot will be erroneous. MFImod consists
on two distinct artificial neural networks, (i), a self-organizing map (SOMnet) and, (ii), a
Multilayer Perceptron (MLPnet). MFImod can be described as an autosupervised learning
algorithm. SOMnet will create audio-visual categories from output of the classification
experts. MLPnet will then use these categories to learn the coupling between audio
and visual data. No knowledge is thus put into the robot before it experiences an
environment.

At time step t = n, MFImod receives two vectors of probabilities, one from AuditoryIdenti-
tyKS, denoted a[n], and one from VisualIdentityKS, denoted v[n]. Then a vector av[n] is
defined as the vector resulting from concatenation of a[n] and v[n].
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If av[n] contains both audio and visual information, it is added to the matrix AV that
gathers all the previous audio-visual inputs received. The whole matrix, AV , is then sent to
SOMnet1, which will cluster it in order to create audio-visual categories, c(i)(a, v), without
any prior knowledge. Once these audio-visual categories have been created, MLPnet is
trained with the same input vector, av[n], but with a slight modification, namely, an
information-masking step is applied to it. This is computed by creating two new input
vectors from the audio-visual one, one with the audio information removed and the other
one with the visual information removed. These removals are achieved by setting all the
corresponding components to zero. To train MLPnet, the categories c(i)(a, v) created by
the SOMnet are used as the targets – this is why the system is defined as auto-supervised.
The training phase corresponds to learning of the association of auditory and visual
information.

Consequently, at every time step, the following two cases are possible.

– Audio and visual information is available. Then the input vector, av[n], is used to
train both the SOMnet and the MLPnet

– Audio or visual information is missing. Then the input vector, av[n], is sent directly
to the MLPnet to infer the audio-visual category

Note that if audio-visual information is available but the classification experts exhibit low
probabilities, what means untrustful classification, the input vector, av[n], will anyway be
sent to the MLPnet to be corrected.

To sum up, one step of learning consists of the following two components.

1. Creation of audio-visual categories as are derived from the data observed during
active exploration

2. Learning of associations between modalities

After sufficient learning, the module is able to, (i), correct information from the classification
experts, if they are not trustful enough and, (ii), infer a missing modality. At each time step,
the audio-visual category created, c(i)(a[n], v[n]), will be fed into the Dynamic-Weighting
module (DWmod) – see Sec. 2.4.4.

The Multi-modal-Fusion-and-Inference module has one major advantage and one major
drawback. The most striking advantage is that it is unsupervised and highly flexible,
since it creates knowledge for the robot that does not depend on prior information. The
main drawback is, however, that it is prominently dependent on initial exploration of the

1 Note that, for the moment, no memory has been implemented, since the duration of the simulations is
quite short – about some minutes with around 30 objects present in the environment
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

environment.

2.4.4 Dynamic-weighting module

This module receives the inferred audio-visual category from the Multi-modal-Fusion-and-
Inference module. DWmod is responsible for the modulation of the head-turning reflex
triggered by auditory stimuli. The aim of DWmod is to prevent the robot from making
ceaseless head movements towards any new sound source that occurs in the environment.
This is achieved by weighting in real time all the perceptual objects detected by the robot,
according to their importance. Importance is here formalized by the notion of Congruence
defined along

(a) Features shared by two perceptual objects, such as visual and auditory labels

(b) Links that exist between a perceptual event and a given environment

If an object has been detected as incongruent, a quick head movement will be triggered
towards the direction of the object. This head movement will have several consequences,
which together lead to more accurate perception of the object. These consequences
are

(i) Enhancing of estimated position of the object by updating its ITDs and ILDs

(ii) Enhancing the discrimination of the object from other sound sources present in its
surroundings – in other words, address the problem of sound-source separation as
observed in the Cocktail-Party Problem

(iii) Accessing missing visual information regarding the object

In order to decide if an object, oj , is of interest, each object a weighting function, w(oj),
is associated to. In all of the following, an audio-visual object, oj , will be classified as
incongruent if other objects belonging to the same category, c(i)(aj , vj), have not been
detected by the system in the past. The classification of congruent versus incongruent
objects is based on the object-weighting function, w(oj), with w(oj) ∈ [−1; 1]. Hereby
w(oj) = −1 represents a highly congruent object, while w(oj) = 1 indicates a highly
incongruent object. Note that the former case will not trigger any movement of the robot
while the latter will.

First, and based on the previous definitions, lets define the pseudo-probability, that is, the
statistical frequency, p(c(i)(aj , vj)), as follows,

p
(
c(i)(aj , vj)

)
=
|c(i)(aj, vj)|

Ni
, (2.22)
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2.4 Attention-controlled head turning

Figure 2.10: Object weight, w(oj)[n], as a function of time. Depending on the congruence of the
object, one of the two functions is selected. Dots indicates the discrete time steps where values are
selected

with
|C(i)|∑
n=1

p(c(i)(an, vn)) = 1 , (2.23)

where |.| denotes the set cardinality. The pseudo-probability, p(c(i)(aj , vj)), denotes the
likeliness of the occurrence of an object, oj , that belongs to category c(i)(aj , vj). On this
basis, the weight, w(oj) of the object oj is defined by two smooth symmetric sigmoid
functions lying in the range of [−1; 1], with

w(oj)[n] =

{
1/(1 + 100 e−2n) if p(c(i)(aj , vj)) < K,

1/(1 + 0.01 e2n)− 1 else,
(2.24)

where Ki denotes a frequency threshold and n represents the time-frame index. w(oj)[n]
is plotted in Fig. 2.10 as a function of time index. Eq. (2.24) clearly shows the relation
between a high object weight, w(oj), and a low probability of occurrence of the object’s
category, p(c(i)(aj , vj)). Thus, if object oj appears in the current scene, it will be catego-
rized as incongruent, and a motor command will be triggered. The threshold, K, is set
to

Ki =
1

|C(i)|
, (2.25)
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that is, to w(oj) = 1 (which denotes incongruency), if the probability, p(c(i)(aj , vj)), is
smaller than a random choice among equiprobable categories.

For a frame length of Tw = 20ms, one then gets w(oj)[n] ≈ 1 at time t = 100ms. As a
last step, once the weight, w(.), of a new object has been computed, it has to be decided
whether a motor command has to be triggered. A motor command, m[n], is produced
to let the robot’s head turn to the current sound source at time index n, according
to

m[n] =

{
1 if w(oj)[n] > 0.98,

0 else .
(2.26)

A threshold value of 0.98 was selected due to the value of the weighting function, w(.), at
100ms – see Eq. 2.24.

2.4.5 Simulation and results

Simulations were conducted in framework of LVTE. The results of focus computation
using solely DWmod have been presented in [9]. In the experiment reported here, DWmod
was used in couple with MFImod, thus, only the resulting output of this combination is
discussed here.

A free field environment populated with three sources was set up in order to test HTMKS –
see Fig. 2.11. Every source had a dedicated visual label, but audio stimuli were randomly
emitted by one of the three sources. Three audio stimuli (‘speech, ‘knock ’, and ‘alert ’)
and three visual stimuli (‘person’, ‘door ’, and ‘siren’) were chosen to test the HTMKS
for a 60-s-long simulation. 24 audio-visual objects were randomly created with a rate of
correct audio-visual pairs of 80%. The correct AV pairs are the following: person/speech,
door/knock, and siren/alert. Every other AV pair is thus considered to be erroneous.

Figure 2.12 shows the results of a single simulation. In this scenario, the HTMKS (blue
solid line) was tested versus a naïve robot that would turn its head towards every new
sound source (black dashed line). The first result was the number of head movements
triggered, that is, 16 for the HTMKS versus 24 for a naïve robot. It can be seen that the
first inhibition of a reflexive movement occured early, namely, at the 14th object – from
t = 33.25 s to t = 34.69 s. The red line shows that MFImod did not need further information
about this object at this time. Consequently, the focus computation was only based on
DWmod. However, since the object was detected as being congruent with respect to what
the robot already had observed, no head movement was triggered.

The second interesting result is about the correction of wrong audio-visual pairs. As to
this simulation, four objects out of 24 were created with a wrong combination of audio
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2.4 Attention-controlled head turning

Figure 2.11: Output of the audio classifiers during the 60 -s simulation. The boxes indicate the
onset and offset time of the objects populating the environment. The upper color denotes the
ground-truth knowledge – see legend. The lower color indicates whether the labels of the objects
have been picked up from among the set of correct AV pairs (green color) or from among the
erroneous set (red color)

and visual pairs, nameley, ≈ 16.6 %. The erroneous objects are #5, 14, 20 and 24. In
Figure 2.12, the black asterisks indicates that HTMKS – via MFImod computation – was
able to correct these wrong AV pairs. Further, for objects #14, 20 and 24, MFImod was
able to infer the missing label without turning the head. This means that MFImod did
not allow the robot to get the wrong visual information. Thus, in order to verify the
robustness of the MFImod when faced with wrong AV pairs, the performance of inference
with erroneous input vectors was tested – for instance, door/speech.

As an example, the case of object # 14 was assessed by using the mean data of this object,
that is, [0.6064, 0.0145, 0.3790, 0, 0, 0]. The first three components correspond to respective
audio-classifier outputs, namely, from the speech, knock, and alert classes. The last three
components correspond to the visual-classifier output, that is, the person, door, and siren
classes. The latter are equal to zero since no head movement was triggered towards the
direction of this object. These three components were then replaced with the set of values
consigned in Tab. 2.1. The two possibilities for wrong-label combinations were tested,
namely, door/speech and siren/speech. Both were presented with two different percentages
of confidence – 60% and 80%.

The results presented in Tab. 2.1 show that even with wrong audio-visual pairs, the system
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

Figure 2.12: Results of the focus computation by the HeadTurningModulationKS. Blue line:
objects the robot is facing. Black line: behavior of a purely reflexive robot. Red line: module
responsible for the focus computation (0: DWmod, -1: MFImod). The boxes indicate the objects
and their labels. Asterisks indicates a good correction of a wrong AV pair of labels by the HTMKS
(through the MFImod).

