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1 Executive summary

The Two!Ears project aims to develop an intelligent, active computational model of
auditory perception and experience that operates in a multi-modal context. Ultimately,
the system must identify the acoustic sources that are present in the environment and
ascribe meaning to them.

This report presents and evaluates the technologies that have been developed in work
package three (WP3) of the Two!Ears project, with a particular focus on the work done
in the second and third years of the project. First, the blackboard software architecture
is described, which combines rule-based processing and inference using graphical models.
This provides a flexible, powerful architecture that fuses traditional rule-based artificial
intelligence with statistical machine learning techniques.

Within the software framework of the Two!Ears system, a number of ‘knowledge sources’
are defined which extract information from the acoustic input and place that information
on the blackboard. These include novel methods for segmenting the acoustic input into
streams, and a new sound localization approach based on deep neural networks (DNNs).
Further novel technologies introduced include a method for tracking acoustic sources, and a
state-of-the-art machine learning pipeline for training and testing models for acoustic source
identification, number of sources estimation, and joint identification/localization. New
methods for audio-visual speech recognition, audio-visual speech enhancement, musical
genre identification and attentional processing are also introduced.

The Two!Ears system has been evaluated both within a software simulator (the ‘develop-
ment system’) and by embedding the system in a mobile robot (the ‘deployment system’).
Evaluations of each key technology developed within WP3 are presented in the second
half of this report, in some cases showing a comparison with human performance on the
same task. Whilst many challenges remain in the field of machine hearing, we show that
the performance of the Two!Ears system approaches that of human listeners in some
tasks.
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2 Introduction

The Two!Ears project aims to develop an intelligent, active computational model of
auditory perception and experience that operates in a multi-modal context. At the
heart of the project is a software architecture based on a “blackboard system”, which
fuses prior knowledge with the currently available audio and visual sensor input. The
blackboard system and its associated software frameworks are embedded within a mobile
robot, which provides acoustic sensing via an anthropometric binaural head and stereo
cameras.

The ultimate goal of the system is to identify the acoustic sources that are present in an
environment and ascribe meaning to them. An important aspect of the system is that
information at the higher levels of the blackboard (e.g., information about the task or sound
sources that are present) can influence lower-level processing (e.g., the weight attributed
to particular acoustic features).

Briefly, the key technologies developed in work package three (WP3) include:

• A blackboard software architecture which combines rule-based processing and in-
ference using graphical models, providing a flexible and powerful architecture that
leverages both traditional rule-based artificial intelligence and statistical machine
learning techniques.

• Methods for segmenting the acoustic input into acoustic streams, including a novel
approach that uses a mixture of von Mises distributions to cluster binaural data.

• A new sound localisation method based on a deep neural network (DNN) architecture,
which uses multi-condition training and head movements to mitigate front-back
localisation errors.

• A novel method for tracking sources with a mobile robot, which allows movements
to be selected by minimising the predicted localisation uncertainty.

• A state-of-the-art machine learning pipeline for training and testing models for acous-
tic source identification, number of sources estimation, identification of segregated
streams, joint identification and localization.

• A novel method for improving the robustness of source localisation by exploiting
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2 Introduction

top-down information from source models.

• New methods for audio-visual speech recognition and audio-visual speech enhance-
ment.

• A method for obtaining robust identification models via multi-condition training.

• A novel method of identifying sound types from segregated audio streams.

• A system for musical genre identification.

• An attentional system that is closely integrated with head movements made by the
mobile robot.

• Methods for estimating the number of sources in an auditory scene.

• A method for joint identification and localisation using DNNs.

This deliverable focuses on evaluation of the complete Two!Ears system, but also serves
as a convenient entry point to reviewers that summarises the achievements of WP3. The
remainder of the document is therefore structured as follows. Chapter 3 summarises the key
achievements of WP3, referring briefly to work that was reported in previous deliverables
and fully explaining new work that was done since the first-year review. Chapter 4 then
presents a detailed evaluation of the Two!Ears system. We conclude with some reflections
on what has been achieved, and suggestions for future work.
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3 Summary of achievements in WP3

3.1 Task 3.1: Architecture

We developed an architecture that integrates experience formation and active behavior
from a set of different functional modules. These modules can work on different levels of
abstraction, independently from each other or interacting, in a bottom-up or top-down
manner. While the targeted domain of the Two!Ears system is defined – auditory and
multimodal scene understanding, evaluation and exploration – it involves many different
problems, each with many possible solutions. A key feature of our architecture – in
the following termed “blackboard system” – is thus its ability to evolve, enabling easy
modification, exchange and extension of modules. Software development has focused on
implementing dynamic behavior, construction and communications.

The blackboard system allows integration of different functional modules called knowledge
sources. They define which data they need for execution and which data they produce –
the blackboard system provides the tools for requesting and storing this data, but does not
care about the actual contents (while the knowledge sources do not need to care about
where and how data is stored). The blackboard system has no static knowledge of what
types of knowledge sources are available.

The Two!Ears system is an active system that does not only work in a signal processing
bottom-up manner, but also in a “cognitive” top-down manner. Modules therefore are
allowed to change the system setup at runtime through dynamic module instantiation,
registration and removal combined with on-the-fly rewiring of the communication links
between modules.

Our platform is open to the public in application and further development, being open-
source. The system is designed to be usable and easy to configure for different tasks,
code units are kept small and understandable, responsibilities between classes are clearly
separated, and object-oriented principles are used.

The architecture’s main component is the BlackboardSystem, which integrates the frame-
work core parts and knowledge sources, constructing and setting up the system. It connects
the robot or binaural simulator – whichever is used to provide the ear-signals and command
movement. It also integrates the auditory front-end (AFE), responsible for processing the
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3 Summary of achievements in WP3

ear-signals into cues (such as interaural time differences) needed by knowledge sources. To
enable creation of new knowledge sources that depend on auditory signals without needing
to change the Two!Ears system, we provide a utility superclass that enables automatic
registration of signal requests. Start-up configuration of the system can either completely
be defined by an XML file or by program code.

The Blackboard forms the central data repository of the platform. It stores knowledge
sources and any shared data, in particular output of the knowledge sources (e.g., estimates
of the location of a sound source). It is accessible to all knowledge sources; and it not only
stores current data, but keeps track of the history of this data in order to enable knowledge
sources to work on time series data. The Blackboard is flexible about data categories,
which do not have to be hard-coded into the system.

Knowledge sources are decoupled and have no “knowledge” of each other, instead knowledge
sources make requests to be triggered upon firing of particular events. Events in turn can
be fired by knowledge sources. The blackboard system is ignorant a priori of which events
exist. It starts to monitor events upon receiving requests made by knowledge sources, done
through the BlackboardMonitor.

The Scheduler is the component of the blackboard system that actually executes the
knowledge sources – after deciding the order in which knowledges sources waiting in the
agenda are to be executed. This order is rescheduled whenever conditions determining the
order may have changed, or when new knowledge sources may be present in the agenda
that are more urgent. Knowledge sources have priorities: knowledge sources with higher
priority get executed before knowledge sources with lower priority. Focus (priority) can
be put on knowledge sources dynamically, along with the option to propagate this higher
priority down along the dependency chain of this knowledge source.

The blackboard system currently integrates the acoustical scene auralization environment,
the auditory front-end, and functional modules for auditory object formation. Since
the acoustical scene auralization environment is connected to the blackboard system
through an interface, it is possible to instead connect the robot to the system (see
Deliverable D5.3), which then can – controlled by knowledge sources – actively explore the
environment.

6



3.2 Task 3.2: Pre-segmentation and tracking

3.2 Task 3.2: Pre-segmentation and tracking

3.2.1 Methods for segmentation into acoustic streams

Segmentation based on von Mises distributions

The purpose of sound source segmentation is to assign specific time-frequency units of
the auditory feature space to individual sound sources. This can either be done using a
hard-assignment via binary masking or by computing soft-masks, which yields a smooth
segmentation of the feature space. Soft-masking be interpreted as a probabilistic assignment
of time-frequency units to sound sources.

Segmentation serves as the initial processing step for the task of auditory stream segregation,
aiming at binding sound source location cues with sound identities. The implementation
within the Two!Ears-framework is realised as a knowledge source (KS) named Segmen-
tationKS, focusing on estimating soft-masks to fit the general approach of Two!Ears
on using probabilistic models. The proposed segmentation framework relies on a two-step
approach, comprising:

1. Azimuth clustering, based on a mixture of von Mises (vM) distributions and

2. Probabilistic masking using a Gaussian observation model.

The following paragraphs describe both processing steps in more detail.

Azimuth clustering. The proposed segmentation framework relies on estimates of sound
source azimuths, which are provided by the deep neural network (DNN)-based localisation
described in Sec. 3.4.1. It utilises a block-based processing scheme to derive statistics of the
spatial sound source characteristics over a fixed number of consecutive time frames using a
mixture of vM distributions. The DnnLocationKS outputs posterior probabilities wi for
a set of discrete azimuth angles φi, i = 1, . . . , Nφ at each time step k. Accumulating them
over a signal block of KB frames yields a set {φj , wj}