Input vector Output vector Inferred AV class
audio components visual components

[0.606, 0.014, 0.379]

[0.2, 0.2,0.6] [0.14, 0.19,0.65, 0.00, 0.00, 0.00] person/speech
[0.1, 0.1,0.8] [0.25,0.74, 0.00, 0.00, 0.00, 0.00] door/knock
[0.2,0.6, 0.2] [0.00, 0.00,0.99, 0.00, 0.00, 0.00] person/speech
[0.1,0.8, 0.1] [0.00, 0.00,0.99, 0.00, 0.00, 0.00] person/speech

Table 2.1: Inference of the audio-visual label by MFImod with simulated visual components for
object # 14. The values in bold indicates the highest component of the vector – values are rounded
to the 2nd decimal. The first three components correspond to respective audio-classifier outputs,
that is, speech, knock, and alert. The last three components denote the visual-classifier outputs,
that is, person, door and siren

was able to perform a correction in a relevant way. For object #14, the audio label
was ‘speech’. It can be seen that for the input vectors #1, 3 and 4, the system output
corresponded to the audio-visual category ‘person/speech’. This holds in particular for
vector #4, in which the ‘door ’ component was set to a very high value. However, for
vector #2, the system corrected the input by inferring the ‘door/knock ’ label. This result
shows that the system works fine. Indeed, it inferred an audio-visual category that belongs
to the correct-pair set as defined at the beginning of the simulation. The reason for the
inference not being correct was that the visual component had taken lead over the audio
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2.4 Attention-controlled head turning

component.

2.4.6 Discussion

Results from the first simulations are very encouraging and constitute a first proof-of-
concept for HeadTurningModulationKS. A knowledge source is thus available that is able to
inhibit reflexive movements of a naïve robot in order to let it steer its attention to important
objects. In addition, HTMKS embeds a multi-modal-fusion module that can correct wrong
audio-visual data or infer a missing modality. The main advantages of this system are, (i),
that it continuously learns and, (ii), that it is multi-modal (Actually, it is conceptually
possible to add any source of information into MFImod) and, (iii), that no prior knowledge
has to be put into the system, thus making it highly flexible and more relevant in respect
of the bio-inspired paradigm that Two!Ears adopts.

Ongoing work on the Head-Turning-Modulation approach as implemented on HTMKS is
focused on testing it in more complex and realistic scenarios, particularly in the follow-
ing.

– More types of sound and visual stimuli

– Overlapping events

– New environments to learn

– Additional information taken into account, such as position, loudness and speed

– Longer simulations

– Short-, mid- or long-term-memory implementation
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2.5 Formation of attention and attention-based control of
feedback processes

(The following relates to b1, c1)

2.5.1 Background

Human listeners must answer two questions in order to fully understand an acoustic scene,
namely, what the sound sources are, and where they are. In machine hearing, these two
issues have been addressed by many studies via computational approaches for sound-source
separation, classification and localisation [44]. However, machine systems for answering
‘what’ and ‘where’ questions are typically much less tightly-integrated than they appear to
be in biological hearing. Work in Two!Ears has addressed this issue by developing an
approach for binaural localisation that exploits top-down knowledge about the spectral
characteristics of sources in acoustic scenes.

A number of psychophysical studies have found evidence for top-down effects in sound
localisation. For example, covert shifts of attention can reduce reaction times when the
spatial location of a target sound is cued by a preceding sound [36]. Physiological studies
have also shown that sound localisation can be modulated by top-down influences. In
the barn owl, sound localisation (including orienting behaviour such as head and body
movements) is influenced by selective attention at the level of the midbrain; neural responses
associated with the location of behaviourally relevant stimuli (such as a food source) are
enhanced [15]. Similarly, neural circuitry for gaze control exerts a top-down influence on the
responsiveness of auditory neurons that are tuned to specific spatial locations [45]. Taken
together, these findings suggest the existence of cross-modal mechanisms for top-down gain
control of spatial hearing.

2.5.2 System description

A framework for sound localisation is proposed in which information from source models
is used to selectively weight binaural cues. The system therefore combines top-down and
bottom-up information flow within a single computational framework. By exploiting source
models in this way, sound-localisation performance can be improved under conditions in
which multiple sources and room reverberation are present.

The auditory front-end (AFE) of Two!Ears was employed to analyse binaural ear signals,
consisting of a bank of 32 overlapping Gammatone filters with centre frequencies uniformly
spaced on the ERB scale between 80Hz and 8 kHz [44]. Inner-hair-cell function was
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2.5 Formation of attention and attention-based control of feedback processes

approximated by half-wave rectification. Afterwards, the cross-correlation between the
right and left ears was computed independently for each frequency channel using overlapping
frames of 20ms duration with a shift of 10ms.

Two primary binaural cues, ITD and ILD, were extracted as features for binaural localisation.
The ITDs were estimated as the lag corresponding to the maximum in the cross-correlation
function output. The ILD corresponded to the energy ratio between the left and right ears
within the analysis window – expressed in dB. The pair of ITD/ILD features was estimated
for each frequency channel independently, to form a 2–D-localisation feature vector, otf ,
for time frame t and frequency channel f .

Source spectral characteristics were modelled using ratemap features [6]. A ratemap is
a spectro-temporal representation of the auditory nerve-firing rate, extracted from the
inner-hair-cell output of each frequency channel by leaky integration and downsampling.
For the binaural signals used here, the ratemap features were computed for each ear and
then averaged across the two ears. They were finally log-compressed to form 32 feature
vectors, xt. All these processing steps were executed within the Two!Ears software
system.

Gaussian mixture models (GMMs) were then used to model the relations between the
binaural features and corresponding azimuth angles statistically. 72 azimuth angles, φ, in
the full 360 ◦ azimuth range (5 ◦ steps) were considered. A separate set of GMMs, λφf , was
used for each frequency channel, f . Given the observed localisation-feature vector, otf , at
time frame t and frequency channel f , the posterior probability of azimuth angle φ was
computed as

P (φ|otf ) =
p(otf |λφf )∑
φ p(otf |λ

φ
f )
, (2.27)

where p(otf |λφf ) is the likelihood function of GMM, λφf .

The posteriors were then integrated across frequency to produce the probability of az-
imuth, φ, given features ot = [o>t1, . . . ,o

>
t32]
> of the entire frequency range at time

t,

P (φ|ot) =

∏
f P (φ|otf )ωtf

P (ot)
, (2.28)

where
P (ot) =

∑
φ

∏
f
P (φ|otf )ωtf . (2.29)

Assuming that the target sound source was stationary, the frame posteriors were further
averaged across time to produce a posterior distribution, P (φ), of sound-source activity.
Here ωtf was introduced as a factor between [0, 1] for selectively weighting the contribution
of binaural cues from each time-frequency bin in order to localise the attended target source
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in the presence of competing sources. When ωtf was zero, the time-frequency was excluded
from localisation of the target source. This allowed cues that derived from a frequency
channel dominated by the target source to be emphasised. Or conversely, cues that derive
from an interfering source could be penalised. Here, top-down information from source
models was combined to jointly estimate these localisation weights.

Let λs represent the spectral characteristics of a sound source, s, in a set of source models,
s = 1, . . . , S. The set of source models was employed to jointly explain the observed
ratemap features. In particular, given the observed log-compressed ratemap feature vector
yt = [yt1, . . . , yt32]

> extracted at time frame t from the binaural signals, the goal was to
determine whether each feature, ytf , was dominated by the energy of the target source,
xtf , or was corrupted by the combined energy of interfering sources, ntf . Under the
log-max approximation [41] of the interaction function between two acoustic sources, that
is, ytf ≈ max(xtf , ntf ), the localisation weight, ωtf , was defined as the probability of ytf
being dominated by xtf , namely,

ωtf = P (xtf = ytf , ntf ≤ ytf |yt, λx, λn) , (2.30)

where λx and λn are the models for the target and interfering sources, respectively. Here,
the source models, λs, are represented as GMMs with diagonal covariance matrices. Then,
λn was built by combining all the source models except that of the target source, that
is,

p(yt|λn) =
∑
s 6=x

P (s)

Ms∑
m=1

P (m|λs)N
(
yt;µ

(m)
s ,Σ(m)

s

)
, (2.31)

where the prior probabilities of the sound sources, P (s), were assumed to be equiprob-
able. Alternatively, the above model can be expressed as a large GMM by pooling the
Gaussians from all the source models together and multiplying the mixture weights by the
corresponding source prior probabilities, so that the resulting mixture weights sum up to
one.

Using the expressions for the λx and λn models in Eq. 2.30, and after some algebraic
manipulations, an expression for the localisation weights, ωtf , was derived [16, 34]. See
[21] for full details of the derivation.

2.5.3 Evaluation

Binaural audio signals were created by convolving monaural sounds with head-related
impulse responses (HRIR) or binaural room-impulse responses (BRIRs). Binaural mixtures
of multiple simultaneous sources were created by spatialising each source signal separately
before adding them together in each of the two binaural channels. Speech material
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for the target source was drawn from the GRID corpus [10]. Six types of sounds with
various spectro-temporal complexities were used as the interfering sources – as shown in
Figure 2.13.

As shown in previous studies [24, 46, 25], multi-condition training (MCT) can increase the
robustness of localisation systems in reverberant multi-source conditions. In this study, the
localisation models were trained on the binaural MCT features created by mixing a target
signal at a specified azimuth with diffuse noise as described in [24]. The source model
parameters were estimated from the ratemap features for each source separately, using the
EM algorithm. For evaluation, the target source was mixed with one of the interfering
sources in a binaural setting. Both target and interfering signals were normalised to the
same RMS value prior to spatialisation, and the target source varied in azimuth within
the range of −60 ◦, left, and 60 ◦, right, in 5 ◦ steps. The azimuth of the interferer was
randomly selected from the same azimuth range while ensuring an angular distance of at
least 10 ◦ between the two competing sources.

The proposed framework was evaluated in the following two scenarios.