(Nφ ·KB)
j=1 . This representation serves

as the basis for a subsequent clustering step. However, conventional clustering techniques
like k-means (MacQueen, 1967) or Gaussian mixture models (GMMs) (Dempster et al.,
1977) might not be suitable for the problem at hand, since the available observations are
azimuth angles, originating from a circular probability distribution bounded in [−π, π].
Therefore, an alternative clustering technique is applied here, which is based on a mixture
of vM distributions (Banerjee et al., 2005). Similar approaches have already been proposed
in the context of sound source localization and tracking by Traa and Smaragdis (2014) and
Markovic and Petrovic (2012). The probability density function (PDF) of a unimodal vM
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3 Summary of achievements in WP3

distribution is defined as

VM(φ, |µ, κ) =
1

2πI0(κ)
exp

{
κ cos(φ− µ)

}
, (3.1)

where φ ∈ [−π, π] is an angle, µ is the circular mean, κ is the concentration parameter
and Ii( · ) is the modified i-th order Bessel function. However, this representation is not
suitable for clustering the set of obtained azimuth angles, as realistic scenarios usually
contain more than one simultaneously active sound source, which requires a PDF that
is able to model multimodal characteristics. Furthermore, the posterior probabilities wi,
estimated by the DnnLocationKS can be interpreted as individual weighting factors for
each azimuth φi. Hence, this has to be considered when fitting a PDF to the acquired
data. Subsequently, of a weighted mixture of vM distributions is used here, which can be
derived from Eq. (3.1) as

p(φi, wi |π, µ, κ) =

Nc∑
j=1

πj

( 1

2πI0(wiκj)
exp

{
wiκj cos(φi − µj)

})
, (3.2)

where π = [π1, . . . , πNc ]
T are the mixture weights satisfying

∑Nc
j=1 πj = 1, µ = [µ1, . . . , µNc ]

T

denote the circular means and κ = [κ1, . . . , κNc ]
T are the concentration parameters corre-

sponding to each of the Nc mixture components. A similar approach for Gaussian PDFs
was recently described by Gebru et al. (2016).

The proposed segmentation framework is based on the assumption that the number of
active sound sources is known a priori (see Section 3.5.2 for a description of how the system
can estimate this). Therefore, the number of mixture components Nc is fixed according
to this prior knowledge. For a given set of estimated source positions φ = {φi}

(Nφ ·KB)
i=1

and corresponding weights w = {wi}
(Nφ ·KB)
i=1 , the log-likelihood of the PDF introduced in

Eq. (3.2) can be expressed as

L(φ,w |π, µ, κ) =

Ns∑
i=1

log
( Nc∑
j=1

πj

( 1

2πI0(wiκj)
exp

{
wiκj cos(φi − µj)

}))
, (3.3)

where Ns = Nφ ·KB denotes the number of azimuth samples within one signal block.
The parameters of Eq. (3.3) are estimated using an expectation maximisation (EM)
scheme based on the approach presented in Hung et al. (2012). During the expectation
step, the responsibilities for the i-th sample and j-th mixture component are computed
as

γij =
πj

(
1

2πI0(wiκj)
exp

{
wiκj cos(φi − µj)

})
∑Nc

k=1 πk

(
1

2πI0(wiκk)
exp

{
wiκk cos(φi − µk)

}) (3.4)
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3.2 Task 3.2: Pre-segmentation and tracking

The parameter estimates for the circular means and mixture weights can be computed
analytically at each maximization step as

µj = atan2
( Ns∑
i=1

wiγij sin(φi),

Ns∑
i=1

wiγij cos(φi)
)
, (3.5)

πj =
1

Ns

Ns∑
i=1

γij . (3.6)

An estimator for the concentration parameters cannot be derived analytically. However, the
required estimation procedure can be expressed as a root-finding problem

Ns∑
i=1

wiγij

(
cos(φi − µj)−

I1(wiκj)

I0(wiκj)

)
!

= 0, (3.7)

which can be efficiently solved using Newton’s method. The EM algorithm is initialised with
model parameters estimated using the circular k-means algorithm described in Banerjee
et al. (2005).

Probabilistic masking. The probabilistic masking step is based on Gaussian observation
models for each frequency channel, relying on two primary binaural cues, namely interaural
time differences (ITDs) and interaural level differences (ILDs). The ILD between the left
and the right ear signal, denoted as τkl, is estimated for each time frame k and frequency
channel l = 1, . . . , L. ILDs are denoted as δkl. ITD and ILD features are combined
into 2-dimensional binaural feature vectors ykl =

[
τkl δkl

]T for each time frame and
frequency channel.

The underlying observation models are represented as

ykl = gl(φ) + nkl, (3.8)

where gl(φ) is a non-linear mapping function of an azimuth angle φ and nkl ∼ N (0, Rl)
is an additive Gaussian noise term with channel-dependent covariance matrix Rl. The
non-linear mapping function is realised as a regression model

gl(φ) =

βτl0 +
∑No

n=1 β
τ
ln sin(n ·φ)

βδl0 +
∑No

n=1 β
δ
ln sin(n ·φ)

 , (3.9)

which is based on trigonometric functions to account for the circular nature of the source
azimuth positions. Herein, No is the maximum order of the regression function and β{τ,δ}ln

represent the regression coefficients, which are estimated via conventional linear regression

9



3 Summary of achievements in WP3

using rendered head related impulse responses (HRIRs) with white noise as stimulus
signals. The residuals obtained after training are used to estimate the noise covariance
matrix Rl.