(i) The knowledge of the interfering source was assumed to be available a priori

(ii) The interfering source was unknown

In the first scenario, the interaction between the target source model and the correct
interfering source model for each acoustic mixture was used to estimate the set of localisation
weights, ωtf . In the second scenario where the interfering source was unknown, a universal
background model (UBM) was created by pooling the Gaussians from all the source
models together. The UBM was then used together with the target source model to
estimate the localisation weights. A GMM-based baseline localisation system [24] was
also evaluated for comparison. This baseline system employed the same localisation
models used in the proposed framework, but no top-down knowledge of sound sources was
applied.

The gross accuracy rates for localising the target source are shown in Fig. 2.14 for various
interferer conditions and reverberant conditions. First, the baseline performance (black
bars) shows that the spectral characteristics of interfering sources have an impact on the
localisation accuracy. While the ‘alarm’ source had only a small degrading effect, with
gross accuracies above 80 % across all test conditions (both anechoic and reverberant), the
presence of other interferers such as the ‘telephone ring’ had a more detrimental effect.
The poor baseline performance in the ‘telephone-ring’ condition is particularly striking
given the narrow-band nature of the sound. However, as shown in Fig. 2.13, the energy of
the ‘telephone-ring’ sound is mostly concentrated in the high frequency range above 2 kHz.
It is known that ILDs are more pronounced at high frequencies due to the size of the head
compared to the wavelength of incoming sounds. Since the ‘telephone ring’ dominated
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Figure 2.13: Ratemap representations of six interfering sounds

these frequencies across the entire signal duration, only small glimpses were available during
which ILDs could be used to localise the target source.

When the spectral characteristics of the active sources in the acoustic scene are available –
grey bars in Fig. 2.14 – the proposed approach increased the target-localisation accuracies
substantially over the baseline in all the interferer conditions. Interferers with a simpler
and more consistent spectral profile were easier to model, and therefore the proposed
framework was more effective in such conditions. This is clearly demonstrated by the
localisation accuracies in the ‘telephone ring’ and the ‘alarm’ conditions, which are close to
100 % – even in the more reverberant rooms.

The localisation accuracy of the proposed system decreased in the more challenging
‘symphony’ and ‘female-speech’ conditions. This is likely due to the increased spectro-
temporal complexity of the interferers, which becomes more difficult to model statistically.
As a result, the localisation weights estimated from source-model interaction were less
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Figure 2.14: Gross accuracies for localising the target source in the presence of various interferers.
The ‘Baseline’ system did not employ top-down source knowledge. The ‘Target+Interferer’ system
employed the interaction between the target model and the correct interferer model for informing
the localisation process. The ‘Target+UBM’ system did not assume knowledge of the interfering
source and employed a universal background model instead

reliable.

Comparing the ‘Target+Interferer’ (grey bars in Fig. 2.14) and the ‘Target+UBM’ perfor-
mance (white bars in Fig. 2.14), one can see that with more detailed models of the interfering
sources the system produced slightly higher localisation accuracy than with a universal
background model – especially for more complex interferers. However, the use of the UBM
minimises the assumptions made about the active interfering sources. Such a system is
potentially more suitable for an attention-driven model of sound localisation, in which the
attended target source may be switched, and the localisation weights can be dynamically
recomputed in order to localise the newly attended source.

43



2 Integrating selected feedback paths into the TWO!EARS-system architecture

2.5.4 Discussion

A computational framework for binaural sound localisation was developed that combines
top-down and bottom-up information flow. By jointly exploiting top-down knowledge about
the source spectral characteristics in the acoustic scene, the system is able to selectively
weight binaural cues in order to more reliably localise the attended source. Evaluation
using six interfering sources with varying spectro-temporal complexity showed that by
exploiting source models in this way, sound localisation performance can be improved
substantially under conditions where multiple sources and room reverberation are present.
For part of the computations the auditory front end of Two!Ears, (AFE), was applied.
The cognitive components of of the algorithm will soon be integrated into the Two!Ears
system as well.

In the last year of the Two!Ears project, this approach will be fully combined with source
identification in order to estimate the identity of the target source that the system ‘attends’
to. Such an attention-driven model could be used to localise an attended source whose
identity is not available a priori, that is, a talker that speaks a keyword in an acoustic
mixture. Source localisation and source identification could then interact in an ongoing
iterative process. Another focus will be cross-modal control. For instance, top-down control
within this framework could be driven by the vision system on the Two!Ears mobile
robot platform.
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2.6 Medial olivo-cochlear feedback and the Precedence
Effect

2.6.1 A medial olivo-cochlear (MOC) processor

(The following relates to a1, b2)

A novel processor module was implemented in the Auditory Front-End (AFE) of the
Two!Ears system, which attempts to mimic Medial Olivo-Cochlear (MOC) feedback.
This so-called MOC processor realises closed-loop-feedback that controls the nonlinear gain
at the Dual-Resonance Non-Linear (DRNL) filterbank of AFE – as previously described in
deliverable D4.1. The MOC processor builds on internal representations in AFE, which,
among other things, simulate the auditory-nerve firing rate. The approach follows work by
Clark et al. [8], except that the auditory-nerve processing stage was simplified by using the
ratemap processor of AFE. Figure 2.15 describes the structure and operation of the MOC
processor in conjunction with AFE processing stages employed.

The MOC processor initially takes the ratemap representation as reflexive input. This is
then converted to attenuation factors for each individual frequency channel. The control
of the rate-to-attenuation conversion is realised via internal parameters of the processor.
These can be set in accordance with physiological findings that reveal the relationship
between input-signal level and MOC efferent activity, for example, those from experiments
with cats reported by Liberman [20] – see Fig. 5 of that paper. The parameters are
configurable by the user when requesting the internal representation with DRNL and MOC
to be activated.

Further, the reflective feedback path is controllable by means of additional attenuation fac-
tors, particularly, ipsi- and contralateral ones, depending on the specific application. These
factors are accessible internally, that is, within AFE, as well as externally, for example, from
the blackboard system. The factors can be set to arbitrary values. In this way, a cognitive
processor can be enabled to control the amount of feedback desired.

Overall, the MOC processor, at its current stage of development, provides a comprehensive
testbed for users to simulate currently available findings or to even manipulate the MOC
feedback for any further relevant investigation. As stated in D4.1, the lack of consistent
physiological findings with repect to the physiological role of MOC feedback currently
restricts the capabilities of the model and prevents it from being applied to functionally
improve the Two!Ears system. However, the nature of the model, particularly, the fact
that it inherits the modularity of the Two!Ears framework, enables easy modification
of its operational structure. Thus, if necessary, it can readily be activated, in particular,
when new findings become avaliable.
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Figure 2.15: MOC processor design within the auditory front-end framework. The processor
realises reflexive feedback from the output of the auditory-nerve stage and accepts reflective control
from higher-level cognitive stages. The output is applied to the nonlinear path of the DRNL
filterbank.
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2.6.2 Precedence-Effect processor

Further, an AFE processor developed and intergrated in AFE to simulate the Precedence
Effect. The hereby applied algorithm is based on work of Braasch [5]. The model funda-
mentally detects and removes reflections from an input signal by means of autocorrelation
followed by deconvolution. After these processes, it derives the interaural time and level
differences, ITD and ILD, from these lag-removed signals, represented in the auditory
periphery domain.

Figure 2.16: Precedence-Effect-model demonstration. The input signal is a 800-Hz-wide bandpass
noise of 400ms length, centered at 500Hz, mixed with a reflection of a 2-ms delay, and made
binaural with an ITD of 0.4ms and an ILD of 0 dB. The instantaneous ITD/ILD estimation is
performed within signal chunks of 20ms

The initial version of the Precedence-Effect model was made available for monaural
analysis (lag detection and removal) via the Auditory-Modeling-Toolbox software framework
(AMT). The model published there makes use of the complete signal instead of using
time-frame chunks of it. This basic model was now developed further and integrated into
the Two!Ears framework as PrecedenceProc. To this end, a number of modifications were
made. These modifications allow for, (a), object-based modular operation in conjunction
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with the available AFE processors and, (b), chunk-based processing for lag detection
and removal instead of batch analysis of complete monaural signals. The architecture of
the integrated model is described in [5] – see Fig. 9 of that paper. A difference to the
original model is, however, that the ‘Hair-cell simulation’ and the ‘Halfwave Reconstruction’
stages were removed. The original model contains a halfwave-reconstruction stage to
enable easy connection to physiologically motivated inner-hair-cell models. Since, in the
inner-hair-cell processors, halfwave reconstruction is effectively the reverse operation of
halfwave rectification. Hence, cascading of the two is equivalent to bypassing them as a
whole. Both were thus removed in our case.

The Precedence-Effect processor, as now integrated into the Two!Ears framework, takes
as input binaural signal chunks from the Gammatone filterbanks. Then, for each chunk, a
pair of ITD and ILD values is calculated by integrating the ITDs and ILDs across frequency
channels according to the weighted-image model of Stern [37] and via amplitude-weighted
summation. Since these ITD/ILD calculation methods are different from those typically
used in the AFE framework, the ITD and ILD processors in the AFE are not connected
to the Precedence-Effect processor. Instead the ITD/ILD calculation steps are coded
separately.

Figure 2.16 shows the output of a demonstration using the Two!Ears Precedence-Effect
processor. The input signal is a 800-Hz-wide bandpass noise of 400ms length, centered
at 500Hz, mixed with a reflection having a 2-ms delay, and made binaural with an
ITD of 0.4ms and an ILD of 0 dB. During the processing, a windowed chunk of 20–ms
length is used as input. It can be seen that after some initial fuzziness, the processor
estimates the intended ITD and ILD values – with increasing precision as more chunks are
analysed.

As with the MOC feedback processor, the modular and feedback-enabling nature of the AFE
framework makes it possible for the user to request the various ITD and ILD representations
using the conventional AFE models, and/or using the Precedence-Effect model – depending
on the specific application. Following decisions at cognitive level, a request to switch
the Precedence-Effect model on or off can be issued, for example, from the blackboard
system.
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2.7 Sound-type classification and feature selection –
potential roles of feedback

(The following relates to b6)

Here it was investigated whether context information, that is, the knowledge of certain
aspects of auditory scenes, can help the Two!Ears system to enhance the performance
in terms of sound-source identification. To this end, a selection of everyday sounds from
the NIGENS database was used to generate simple auditory scenes using the Auditory
Machine-Learning Training and Testing Pipeline (AMLTTP) – a software package based on
Two!Ears’s Auditory Frontend (AFE). The scenes were composed from, (1), ‘dry’ sounds
overlaid with ambient white noise of different strength (SNR) and, (2), target sounds
overlaid with simultaneously played distractor sounds from a point source at different
azimuth. The composed scenes were then processed by AFE via AMLTTP in order to
generate a large set of candidate features. State-of-the-art data-driven feature-selection
methods, namely, Least Absolute Shrinkage and Selection Operator Techniques (LASSO),
were combined with cassifiers based on Support-Vector-Machines (SVM), to tackle following
questions.

1. Does the feature-selection step improve the performance of the identification-knowledge
sources?

2. Are different sets of features selected for the different conditions – SNR, azimuth
difference of target versus distractor?

3. Can improved classification results be achieved by adapting feature sets and/or
classifiers to the particular condition?

Sufficient evidence for an improvement of classification by condition-dependent event
experts would then serve as the justification for the implementation of feedback loops
that select feature sets and/or classifiers based on estimates of the current condition at
runtime – such as the directions of sound sources and/or the signal-to-noise ratio (SNR).
The following results were achieved.

1. On average, classification performance did not improve significantly for the stimulus
set used when SVM-based classifiers were applied to preselected feature sets, rather
than being applied to all candidate features. However, computational costs were
much less when feature selection was applied beforehand, because it allowed for a
drastic reduction of the number of features to be computed for classification.

2. For datasets (1)& (2), the application of feature-selection methods provided strong
evidence for the advantage of sound-class-specific feature sets – as one would have
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expected. Also, the profile of the selected feature set changed with the condition –
dataset (1).

3. For both datasets (1)& (2), classifier adaptation to the particular condition, such
as the azimuth of the target and/or the SNR of the data, lead to performance
improvements on average.

It can be concluded that for the simple tasks that were considered, evidence pointed to
a potential improvement of sound-type-classification performance when feedback loops
are applied for feature-set tuning and condition-based-classifier selection. This holds in
particular for the case of target sounds played from different directions when proper turns
of the head of the Two!Ears robotic platform are induced.

2.7.1 Datasets and preprocessing

The NIGENS database currently consists of twelve classes of everyday sounds. From these,
eleven one-against-all binary sound-classification tasks were investigated, such that one
particular sound class had to be classified against the rest.

The examples for classification training were generated from blocks (time windows) of
500ms. Two sets of features were generated for each block. The monaural feature set
(average over the two channels) comprises a total of 1082 features that were extracted from
the output of Two!Ears’s Auditory Frontend (AFE), of which 154 were spectral features,
176 ratemap features, 576 amplitude-modulation features, and 176 onset-strength features.
The binaural feature set, as computed separately for the left and right channel, had a size
of 2164.

2.7.2 Methods

Feature selection

For feature selection, the LASSO method was employed. LASSO is an embedded feature-
selection method that is based on a linear (logistic) regression model. It applies a penalty,
L1, to the regression coefficients, thus shrinking many of them to zero. The strength of
the L1 regularization is controlled by a hyperparameter, λ. The value of λ was adjusted
by conducting a five-fold cross-validation on the training set and choosing the value with
the best cross-validation performance from the values of 100 candidates taken from the
regularization path. Any features that had a non-zero regression coefficient at this value of
λ were then used as input features for the SVM (scheme fs1). Alternatively the highest
value of those λs was chosen, for which the cross-validation performance was greater than
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or equal to the difference between the maximum cross-validation performance over all
values for λ and its standard deviation (scheme fs3).

Classification

For classification, a linear C-Support-Vector Machine (C-SVM) was used. SVMs are
classification models with associated learning algorithms derived in the context of statistical
learning theory. Parameters were adjusted by maximizing the margin of a hyperplane
separating the two classes that could be related to a bound on the generalization performance
of the classifier. If the training data are not linearly separable, so-called slack variables
need to be introduced that allow for violations of the margin. The sum of these slack
variables served as a penalty term and was weighted by a hyperparameter, C. Here, C
was adjusted via four-fold cross-validation on the training set within the parameter set of
10−8, 10−7, . . . , 10−1. Classification performance was always evaluated on a held-out test
set.

Evaluation

Data were split into a training set and a test set, where the training set was used to
construct the classification model, and the test set was used to evaluate the prediction
performance. Performance was measured with the variant

performance = 1−
√

((1− sensitivity)2 + (1− specificity)2)/2) (2.32)

of the balanced accuracy that combines sensitivity and specificity and favors similar values
for both.

2.7.3 Results

In a first experiment, the performance of the C-SVM, trained and tested on a complete set
of features, was compared with the performance of a two-stage procedure, where feature
selection using LASSO method was applied before the selected features were used as input
for the C-SVM. Figure 2.17 shows the results for dataset (1), where the different sound
classes – denoted by color – were superimposed with ambient white noise of different SNR –
denoted by marker size. All symbols lie close to the diagonal, thus indicating that the data-
driven feature-selection procedures do not lead to a significant increase in the performance
of sound classification. Similar results were obtained for dataset (2).

Feature selection, however, allows for a drastic reduction of the number of features without
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Figure 2.17: Classification performance of an SVM trained on the whole monaural feature set
(abscissa) in comparison to the performance of an SVM trained on a reduced (monaural) feature
set selected by LASSO (scheme fs1, ordinate). Different colors correspond to the different classes
‘alarm’, ‘crying baby’, ‘female speech’ and ‘fire’. Different marker sizes indicate different values of
the signal-to-noise ratio

loss of performance. Depending on the sound class, the reduced feature sets range from
a few features – reduction to 1% and less – up to a few hundred features – reduction to
30%. Most importantly, it became apparent that application of feature selection leads to
drastically reduced computing times for both training and prediction – compare deliverable
D3.4 for details. In particular, the reduction in classification time could prove to be a
crucial factor in a real-time operation of the Two!Ears system.

It was further investigated whether the selected feature sets change with sound class and
condition – dataset (1). Candidate features were grouped into the following base groups:
spectral features, ratemap features, amplitude modulation features, and onset-strength
features. Then the ‘impact’ of features selected from each group was computed. As a
measure, the normalized sum of the absolute weights of the logistic regression model
was applied to assess the influence of a feature group on the classification result. Every
sound class leads to a different profile, that is, to a different set of values across the
four groups (data not shown). This was taken as an indication that classifiers rely on
different information when classifying sounds from different classes. In addition, there was a
dependency of the feature-group impacts on the SNR – see Fig. 2.18.

With increasing noise versus decreasing signal strength, the onset-strength and ratemap
features became less important, while the impact values of the amplitude modulation
features increased.
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Figure 2.18: Impact of features (normalized sum of the absolute logistic regression weights)
selected from four different categories as a function of the SNR for dataset (1). Values were averages
over all eleven classes from the NIGENS database. Features were selected by use of scheme fs3

In a second experiment, it was investigated how well the two-stage method – LASSO for
feature selection followed by SVM for classification – performed under iso-testing, that is,
testing at the same noise condition that was used for training, versus cross-testing conditions,
namely, testing at a different noise condition than used for training.

Figure 2.19 shows a matrix the elements of which contain the test performance of the
classifier averaged over all eleven sound types for different combinations of training SNR
(rows) and testing SNR (columns). Diagonal elements correspond to the iso-testing
condition, off-diagonal elements to the cross-testing conditions. The best performance
was always obtained for the iso-conditions. For a given SNR of the test set, the average
generalization performance of the classifier decreased with increasing difference to the SNR
of the training condition. This decrease in performance became stronger with increasing
SNR of the test set. Especially at high noise levels, the classifiers needed to be adapted to
the particular condition in order to generalize well.

This suggests that sound-type identification by the Two!Ears system could be improved
by providing information about the likely SNR of the observed data. This information could
then be used – in a feedback fashion – to select a feature-selection and classification model
that was trained under similar conditions. An alternative to the use of such specialized
experts is the use of multi-conditional training – compare Chaps. 3& 4 of deliverable D3.4.
The classifiers resulting from multi-conditional training, however, perform worse on average
than the single-condition experts.

In a third experiment it was investigated whether the use of binaural feature sets would
lead to improved classification performance as compared to monaural feature sets. The
comparison was performed for tasks where target sounds were overlaid with distractor
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Figure 2.19: Classification performance averaged over all eleven sound classes (monaural feature
set) for the iso- and cross-testing conditions. Vertical and horizontal axes correspond to the SNRs
used for training and test. Matrix entries denote the corresponding prediction performances. In
addition, performance values are visualized by a grey level encoding from black (good performance)
to white (bad performance).

sounds, both played from different directions – dataset (2). Tasks with target- and distractor-
sound sources were used that were located at −45 ◦,+45 ◦ and −90 ◦,+90 ◦ azimuth
and had different SNRs. Figure 2.20 shows a summary box-plot of the difference in
performance found between predictors trained with monaural and binaural features for
different SNRs. The binaural feature set lead to a better performance when compared to
the monaural feature set, specifically for low values of the SNR. The stronger the distractor
source became, the more advantageous it was to use binaural information from both ear
signals.

Figure 2.21 shows the performance of classifiers trained by using the binaural feature set
for specific values of the azimuth of the target source but without distractors being present.
For the iso-testing condition, there was no significant change in performance as a function
of the azimuth of the sound source – Fig. 2.21a. Performance values, however, changed
for the cross-testing condition – Fig. 2.21b. Here, performance decreased with increasing
difference of the azimuth values used for training and evaluation2. This implies that either
the head should be turned to adjust the azimuth of the sound source to the azimuth which
was used for training the classifier or, that the model has to be switched dynamically to
the one that was trained at the actual azimuth, both of which can be implemented via
feedback loops.