After a model as described in Eq. (3.2) has been fitted to the data within one signal
block, each mixture component can be interpreted as a probabilistic representation of the
azimuthal position of one sound source. By discarding the mixture weights, the model
simplifies to a conventional, unimodal vM distribution for each sound source p(φ |µi, κi),
where i = 1, . . . , Nc denotes the number of mixture components in Eq. (3.2), which is
equivalent to the number of sound sources. Hence, the soft-mask weighting factor for the
i-th source at time step k and frequency index l can be computed as

m
(i)
kl =

p(ykl | g(φi), Rl)∑Nc
j=1 p(ykl | g(φj), Rl)

. (3.10)

The overall algorithmic structure of the StreamSegregationKS is summarised in
Alg. 1.

Algorithm 1 StreamSegregationKS
Inputs:

• Number of active sound sources/mixture components Nc

• Output from DnnLocationKS {φi, wi}
(Nφ ·KB)
i=1 for current signal block

• Binaural observations ykl for current signal block

Initialisation: Run circular k-means on {φi, wi}
(Nφ ·KB)
i=1 to get initial parameters πj ,

µj , κj and γij
repeat . Azimuth clustering

E-Step:
Compute responsibilities γij using Eq. (3.4)

M-Step:
Re-estimate circular means µj using Eq. (3.5)
Re-estimate mixture proportions πj using Eq. (3.6)
Re-estimate concentration parameters κj using Newton’s method on Eq. (3.7)

Evaluate log-likelihood using Eq. (3.3)
until log-likelihood L(φ,w |π, µ, κ) converges
for i = 1, . . . , Nc do . Probabilistic masking

Compute soft-mask for i-th sound source using Eq. 3.10
end for
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3.2 Task 3.2: Pre-segmentation and tracking

Segmentation based on onset and offset detection

As described by Bregman (1990a), common onsets and offsets across frequency represent
two important grouping cues that are utilized by the human auditory system to perceptually
organize the acoustic input into auditory events. As described in Deliverable D2.3, the
AFE provides three processors to extract onset and offset cues, namely the onset processor
(onsetProc.m), the offset processor (offsetProc.m) and the binary onset and offsets map
processor (transientMapProc.m).

The detection of individual auditory events based on common onsets and offsets is illustrated
in Fig. 3.1 for a speech signal convolved with three binaural room impulse responses (BRIRs)
from the Surrey database (Hummersone et al., 2010). Specifically, BRIRs with different
reverberation times were selected, namely from the anechoic chamber (T60 = 0 s), room A
(T60 = 0.32 s) and room D (T60 = 0.89 s). It can be seen that the temporal smearing of
the time-domain signal fine structure (left panels) increased with increasing reverberation
time. The right panels show the corresponding ratemap representations together with
the extracted onset (black vertical bars) and offset (white vertical bars) fronts. When
comparing the ratemap representation of room D with the anechoic chamber, a substantially
slower decay of energetic components can be observed, which is caused by the presence of
reverberation. To improve the robustness of the detected onset and offset fronts in the
presence of reverberation, only the most salient events were retained by applying temporal
and across-frequency constraints to the auditory onset and offset maps, as specified in Tab.
4.11 in Deliverable D2.3.

In general, the strength of intensity differences decreases in reverberant conditions, effec-
tively reducing the strength of the detected onsets and offsets. As a result, the number
and the size of the detected onset and offset fronts reduced with increasing reverberation
time. Despite this noticeable impact of reverberation, the majority of onsets can be reliably
extracted in all three acoustic conditions. Consequently, the detected onsets and offsets
can be combined and used as temporal markers to indicate and separate individual events
in the acoustic input.

Segmentation based on amplitude modulation spectrogram (AMS) features

An approach for segregating sources based on amplitude modulation spectrogram (AMS)
features was also developed. The segregation system consisted of a feature extraction
front-end and a classification back-end (May et al., 2015a, Bentsen et al., 2016), as shown in
Fig. 3.2. The target signal was reconstructed by applying the estimated binary mask (EBM)
to the subband signals of the noisy speech, as illustrated by the dashed line. Each processing
stage is described in detail in the following.
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Figure 3.1: Time-domain signals (left panels) and the corresponding ratemap representations
(right panels) with overlayed onset (black vertical bars) and offset fronts (white vertical bars) for
speech in an anechoic chamber (top panels), room A (middle panels) and room D (bottom panels)
from the Surrey database.

The distinct characteristics of speech and noise components were captured by amplitude
modulation spectrogram (AMS) features (Kim et al., 2009, May and Dau, 2014a, May et al.,
2015a, Tchorz and Kollmeier, 2003). To derive these, the noisy speech was sampled at a rate
of 16 kHz and decomposed into 31 frequency channels by a Gammatone filterbank, whose
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3.2 Task 3.2: Pre-segmentation and tracking

Figure 3.2: Block diagram of the segregation system that shows the main blocks of the feature
extraction front-end and the classification back-end. The dashed line illustrates the reconstruction
of the target by applying the EBM to the subband signals of the noisy speech.

center frequencies were equally spaced on the equivalent rectangular bandwidth (ERB)
scale between 80 and 7642 Hz. The envelope in each subband was extracted by half-
wave rectification and low-pass filtering with a cutoff frequency of 1 kHz. Then, each
envelope was normalized by its median that was computed over the entire signal, which
was shown to improve the generalization to unseen acoustic conditions (e.g., signal-to-noise
ratios (SNRs) and room reverberation) (May and Dau, 2014a, May and Gerkmann, 2014).
The normalized envelopes were then processed by a modulation filterbank that consisted
of one first-order low-pass and five band-pass filters with logarithmically spaced center
frequencies and a constant Q-factor of 1. The root mean square (RMS) value of each
modulation filter was then calculated across time frames corresponding to 32 ms with 75 %
overlap, resulting in a 6-dimensional feature vector for each time-frequency (T-F) unit
~A (t, f) = {M1 (t, f) , . . . ,M6 (t, f)}T .

Context was explored in the front-end by appending delta features across time (∆T ) and
frequency (∆F ) (Kim et al., 2009, Han and Wang, 2012, May and Dau, 2013). The final
feature vector for each individual T-F unit at time frame t and frequency channel f
consisted of ~X (t, f) =

[
~A (t, f) , ∆T

~A (t, f) , ∆F
~A (t, f)

]
, where:

∆T
~A (t, f) =

{
~A (2, f)− ~A (1, f) , if t = 1
~A (t, f)− ~A (t− 1, f) , otherwise,

(3.11)

∆F
~A (t, f) =

{
~A (t, 2)− ~A (t, 1) , if f = 1
~A (t, f)− ~A (t, f − 1) , otherwise.

(3.12)

The classification back-end consisted of a two-layer segregation stage (May and Dau,
2014a, May et al., 2015a). In the first layer, a Gaussian mixture model (GMM) classifier
was trained to represent the speech and noise-dominated AMS feature distributions (λ1,f
and λ0,f ) for each subband f . To separate the feature vector into speech- and noise-
dominated T-F units, a local criterion (LC) was applied to the a priori SNR. The GMM

13



3 Summary of achievements in WP3

classifier output was given as the posterior probability of speech and noise P
(
λ1,f | ~X (t, f)

)
and P

(
λ0,f | ~X (t, f)

)
, respectively. The second layer consisted of a linear support vector

machine (SVM) classifier (Chang and Lin, 2001), which considered the posterior probability
of speech P

(
λ1,f | ~X (t, f)

)
across a spectro-temporal integration window W for each

subband (May and Dau, 2014a):

~̄X (t, f) :=
{
P
(
λ1,u| ~X (u, v)

)
: (u, v) ∈ W (t, f)

}
. (3.13)

According to May and Dau (2014a), a causal and plus-shaped window function W was
used here, whereas the window size with respect to time and frequency was controlled by
∆t and ∆f , respectively.

Other segmentation approaches

Another segmentation approach, blind source separation in the form of independent com-
ponent analysis, was also tested within the Two!Ears framework.

For this purpose, we simulated binaural data by convolving two source signals — music
and speech — with binaural room impulse responses using the binaural simulator, either
under anechoic conditions or with T60 = 320ms. The following combinations of source
DOAs were tested: [−90◦, 90◦], [0◦, 90◦], [45◦, 90◦].

We then applied the JADE algorithm (Cardoso and Souloumiac, 1993) in the short-time
Fourier transform (STFT) domain, with permutation correction according to Hoffmann et al.
(2012) to assess its general applicability to the binaural dataset. Exemplary resulting spec-
trograms for the reverberant [0◦, 90◦] setup are shown in Figure 3.3.

As can be seen from the spectrograms, and as informal listening tests revealed, the approach
is effective for the binaural data, and could be employed to separate two sources, albeit
with some residual interference in the reverberant condition.