2 Because tests were conducted for sound sources located in the right hemisphere, performance increased
again for azimuth differences higher then 90 ◦
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Figure 2.20: Classification performance of models trained on dataset (2) using both monaural and
binaural feature sets at different SNRs, with the conditions of target- and distractor-source azimuth
at −45 ◦,+45 ◦ and −90 ◦,+90 ◦. The boxplots summarize the results across both conditions for
the four classes ‘alarm’, ‘crying baby’, ‘female speech’, and ‘fire’, as well as the results from the
different classification schemes

(a) dependence on target az-
imuth

(b) performance degradation
with difference of training
and testing azimuth

Figure 2.21: Performance of classifiers trained with the binaural feature set for specific values of
the azimuth of the target source but without distractors being present. The boxplots summarize
the results across the four classes and different classification schemes. (a) Test performance as a
function of the azimuth of the target source (iso-testing). (b) Test performance as a function of
the difference between the azimuths of the target in the training and testing phases, that is, iso-
versus cross-testing
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2.8 Sensorimotor-cue processing for sensorimotor feedback
control

(The following relates to b7)

2.8.1 Introduction

The sensorimotor level constitutes the lowest layer both in the Two!Ears computational
model and in the deployed robotics architecture. Situated on the top of instrumentation, it
is constituted of reflexive behavior involving perception and/or motion. These respective
processors must run under severe time and communication constraints and do not entail
any reflective ability, such as decision or cognition.

Cues coming from the low-level processing of the sensorimotor flow can constitute meaning-
ful input to the blackboard, thus supporting decisions in the Two!Ears system. Actually,
the involved processors can themselves be viewed as experts of the model. On this basis,
dedicated sensorimotor functions can be triggered that have been implemented on further
experts.

One robotics example is binaural ‘active’ sound-source localization which, through the
incorporation of motion, enables the disambiguation of front from back and the recovery of
source range [26]. Work has been performed with regard to a single-source-localization
strategy organized into three layers – as depicted in Fig. 2.22 [7]. StageA implements
the maximum likelihood estimation of the source azimuth and the information-theoretic
detection of its activity from the short-term channel-time-frequency decomposition of the
binaural stream [33]. StageB assimilates these azimuths over time and combines them with

Figure 2.22: Three-stage active binaural localization
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the motor commands into a stochastic filter, leading to the posterior probability-density
function (pdf) of the head-to-source situation [31]. StageC provides a feedback controller,
which, on the basis of output from StageB, can move the head so as to improve the quality
of the localization, that is, of the output from StageB.

StageA has also been extended to the multiple source case [30], and StageB can cope
with a moving and/or intermittent source [32], but this is not considered here. This whole
active binaural localization, though involving solely the sensorimotor layer, perfectly fits
within the Two!Ears blackboard-based architecture [3].

Since the goal of the comprehensive Two!Ears model extends far beyond active localiza-
tion, the control signals computed in StageC may not be applied to the binaural robot –
in contrary to the diagram in Fig. 2.22. In fact, it is up to the whole blackboard-based
decision process to make an adequate use of these signals, for example, to trigger a reflexive
information-based control on a short-time duration or to combine them with other informa-
tion in order to synthesize effective motor commands for the robot.

This chapter outlines first theoretical considerations and results towards feedback control
of sensor motion for reducing localization uncertainty in StageC. Deliverable D4.1 reported
literature on active information-based sensorimotor feedback. When restricting to the
auditory modality, it included audio-motor localization, audio simultaneous localization
and mapping (SLAM), and planned (reflective) motions to improve speech recognition
or sound-localization accuracy. It may be briefly recalled at this point that within the
‘exploration problem’ in robotics, robots also move autonomously so as to maximize their
knowledge about the world. SLAM has been extended in such a way that robots move
into the direction of maximum local information improvement [38]. Therein, the control
scheme extracts the information about the state variables using the concepts of Shannon
entropy and mutual information [11], and, in the end, maximizes a ‘size’ criterion such as
the determinant or trace of the inverse of the one-step ahead posterior-state-covariance
matrix [4].

Other information-theoretic controllers have been applied to information retrieval on some
targets [17], robot guidance towards areas of maximum uncertainty [18], control of a
robot-mounted camera to optimize depth estimation [14], or sensor-parameter setting (such
as for zoom or attitude) for scene analysis [12, 35]. As already mentioned in D4.1, auditory
information-based control is sparser. Motion planning was proposed in [19] to improve
speech recognition from a monaural robot. Sound localization was improved in [23] by
moving microphones deployed in the environment. In a noticeable recent work [42], a robot
equipped with a microphone array has been controlled to improve occupancy-grid-based
source localization by using dynamic programming.
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2.8.2 Overview of StageA and StageB

This section briefly recalls the azimuth estimation for a single source [33] and the in-
corporation of head motion [31] so as to get a Gaussian-mixture approximation of the
posterior pdf of the head-to-source situation. In the sequel, random variables/processes and
corresponding samples are written using similar lower-case letters.

Short-term extraction of directional cues

The left and right microphones are termed R1 and R2. The interaural transfer func-
tion is known over an adequate range of source azimuth and frequencies. The frame,
F = (O, ex, ey, ez), is attached to the head, with R1O = OR2.

R1, R2 and the pointwise emitter, E, lie on a common horizontal plane defined by
ey, ez, where ey = R2R1

‖R2R1‖ , and ez is oriented towards boresight, so that ex points
downwards – Fig. 2.23. The source and sensor noises are modeled as random pro-
cesses satisfying reasonable hypotheses, such as Gaussianity, zero-mean, band-limited,
‘local stationarity’.

From [33], on the basis of the channel-time-frequency decomposition, zk, of the binaural
signal on a sliding window ending at time k, the short-term-maximum likelihood, θ̂k, of the
source azimuth, θk, comes as the argmax of a ‘pseudo likelihood’, p(zk|θk). This pseudo
likelihood is obtained by replacing in the genuine likelihood of the unknown variables the
most likely spectral parameters of the source as a function of its azimuth – thanks to a
notable separation property.

Fusion of audio information with motor commands

A discrete-time stochastic state-space equation is set up, uniting the velocity-control vector,
uk ∈ R3 (2 translations and 1 rotation), of the head to the head-to-source situation, xk ∈ R2

– see Fig. 2.23. A theoretically sound Gaussian-mixture square-root-unscented Kalman
filter (GMsrUKF) is defined so as to incorporate the above pseudo likelihood, p(zk|θk),
where θk comes as a static function of xk [31] as well as to compute a Gaussian mixture
approximation of the posterior pdf as follows,

p(xk|z1:k) =

Ik∑
i=1

wikN (xk; x̂
i
k|k, P

i
k|k), (2.33)

where (wik, x̂
i
k|k, P

i
k|k) are the weight, mean, and covariance of each hypothesis.
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Figure 2.23: Problem geometry

Contrarily to several particle filters, a self-initialization as well as posterior covariance
consistency is ensured, so that front and back are disambiguated, and both range and
azimuth are faithfully recovered.

2.8.3 Towards information-based sensorimotor feedback

An information measure can be defined from the posterior pdf (Eq. 2.33) at time k,
which captures all the information on the head-to-source situation held in the measure-
ments.

The one-step-ahead-control problem is studied, consisting in determining the control vector,
u∗k, such that the information in p(xk+1|z1:k+1), averaged over the (unknown) possible
values of the next measurement, zk+1, is maximized. Two simplifications make the prob-
lem tractable. First, p(xk|z1:k) is reduced to a single Gaussian pdf, N (xk; x̂k|k, Pk|k), for
example, by keeping its most probable hypothesis or by computing its moment-matched
approximation. Secondly, in order to define u∗k, the next channel-time-frequency decomposi-
tion, zk+1, is traded for a scalar vector, yk+1, satisfying a closed-form measurement equation,
yk+1 = g(xk+1) + vk+1, with v being the measurement noise.

So far, the Woodworth-Schlosberg formula for interaural-time-difference approximation
over a spherical head [1] has been selected for g(.), in order to guide the exploration. u∗k
is then defined on the basis of N (xk; x̂k|k, Pk|k) and on the above measurement equation.
Once this control signal is applied, the next state posterior pdf, p(xk+1|z1:k+1), is computed
from Eq. 2.33 and the next likelihood, p(zk+1|θk+1), by using the GMsrUKF described in
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Sec. 2.8.2. Then, the whole process is repeated to determine u∗k+1.

To ease the presentation of the synthesis of u∗k’s, henceforth, it is set to p(xk|y1:k) =
N (xk; x̂k|k, Pk|k) – with a slight notation misuse.

Information measures and control input

Let w, x be two random variables with the pdfs p(w) and p(x). The differential entropy,
h(x) of x, embodies its uncertainty in that the lower h(x) the higher the information
content in x. The mutual information, I(w, x) (≥ 0 by definition), measures the amount
of information that w contains about x [11]. They are defined by

h(x) = −
∫
p(x) log p(x)dx, (2.34)

I(w, x) =

∫ ∫
p(w, x) log

p(w, x)

p(w)p(x)
dw dx . (2.35)

If w and x are conditioned on the event such that a random variable, v, takes a given
value, then the entropies/information are denoted by h(w|v), h(x|v) and I(w, x|v). The
following rule, somewhat similar to [22], holds.

Theorem 1 Decomposing the negative logarithm of the posterior pdf, p(xk+1|y1:k+1), as

− log p(xk+1|y1:k+1) = − log p(xk+1|y1:k)− log

(
p(yk+1|xk+1)

p(yk+1|y1:k)

)
, (2.36)

and taking its expectation conditioned on y1:k, which involves the joint pdf, p(xk+1; yk+1|y1:k),
leads to

Eyk+1

{
h(xk+1|y1:k+1)

}
= h(xk+1|y1:k)− I(xk+1; yk+1|y1:k) (2.37)

Exk+1

{
h(yk+1|xk+1)

}
= h(yk+1|y1:k)− I(xk+1; yk+1|y1:k), (2.38)

with h(xk+1|y1:k+1), h(xk+1|y1:k), h(yk+1|xk+1), h(yk+1|y1:k), the entropies of the next
filtered-state pdf (head-to-source situation), the next predicted-state pdf, the observation
law, the next predicted-measurement pdf, and I(xk+1; yk+1|y1:k), the mutual information
of the next state, and measurement conditioned on the sequence of measurements up to
current time.