However, applying the same ICA algorithm to the AFE features turned out to be unsuccess-
ful. This can be understood based on the non-linear frequency axis of the AFE. Its auditory
filterbank leads to separation issues due to the wide bandwidths at the higher frequencies,
which invalidate the inherent assumption of convolutive ICA that mixing in each frequency
bin can be modeled appropriately by one linear matrix multiplication. It was therefore de-
cided to not pursue the ICA-based segregation approaches further, which, in any case, would
have been limited to separating out only two stationary sources.
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Figure 3.3: Result of independent component analysis applied to binaurally simulated data of
one speech and one music signal.

3.2.2 Visual pattern detection

In Deliverable 3.4, methods for vision based labeling were outlined. A subset of them
concerned the appearance based detection and tracking, into monocular sequences, of
multiple humans standing upright. Running this algorithm on the two cameras composing
a sterescopic rig and combining its results with calibration parameters enables the coarse
recovery of their positions. The complementary subset of methods addressed the detection
and segmentation of objects. In view of the difficulty of this problem, the first attempts
were conducted on the RGB-D point cloud delivered by an active depth sensor (such as
the Asus Xtion Pro Live or the Microsoft Kinect). The evaluation of several open source
packages led to the selection of the linemod algorithm. The initial learning step of this
method consists of associating to each object of interest a database of templates made
up with color gradients and surface normals extracted from the RGB-D point cloud. The
detection stage consists of matching these templates against the incoming point cloud
within a multiscale sliding window approach. This method led to good results. It can
also apply to the point cloud generated by a stereoscopic sensor, provided it is dense
enough.

An anthropomorphic visual setup was designed for the KEMAR head and torso simulator
(HATS). It consists of 3D-printed glasses which perfectly fit the KEMAR face and incor-
porate commercial micro-cameras. To obtain high 3D accuracy after triangulation when
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tracking humans, lenses with 12mm focal length were first mounted on the glasses. After
further experiments, it appeared that the restricted overlap of the two camera fields of
view was unsuited to object perception. Indeed, a difficult pre-scanning of the scene had to
be set up by moving the head, so as to define the areas from which a dense RGB-D point
cloud should be extracted. Consequently, lenses with smaller focal length were installed.
However, these led to a point cloud which was too sparse for a proper functioning of
linemod. So, appearance-based methods for object detection and segmentation have been
investigated since then.

The method relies on a database made up of pre-recorded reference images of each object.
To improve the performance of the subsequent detection, these must be taken by the robot
at various angles and distances. A first offline process extracts visual descriptors from the
reference images by means of an off-the-shelf ROS package. This is a manual phase, which
enables the intuitive selection of suitable descriptors and/or the rejection of void images.
The online detection of the object is based on the detection of similar visual descriptors in
the test images taken from the two cameras. A combination of detectors and descriptors
providing enough speed and robustness to perception changes has been determined. The
segmentation of the object is expressed in terms of the bounding boxes of the detected
features in each camera. Its location is evaluated by triangulation.

Figure 3.4: Extraction of visual descriptors (yellow) in the reference (left) and test (right) image
of a telephone. Detection of common visual descriptors within the two images (red).
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3.2.3 Tracking

Sound source tracking and active exploration

An essential part of auditory scene analysis (ASA) is the localization of sound sources in
the environment (Bregman, 1990b). Recently, this task has been addressed by various
studies in the context of robot audition. A significant advantage of robotic agents over
static acoustic sensors is the ability to move and actively explore the environment. This
has triggered research on algorithms for active listening which incorporate feedback into
the audition process. A prominent area of research in this context is active localization.
Inspired by the abilities of human listeners to improve the assessment of auditory scenes
through head and body motions (Blauert, 1999), this has lead to a variety of approaches
for different applications.

An early study on how head movements are utilized by humans to resolve front-back
ambiguities in sound localization was introduced in Wallach (1940). Based on these
findings, several computational localization models incorporating head-movements have
recently been introduced in Ma et al. (2015e,a), Schymura et al. (2015). Additionally,
methods based on whole-robot motion were proposed, using either microphone arrays (Evers
et al., 2016) for auditory simultaneous localisation and mapping (SLAM) or binaural
sensors (Bustamante et al., 2015, 2016) for active localization of sound sources. The latter
work was an (unfunded) contribution to Two!Ears by researchers at LAAS-CNRS, and
has been implemented on the ‘Jido’ mobile robot.

An important question in this context is how robot motion can optimally support local-
ization. For instance, the framework introduced in Bustamante et al. (2016) describes an
information-based feedback control scheme. It selects controls to maximize information
gain of the estimated posterior PDF representing the assumed source location. Similar
approaches have also been proposed in the broader context of active exploration, aiming at
maximizing the robot’s knowledge about the environment (Bourgault et al., 2002, Thrun
et al., 2005). The framework proposed here complements the approach of Bustamante et al.
(2015, 2016), differing from it in two important respects.