In view of the mutual information positivity, the inequality
Eyk+1

{
h(xk+1|y1:k+1)

}
≤ h(xk+1|y1:k) holds, which highlights the entropy reduc-

tion brought by the measurement process. Thus, given p(xk+1|y1:k), minimizing
Eyk+1

{
h(xk+1|y1:k+1)

}
boils down to maximizing I(xk+1; yk+1|y1:k).
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The entropy of a normal distribution comes as the following increasing affine function of
the log-determinant of its covariance matrix [11],

h(xk+1|y1:k+1) =
1

2
log
[
(2πe)n|Pk+1|k+1|

]
. (2.39)

Some important simplifications on Eqs.,2.37–2.38 follow. First, h(yk+1|xk+1) only depends
on the variance of the noise, vk+1. Second, the (nonlinear) Kalman equations that could be
used to assimilate the measurement, yk+1, for exploration show that h(xk+1|y1:k+1) does
not depend on yk+1. Finally, as the prior state dynamics turns to a rigid motion of the
head, the entropy, h(xk+1|y1:k), of the next predicted state pdf is equal to h(xk|y1:k) when
the dynamic noise is neglected, whatever the applied control signal, uk. So, the following
theorem holds.

Theorem 2 Finding a control input, u∗k, which minimizes the entropy, h(xk+1|y1:k+1), of
the next filtered state pdf (or, equivalently, its expected value over yk+1) is equivalent to
maximize the mutual information, I(xk+1; yk+1|y1:k), of the next predicted state and mea-
surement conditioned on the sequence of measurements up to current time or, equivalently,
to maximize the entropy, h(yk+1|y1:k), of the next predicted measurement pdf, that is,

u∗k = arg min
uk

Eyk+1

{
h(xk+1|y1:k+1)

}
= arg max

uk

I(xk+1; yk+1|y1:k) (2.40)

= arg max
uk

h(yk+1|y1:k) . (2.41)

The Kalman-filter equations entail the approximations ŷk+1|k and Sk+1|k of the pre-
dicted measurement mean and covariance. Considering that p(yk+1|y1:k) is approxi-
mated by the Gaussian pdf, N (yk+1; ŷk+1|k, Sk+1|k), the entropy, h(yk+1|y1:k), can be
rewritten as an increasing affine function of the log-determinant of Sk+1|k, in the vein of
Eq. 2.39.

Geometric interpretation

Theorem2 can be interpreted geometrically. Given a genuine head-to-source situation
(Fig. 2.24 a), the 2–D Gaussian approximation of the next filtered-state pdf resulting from
the fusion of the next predicted-state pdf with the measurement is represented for various
positions. These are, when the sensor is still (Fig. 2.24 b), when after a sensor motion
the interaural axis, supported by ey (resp. the boresight direction, supported by ez), are
parallel to the small axis of the confidence ellipse associated to the predicted-state pdf –
see Figs. 2.24 b), resp. 2.24 c–d).

Importantly, the Woodworth iso-ITDs are not uniformly distributed along the azimuths.
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

They are more concentrated along the direction of ez, which defines the auditive fovea,
while they are sparser along the interaural axis ey.

The variance of the predicted measurement is low when the ellipse is intersected by a
small number of iso-ITDs (Fig. 2.24.b-c). In this case, the measurement uncertainty due to
noise corresponds to a wide spatial sector. Consequently, the measurement update cannot
significantly improve the information in the filtered state pdf. The more iso-ITDs intersect
the ellipse associated to the predicted state pdf, the higher the variance of the predicted
measurement. For instance, when the small axis of this ellipse is parallel to the auditive
fovea (Fig. 2.24.d) or when the head gets closer to the source, the measurement uncertainty
due to noise corresponds to a narrow cone. Then, the fusion of the predicted state pdf and
of the measurement results in a strong increase of the information in the filtered state pdf.

(a) (b) (c) (d)

Figure 2.24: The blue frame, F : (O, ex, ey, ez), is attached to the binaural head, represented
by its ears. The genuine position of the sound source is pointed at with a yellow square. The
grey confidence ellipse is related to the posterior pdf of the current head-to-source situation. The
measurement space is materialized by the Woodworth iso-ITDs. The blue ellipses are associated
with the next-predicted-state pdf – after applying the velocity command to the head, which is zero
in (b). The green sector/cone describes the spatial uncertainty due to measurement noise. The red
ellipse sketches the confidence ellipsoid associated to the next-filtered-state pdf, after incorporation
of the Woodworth ITD for the source position

Feedback control by gradient-ascent strategy

As the robot head undergoes a rigid body motion, the problem is reduced to find, from
the head-to-source situation at time k characterized by p(xk|y1:k) = N (xk; x̂k|k, Pk|k), the
adequate vector

−→
D = (Ty, Tz, φ)T made up with the finite translations, Ty, Tz, and rotation,

φ, which maximizes the variance, Sk+1|k, of the next predicted measurement pdf. An
expression Sk+1|k = Fk(Ty, Tz, φ) of this variance would be very involved, and so would be
its closed-form maximization. Hence, an analytic approximation of its gradient around
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2.8 Sensorimotor-cue processing for sensorimotor feedback control

−→
D0 = (0, 0, 0)T is proposed in such way that it points out the direction of its locally steepest
ascent.

First, the sigma-points,
{
X−i
}
, corresponding to p(xk|y1:k) = N (xk; x̂k|k, Pk|k), are com-

puted from the posterior mean, x̂k|k, and the Cholesky decomposition, Pk|k = Lk|kL
T
k|k, of

the posterior covariance of the state vector at time k, that is,{
X−i
}

= Sigma_points
(
x̂k|k, Lk|k

)
. (2.42)

When the binaural head undergoes the rigid motion defined by
−→
D = (Ty, Tz, φ)T with

no dynamic noise, each sigma-point, X+
i , of the predicted state pdf, p(xk+1|y1:k) =

N (xk; x̂k+1|k, Pk+1|k), comes as a function of
−→
D and of the corresponding X−i ,

namely,
∀i, X+

i = ΦX−
i

(Ty, Tz, φ) . (2.43)

Then, each sigma-point, Y +
i , of the predicted measurement pdf, p(yk+1|y1:k) =

N (yk; ŷk+1|k, Sk+1|k), is obtained from the corresponding sigma-point, X+
i , as defined

in Eq. 2.43 by
∀i, Y +

i = g
(
atan2

(
X+
i (1), X+

i (2)
))
, (2.44)

with X+
i (1) and X+

i (2) the entries of X+
i , atan2

(
X+
i (1), X+

i (2)
)
, the azimuth of X+

i ,
and g( · ) the Woodworth-Schlosberg formula approximating the interaural time difference
(ITD) over a spherical head used for exploration. Finally, the mean, ŷk+1|k, and variance,
Sk+1|k, of the predicted measurement pdf are given by the standard unscented transform
formulae as follows,

ŷk+1|k =
∑
i

wimY
+
i (2.45)

Sk+1|k =
∑
i

wic
(
Y +
i − ŷk+1|k

)2
. (2.46)

To define the gradient with respect to the translation and rotation variables, the first-
order Taylor expansions of the functions ΦX−

i
( · ), atan2( · , · ) and g( · ) are composed

in the vicinity of
−→
D0, considering the infinitesimal translations and rotation vector,−→

du = (dTy, dTz, dφ)T , as

ΦX−
i

(
−→
D0 +

−→
du) = ΦX−

i
(
−→
D0) + JΦX−

i
(
−→
D0) ·

−→
du , (2.47)

atan2(u, v) = atan2(u0, v0) +
−→
∇T atan2(u0, v0) ·

(
u− u0
v − v0

)
, (2.48)

g(w) = g(w0) + g′(w0)(w − w0) . (2.49)
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

In the above,
−→
∇ stands for the gradient operator, and JΦX−

i
(
−→
D0) is the Jacobian of ΦX−

i

evaluated at
−→
D0. From the results, {Y +

i (dTy, dTz, dφ)}, mean and variance of the predicted
measurement pdf follow along Eqs. 2.45, 2.46. This entails the first-order Taylor expansion
of Fk(dTy, dTz, dφ), that is,

Fk

(−→
D0 +

−→
du
)

= Fk

(−→
D0

)
+
−→
∇TFk(

−→
D0) ·

−→
du . (2.50)

In the above, Fk(
−→
D0) terms the variance of the predicted measurement if no displacement

is applied to the head, and dk =
−→
∇Fk(

−→
D0) is the gradient of Fk evaluated at

−→
D0, that is,

the local direction of steepest ascent of the variance of the next predicted measurement
pdf.

Importantly, function Fk+1 is not the same as Fk, due to the incorporation of the observation
zk+1. In other words, the strategy does not consist in iteratively maximizing the same
function over time by the gradient method.

2.8.4 Simulated experiments

Entropy loci of the posterior pdf of the head-to-source situation as a function of
head motion

Starting from p(xk|y1:k) = N (xk; x̂k|k, Pk|k), the entropy, h(xk+1|y1:k+1), of the posterior
pdf, p(xk+1|y1:k+1), were evaluated after applying various sequences of finite translations
and rotations to the sensor through uk. Some results are sketched in Figs. 2.25 a–b. The
sensor frame at time k is plotted in red (with ey and the fovea axis, ez, pointing westwards
and northwards, respectively) together with the red 99%-probability confidence ellipse
associated with the sound-source location. In other words, at time k the source was
assumed to lie in the vicinity of the sensor fovea, mostly along the boresight axis. The
blue arrows depict the fovea direction at time k + 1 after the movement. h(xk+1|y1:k+1)
was low (resp. high). This means that the information on the head-to-source situation was
high (resp. low) in the warm (resp. cold) areas.

Figure 2.25 c portrays the contours of iso-values of the entropy, h(yk+1|y1:k), of the next
predicted measurement pdf as a function of the horizontal and vertical positions of a
binaural head whose fovea points northwards. The gradient of h(yk+1|y1:k) extracted from
Eq. 2.50 is also displayed. This case is somewhat similar to Fig. 2.25 a, except that the
prior knowledge on the source location, depicted by the black ellipse, was slightly different.
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2.8 Sensorimotor-cue processing for sensorimotor feedback control

(a) (b) (c)

Figure 2.25: Areas of low (warm) and high (cold) entropy for various positions of a binaural
head, starting from the initial situation depicted by the red frame (with northwards fovea). The
uncertainty of the source situation (before the sensor motion) is described by the red 99 %-
probability confidence ellipse. The translation of the sensor is followed by a rotation of, (a), 0 ◦ or,
(b), 90 ◦ clockwise. (c), iso-contours of the entropy of the next predicted measurement pdf (the
higher the entropy, the warmer the color) as a function of the position of a binaural head pointing
northwards. The prior knowledge of the source location is depicted by the (partially hidden) black
ellipse

Information-based control

MATLAB® simulations were conducted to assess the one-step-ahead gradient-ascent-based
control. To this end, GMsrUKF was coupled with the Woodworth-Schlosberg measurement
equation for exploration. To avoid simulating binaural signals when the sensor moves,
the pseudo likelihood, p(zk|θk), of the source azimuth mentioned in Sec. 2.8.2 was not
extracted from the short-term analysis of the binaural stream, but was replaced by noisy
measurements of the genuine source azimuth. The measurement noise was tuned to be
significant, in that the spatial uncertainty of the source azimuth corresponding to its
±3σ-width amounts to 99%-probability. Confidence intervals range from ±26 ◦ in the
fovea to ±44 ◦ along the interaural axis – see also Figs. 2.24 c–d.

In Fig. 2.26, the ground-truth position of the sensor (red sphere with ears) is depicted
with a blue frame, while the sound-source position is plotted as a red square. The blue
ellipses represent the 99%-probability confidence regions associated with the hypotheses of
the Gaussian-mixture approximation Eq. 2.33 of the posterior pdf of the head-to-source
situation.

Several scenarios were considered for comparing the efficiency of the proposed control
strategy – Fig. 2.28. Actually, during the transient mode, the proposed strategy may not
be better than purely rotational or circular open-loop motions, because it is based on a
single Gaussian pdf, which does not capture all the hypotheses regarding the Gaussian-sum
approximation of the genuine posterior pdf of the head-to-source situation. When only one
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2 Integrating selected feedback paths into the TWO!EARS-system architecture

(a) (b) (c) (d)

Figure 2.26: Audio-motor localization of a sound source by moving the sensor towards the
gradient direction of Fk. (a), self-initialization. (b), front-back ambiguity with no motion. (c),
information-based motion towards the sound source

hypothesis remains, the decrease becomes more significant.

Figure 2.27: Optimum finite translation of binaural head pointing northwards leading to minimum
uncertainty in the next head-to-source situation. Iso-contours of the entropy of the next predicted
measurement pdf (or, equivalently, of Fk( · , · , 0)) are plotted, together with their gradient, as a
function of the position of a binaural head (in black), whose orientation remains fixed. The red
circle delimits the admissible translations. The magenta dot depicts the constrained optimum next
to the location of the head

The plotted entropy of the moment-matched approximation of the genuine posterior-state
pdf reached a final value that was much lower than the steady-state value of this entropy
for other motions. Note that live results from Two!Ears’s robot ‘Jido’, being equipped
with the motorized Kemar head, are provided in DeliverableD5.2.
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2.8 Sensorimotor-cue processing for sensorimotor feedback control

Figure 2.28: Entropy of the moment-matched approximation of the posterior pdf of the head-to-
source situation over time for different control strategies. Blue: information based strategy. Green:
pure rotation. Red: pure translation. Cyan: circular trajectory around the sound source

2.8.5 Prospects

A forthcoming prospect concerns the implementation of a constrained gradient or Newton
algorithm on each Fk to find the admissible optimum finite translation and rotation. The
constraints of this optimization problem can express the limitations on the velocities of the
head – see for instance Fig. 2.27.

Multi-step methods will then be considered. For instance, a criterion based on the
expectation of the differential entropy over several steps will be defined to guide the motion
– in the vein of [13]. The guidance will thus be viewed as an N–step-optimization problem,
where the objective is to find a sequence of robot commands, u? = {uk, uk+1, ..., uk+N},
that improves localization over a sliding time window. The solution may rely on Partially-
Observable Markov Decision Processes, incorporating reward functions based on information
analysis [2] or on other optimum control techniques.
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2.9 Controlling parameter settings of the auditory frontend

(The following relates to b1, b2 and b3)

The Auditory Frontend (AFE) of the Two!Ears system supports the modification of
many parameters. This makes it, for example, possible to

– ‘Sharpen the ears’ by controlling the filter bandwidth of the auditory filterbank

– Perform cue selection based on the interaural coherence with the aim of ignoring
unreliable interaural time- and level-difference cues

– Activate the Precedence-Effect model in case of strong room reflections

The auditory front-end is implemented as a dynamic chain such that the user, for instance,
the blackboard, can either request an additional feature to be computed or modify any of
the parameters of an existing feature in between two “blocks” of input ear signal. So far, in
practice, the framework architecture allows for new requests. Modifying existing requests
is still to be implemented.

2.10 Feedback with regard to the assessment of the Quality
of Experience (QoE)

(The following relates to c3)

The following aspects of feedback are relevant for QoE-assessment tasks in the context of
Two!Ears.

– Head-orientation for exploratory listening

– Lateral head displacement to identify optimal listening positions

– Specific focusing on auditory features as relevant for quality evaluation task

– Internal reference adaptation (different groups of listeners)

Currently, respective data is missing, but some will hopefully be provided in coming months.
To this end, psychoacoustic experiments are being performed. In these experiments, data are
collected regarding cognitive tasks such as ‘learning internal references’, ‘weighting different
low-level attributes’ and ‘exploring the sound field’. However, an overall dataset to perform
all the steps identified above, will not be available in the short run.
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2.11 Auditory features inferred from visual evidence

2.11 Auditory features inferred from visual evidence

(The following relates to c6)

In order to simulate cognitive top-down processes, a prototype model was developed that
can integrate audio-visual cues and steer the auditory stages based on the visual input. So
far, the visual stimuli were generated on the computer, but the plan is to record the visual
stimuli later with a stereoscopic camera which is integrated into our binaural manikin. The
model estimates left and right corners of a room based on the camera images and uses these
measurements to predict acoustical values including room size, angles of incidence, and
delay times of the first lateral reflections. The visual model is used in two ways. Firstly,
the estimated room coordinates were used to predict the volume of the visual space to
calculate the expected values for reverberation time and direct-to-reverberant-energy ratio
– thus simulating the results of a previous study by Valente and Braasch [40]. Secondly, the
visual model was used as a front end for a novel Precedence-Effect model that suppresses
early room reflections by referring to the visual input – which is an example of a top-down
process.

generate left-eye 
image

determine position of 
left corner w/ internal 

noise

generate geometric model of rectangular room 
with source and receiver position and orientation

generate right-eye 
image

use width w of the room to estimate its volume 
V=w3

calculate expected reverberation time and direct- 
to-reverberant energy ration

determine position of 
left corner w/ internal 

noise

W

V=w3

Figure 2.29: Architecture of a model to estimate expected reverberation times and early-to-late
reverberant-energy ratios from the estimated room volume as were observed in a prior perceptual
study [40]
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Figure 2.30: Left: Model prediction for the perceived reverberation time (perceptually, the
reverberance duration) as a function of estimated room volume (red curve); Right: Model prediction
of the early-to-late reverberant-energy ratio (perceptually, the loudness difference of direct and
reverberant sounds) as a function of the estimated room volume (red curve). In both cases, the
blue curves show the underlying perceptual data representing the expectation of human listeners

2.11.1 Predicting visual expectation of reverberation time and
direct-to-reverberant energy ratio

Figure 2.29 shows the visual-expectation model. At first the visual cues were generated.
Then a visual model of a rectangular room was computed, based on a given length, width
and height of the room – see bottom left. Next, the left- and right-eye signals are computed
from the room geometry and the viewer’s position and orientation. For this purpose,
the room edges were drawn in MATLAB®, using a line model, and stored as bitmap
images. The bitmaps were then analyzed by the visual model. First, the left vertical
corner edge was settled for the left eye to determine the azimuth angle of this edge in
the head-related coordinate system – see right side of Fig. 2.29. The same procedure was
applied to determine angles for the right-edge as well as the left- and right-corner-edge
angles, measured from the right-eye perspective. For all four angle measurements, internal
noise was introduced at this point to limit the accuracy of the angle estimation. Based on
the four angles, the distances of both edges could be computed to determine the actual
width of the room. From there the volume of the room was simply estimated as the
width cubed. Although this is very crude approximation, one has to consider that, (i),
humans usually estimate the size of rooms without inspecting all room edges and, (ii),
the participants in the Valente-&-Braasch study [40] had to estimate the room sizes from
photos without complete information about the room geometry.
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2.11 Auditory features inferred from visual evidence

In the next step, a straight line was fitted through the logarithmized expected-reverberation-
time values as a function of room volume using linear regression and the perceptual data from
[40]. The left graph of Fig. 2.30 shows the perceptual results (blue) and the simulated data
(red). The latter were derived from the visually-estimated room volume and the measured
regression line. The right panel of Fig. 2.30 shows the measured and simulated data for
the expected direct-to-reverberant-energy ratios. Also in this case, linear regression of the
logarithmized physical data (i.e., the direct-to-reverberant energy ratios) was applied to
simulate the human perceptual data (i.e., the loudness differences of direct and reverberant
sounds).

compute angles and distances for left and right 
mirror source

generate left-eye 
image

determine position of 
left corner w/ internal 

noise

generate geometric model of rectangular 
room with source and receiver position and 

orientation

generate right-eye 
image

compute left and right side walls assuming 
90-deg angles

compute angles and distances for left and right 
mirror source

determine position of 
left corner w/ internal 

noise

W
S

RSΛ

Determine mirror image source 
for PE Model

SΡ

M1

M2

Figure 2.31: Architecture of a model to estimate the angles of incidence and arrival times of the
two first-order lateral reflections from visual cues