Firstly, an extended binaural localization model is introduced, which incorporates azimuth
and distance information into the localization process. Binaural models for sound distance
estimation based on the direct-to-reverberant ratio (DRR) (Lu and Cooke, 2010) or
statistical signal parameters (Georganti et al., 2013) have already been proposed. In
this work, sound distance is modelled using the interaural coherence (IC) of reverberant
binaural signals, which was originally described in (Vesa, 2009). It was reported that
a decreasing DRR results in a decrease of correlation between both binaural channels,
which can be approximately represented by the interaural coherence (IC). The proposed
framework shows that incorporating distance information improves the localization abilities

17



3 Summary of achievements in WP3

of the robotic agent in reverberant environments, compared to a conventional bearing-only
observation model.

Secondly, a closed-loop feedback control scheme is proposed, aiming at minimizing the
entropy of the belief state while approaching a specific goal position. The robot motion
will be chosen from a set of pre-defined actions based on a Monte Carlo exploration (MCE)
approach (Thrun et al., 2005, Nakhost and Müller, 2009). This allows for the selection of
movements by minimizing the predicted localization uncertainty. This approach extends
previously proposed methods (Bustamante et al., 2015, 2016) with the possibility for
trade-offs between exploratory and goal-direction motions.

System dynamics. The localization model used here assumes a generic nonlinear state
space representation

xk =

[
xS,k

xR,k

]
=

[
xS,k−1

f(xR,k−1, uk)

]
+ vk (3.14)

yk = g(xk) + nk, (3.15)

where xk and yk denote the state and observation vectors and uk =
[
uL,k uR,k

]
, u{L,R},k ∈

[−1, 1] represents the control input at the left and right wheel actuators. The system
dynamics in Eq. (3.14) is composed of two augmented state vectors xS,k =

[
mx,k my,k

]T
and xR,k =

[
px,k py,k θk

]T , representing the position of the sound source in Cartesian
coordinates and the robots pose including its heading direction θk, respectively. The
sound source is assumed to be static up to state noise, whereas the robot dynamics is
governed by a nonlinear motion model f(xR,k−1, uk) (Thrun et al., 2005). Observations
are predicted using a nonlinear mapping function g(xk). Both state and measurement
noise characteristics are modeled as additive, zero-mean Gaussian random variables vk and
nk with corresponding covariance matrices Q and R.

Measurement model. The measurement model in Eq. (3.15) introduces a nonlinear
mapping function g(xk) from states xk to observations yk. As described previously, ITDs,
ILDs and IC are used as primary binaural cues for the proposed localization model. ITDs
and ILDs are cues that correspond to the relative angle φk between the sound source and
the heading direction of the robot. In addition to that, the IC is used here to model the
sound-to-receiver distance dk. Hence, the system’s state is first mapped from Cartesian to
polar coordinates. The mapped state is subsequently used to predict binaural observations
by a regression model

g(xk) = W TΦ(φk(xk), dk(xk)), (3.16)

where Φ(φk(xk), dk(xk)) represents the regressors and W is a matrix of regression coeffi-
cients. The latter are computed via multivariate linear regression (Bishop, 2006, Chap. 3)
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using rendered binaural room impulse responses (BRIRs) and white noise as stimulus
signal. A finite Fourier-series representation (Oppenheim et al., 1999) is used to model
angle-dependent regressors in Φ(φk(xk), dk(xk)), whereas the distance-related regressors
are modeled via polynomials.

The residuals obtained after training are used to estimate the measurement noise covariance
matrix R. This model extends the approach from Schymura et al. (2015), which was
restricted to azimuth prediction based on a spherical head model. The use of a regression
function according to Eq. (3.16) yields a more flexible framework, which can be trained on
both measured or simulated BRIRs.

State estimation. The robot position is assumed to be known and deterministic for
the current implementation, depending only on the applied control input. Hence, state
estimation reduces to recursively computing the posterior PDF or belief of the sound source
position p(xS,k |y1:k, u1:k). This distribution might have multimodal characteristics, as
front-back confusions can occur due to the ambiguous nature of binaural cues (Blauert,
1999). This renders Bayesian filtering methods based on unimodal Gaussian assumptions
inappropriate for this task.

To overcome these limitations, a Gaussian mixture sigma point particle filter (GM-
SPPF) (van der Merwe and Wan, 2003) is used, which represents the posterior PDF
as a GMM. However, an analytic evaluation of the entropy is not possible for GMMs. To
obtain a measure of uncertainty, an approximation of the belief states entropy is necessary.
As described by van der Merwe and Wan (2003), the conditional mean state estimate
x̂S,k = E{xS,k |y1:k} and the error covariance matrix P̂ k = E{(xS,k− x̂S,k)(xS,k− x̂S,k)T }
can be utilized to approximate the resulting GMM representation of the belief state by a
unimodal Gaussian distribution. Hence, the entropy of the corresponding PDF is defined
as

H(xS,k) =
1

2
log
(

(2πe)D · |P̂ k|
)
, (3.17)

where D = 2 is the dimensionality of the state vector x̂S,k.