2.11.2 Visual top-down mechanism for lag suppression in the Precedence
Effect

These visually-extracted parameters were then used by a binaural model to suppress the
early acoustic reflections as to simulate the visual build-up of the Precedence Effect. For
this purpose, the visual-room-perception model was extended to predict the location of the
left and right side walls – as shown in Fig. 2.31. The model continues where the previous
model left off with the estimation of the locations of the left and right side walls – see right
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Figure 2.32: Architecture of a Precedence-Effect (PE) localization model to demonstrate the PE
build-up effect from visual cues using a combined auditory-visual model. The model calculates the
delay, T , of the early lateral reflections from the visually-captured room geometry for the left- and
right-ear channels. It then estimates the reflection coefficients, r, to judge the amplitudes of the
reflection to partially remove the reflections from the signal using a filter according to [5]

sd(t)

sr(t)T

direct sound 
source (lead)

reflection (lag)

time

ad

ar

Figure 2.33: Time course of a single-channel lead/lag pair that consists of a direct sound source,
sd(t), with amplitude ad and one reflection, sr(t), with amplitude ar. The reflection is delayed by
delay time T
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Figure 2.34: Autocorrelation functions for various broadband-signal configurations, namely,:
direct signal only (top-left panel, Rd), total signal, direct sound with reflection (top-right panel, Rt),
reconstructed direct sound consisting of total signal with eliminated reflection (bottom-left panel,
Rr), and the error between reconstructed sound and its original (bottom-right panel, Re = Rr−Rd).
If applicable, the LLAR was set to 0.5, while the delay between lead and lag was set to 5ms

side of Fig. 2.31. Here, the height and length of the walls are not important, but only the
angles and distances of the walls respective to the receiver position. The angles of the walls
were calculated from the angle of the front wall based on the two previously measured
corner angles. It was assumed that the side angles are perpendicular to the front angle.
The outcome of the model was used to determine the distance and incidental angles of
the two early side reflections using the mirror image model and a given source position, S.
The coordinates for the side reflections (distance and angle of incidence) were then passed
on to the auditory module of the model.

Figure 2.32 shows how the auditory and visual modules interact. An existing Precedence-
Effect model from 2013 [5], which will be described in the next section, served as the basis
for the auditory module.

2.11.3 Basic Concepts

Identification of ISI and lag amplitude

Although localization dominance is usually attributed to binaural effects, it is easier to
first outline the model algorithm by using a monophonic example of a direct signal, sd(t),
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and a single reflection, sr(t). Since a reflection is a delayed copy of a direct signal, one can
write

sr(t) = r · sd(t− T ) , (2.51)

with the delay time, T , and the Lead/Lag Amplitude Ratio (LLAR), r. The latter
can be treated as a frequency-independent, phaseshift-less-reflection coefficient, given
that the decrease in sound pressure with distance of lead and lag can be neglected.
For a passive reflection, one typically finds r ≤ 1. At least this is the case when the
direct sound source and the reflection are captured with a (hypothetical) omnidirectional
receiver. In the psychoacoustics literature, the delay time, T , is often referred to as the
inter-stimulus interval (ISI). The total signal, st(t), which consists of the direct sound,
sd(t), and its reflection, sr(t), can mathematically be described as follows – see also
Fig. 2.33,

st(t) = sd(t) + sr(t) = sd(t) + r · sd(t− T ). (2.52)

In the next step, the autocorrelation function of the total signal was used to extract infor-
mation about both the delay time, T , and the LLAR, r, as follows,

Rst =

∞∫
−∞

st(t) · st(t− τ) dt

= Rsd +Rsr +Rsdsr +Rsrsd . (2.53)

Aside from the two cross-correlation terms, there are now two autocorrelation terms
available, one for the direct sound, Rsd , and one for the reflection, Rsr . In case that
the direct sound is aperiodic, both functions should only have one peak, located at
τ = 0.

The top-left panel of Fig. 2.34 shows the autocorrelation peak for a broadband-noise signal
(direct sound only). The lead/lag condition is shown in the top-right panel of Fig. 2.34. Since
the direct sound and its reflection are highly correlated with each other, two cross-correlation
terms, Rsdsr and Rsrsd , were received. The first one has its maximum at τ = −T , the
second one at τ = T . Hence, for aperiodic signals the following holds,
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Rst =


rs2d : τ = −T(

1 + r2
)
s2d : τ = 0
rs2d : τ = +T

 . (2.54)

The delay time between direct sound and reflection could easily be estimated by determining
the position of one of the two side peaks. The next task was to determine the LLAR, r, from
the ratio, γ, between one of the autocorrelation side peaks and the main autocorrelation
peak, namely,

γ =
Rsrsd

Rsd +Rsr
=

rs2d
(1 + r2) s2d

=
r

(1 + r2) .
(2.55)

By completing the square, Eq. 2.55 can be resolved for r as follows,

r = ±
√

1

4γ2
− 1 +

1

2γ
. (2.56)

The ambiguities will be dealt with later in Sect. 2.11.3.

Lag removal through deconvolution

Now that the delay between lead and lag, T , and the LLAR, r, were known, a simple
filter could be designed, which eliminated the lag from the total signal. Interestingly,
this solution coincides with the impulse response of a cylindrical pipe resonator. The
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Figure 2.35: Impulse response of the novel lag-suppression filter for eight iterations (left panel), as
it was applied to remove the lag in Fig. 2.34. The right panel shows the equivalent implementation
for a simple approach with ipsilateral inhibition and no excitatory elements
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deconvolution filter, hd, converged fairly fast and only a few iterations, N , were needed,
that is,

hd =
N∑
n=0

(−r)n δ(T ·n) . (2.57)

Of course, in the ideal case, N approaches ∞. The filter’s mode of operation is in fact
fairly intuitive. The main peak of the filter lets the complete signal pass, while the first
negative peak is adjusted to eliminate the lag by subtracting a delayed copy of the signal.
However, one has to keep in mind that also the reflection will be processed through the
filter and, thus, the second, negative delta peak will evoke a further signal component,
which is delayed by 2T compared to the direct signal. This newly generated component
has to be compensated by a third, positive peak of the filter. A number of iterations were
necessary to reduce the artifacts that result from the previous peaks. It is obvious that r
cannot approximate one, as otherwise the filter would not converge. For LLARs close to
one, it is thus advantageous to limit r in Eq. 2.57.

In other current models, the delay between the first, positive and second, negative peak was
typically set as constant and not optimized for different stimuli – see, Fig. 2.35. Also, the
magnitude of the negative peak was set globally. However, in the case of the autocorrelation-
based approach used here, the parameters of the filter were optimized for the amplitude
ratio between lead and lag and the delay time between both. Further, the system response
was no longer a plain inhibitory mechanism, but rather one that included both inhibitory
and excitatory elements.

The bottom-left panel of Fig. 2.34 shows the autocorrelation result for a deconvolved signal.
In this graph, the side peaks of the autocorrelation function as visible in the top-right
panel disappeared fully, and the function is very similar to the autocorrelation function of
the lead only – as is plotted in the top-left panel of the same figure.

ITD-based signals

Thus far, a binaural mechanism has not yet been specified to demonstrate localization
dominance by any means. This is, because the focus was put on a monaural algorithm to
filter out the lag of the total signal. To demonstrate this effect, now the algorithm for a
simple cross-correlation model was applied to determine the interaural cross-correlation
(ICC) function, namely,
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Figure 2.36: Interaural cross-correlation functions (ICC) for a binaural lead/lag pair based on
ITD cues. The top-left panel shows the ICC for the direct sound only, while the top-right panel
depicts the situation for an additional lag sound. In the bottom-left panel, the lag has been
removed from both channels using lag-suppression filters according to Eq. 2.57 before the ICC was
calculated. The bottom-right panel shows the difference between the original ICC for the direct
sound and the reconstructed one after lag removal

Rslsr =

∞∫
−∞

sl(t) · sr(t− τ) dt , (2.58)

with the left- and right-ear signals, sl and sr.

A typical binaural lead/lag pair was created by applying an interaural time difference to
the lead signal and processing the lag with another ITD of the same magnitude but of
opposite sign. As the ISI is commonly defined as the delay time between lead and lag –
without considering spatial processing by applying ITDs – the actual delay times between
lead and lag at both ear signals do not have to match the ISI completely. Usually, ITDs
are applied in such a way that the signal is preceded by half the ITD value in one channel
and delayed by the same value in the opposite channel. Accordingly, T and r for each
channel were estimated individually. Here, the deconvolution filters for both channels
were determined and both channels were then convolved separately. Consequently, the
deconvolved binaural-signal pair was processed with the localization model. Alternatively,
separate filters could have been applied to the left and right ear signal before finally
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calculating ICC.

Figure 2.36 depicts the calculated cross-correlation functions. The top-left panel shows
the ICC for a single sound with an ITD of 330µs (100-ms broadband-noise burst with
a frequency range of 200–1000 Hz). The position of the cross-correlation peak clearly
indicates the ITD of the stimulus. In the top-right panel, the same sound is accompanied
by a reflection (r=1, -330-µs ITD, 5-ms ISI). A single peak was still observed, being located
in between the location of both sounds. The bottom-left panel depicts the stimulus after
the lag was removed with the lag-suppression filter in both ear signals. Now the location
of the ICC peak corresponded again to the ITD of the lag and, thus, the algorithm was
demonstrating localization dominance. The bottom-right panel of Fig. 2.36 presents the
negligible error between the original ICC function for the lead and the reconstructed
function after lag removal, that is, Re = Rd −Rr.

Figure 2.37: Result of the Precedence-Effect model with optimal visual input

Currently, the success of the algorithm depends too strongly on the accurate estimation of
the arrival times of the two lateral reflections. For accurate estimation the error needs to
be within a few milliseconds – which is probably an unrealistic assumption of the brain’s
performance.
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Figure 2.38: Precedence-Effect-model results with 2%-delay error and 50%-amplitude error

Figure 2.39: Result for Precedence-Effect model with a 20%-delay error and a 50%- amplitude
error
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