Monte Carlo exploration (MCE). MCE has been widely used in the context of robotics
as a means to actively gain information about uncertain entities in the environment (Thrun
et al., 2005). A prominent application for exploration techniques is simultaneous localisation
and mapping (SLAM), where the robot tries to actively explore its environment to reduce
uncertainty in the map-building process (Stachniss et al., 2004). However, unrestricted
exploration is usually not desired in many applications, for instance, if the robot must
reach a specific goal position.

Hence, the implementation in Two!Ears focuses on using MCE to construct a policy π(xk),
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which allows the robot to select appropriate actions that maximize a specific reward function
which trades off exploration and goal-directed movements. Thereby, exploration serves two
purposes: using rotational movements to resolve front-back ambiguities and translatory
movements to support distance estimation via triangulation.

A generic MCE algorithm as described in (Thrun et al., 2005, Chap. 17) is adopted. It aims
at finding the action uk+1 that maximizes the expected reward at the subsequent time
step. To assure computational tractability, the continuous-valued controls are discretised,
yielding a set of Nu actions U = {u(1)

k+1, . . . , u
(Nu)
k+1 }.

A control policy is obtained by running Monte Carlo simulations that predict the immediate
reward of all actions in the set U , using the system dynamics and measurement model as a
black-box simulator. The procedure is initialized by drawing a set of N samples x̃(i)

S,k ∼
p(xS,k |y1:k, u1:k), i = 1, . . . , N from the belief distribution at the current time step. As
the robot pose is assumed to be deterministic, the full state samples are represented as x̃(i)

k =[
x̃
(i)
S,k xR,k

]T
. Subsequently, a particle filter update step is conducted for all available

actions by sampling observations using the measurement model ỹk+1 ∼ p(yk+1 | x̃
(i)
k ). The

update steps generate a set of predicted posterior PDFs p(x̃S,k+1 | ỹ1:k+1, u1:k+1) along
with their corresponding entropies, using the approximation introduced in Eq. (3.17). This
allows for the calculation of the immediate reward r(x̃(i)

S,k+1, xR,k+1) based on the negative
entropy.

All obtained immediate rewards are averaged across all Monte Carlo simulations, yielding
an approximation of the expected reward R(xk, uk+1). The policy obtained by MCE is
a greedy policy, as it exclusively considers the expected reward at the next time step. Hence,
action selection can be conducted by evaluating π(xk) = arg max

uk+1

R(xk, uk+1).

Reward function. The proposed framework relies on an immediate reward function
that constitutes two possibly conflicting goals: minimizing localization uncertainty by
exploratory movements and reaching a specified goal position xG. Hence, a trade-off has
to be found which balances exploration and goal-directed actions. This is expressed via
the function

r(x̃
(i)
S,k+1, xR,k+1) = −

(
λ‖xR,k+1 − xG‖2 + (1− λ)H(x̃

(i)
S,k+1)

)
, (3.18)

where λ ∈ [0, 1] is a trade-off parameter that balances the minimization of the Euclidean
distance from the robot to the goal position and exploration achieved by considering the
entropy predicted for the next time step.

An example of a trajectory generated by MCE is depicted in Fig. 3.5. It shows that
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the proposed control scheme makes use of translatory and rotational movements to sup-
port distance estimation and reduce front-back ambiguities, while approaching the goal
position.
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Figure 3.5: Active exploration in reverberant conditions with T60 = 250 ms. The source position
(blue triangle) is located between the initial robot position and the goal position (black cross).
MCE is performed with λ = 0.5, generating a trajectory (dashed black line) towards the goal which
helps to reduce the uncertainty of the particle set (gray dots).
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3.3 Task 3.3: Knowledge-base acquisition

3.3.1 Auditory Machine-Learning Training and Testing Pipeline

We have developed an object-oriented framework for building and evaluating models
for auditory sound object annotation and assigning attributes to them. The models
were obtained by inductive learning from labeled training data. The framework is called
the Auditory Machine-Learning Training and Testing Pipeline (AMLTTP). It is tightly
coupled with the Two!Ears system and its components. The AMLTTP consists of
two parts, namely generating model training data and the training as well as testing of
models, where each part can be broken down into further sub-stages and components.
While the pipeline is designed with flexibility in mind and is extendable to new target
attributes, data features, or model and training algorithms, it serves the specific purpose of
training and evaluation of block-based auditory object-type, object-location, and number-
of-sources classifiers using data from simulated auditory scenes generated within the same
framework.

Multi-conditional auditory scene simulation

In stage one of the data generation, ear-signals are produced from audio files using the
Binaural Simulator from the Two!Ears system. This can be done under various conditions,
set up through a configuration object of the AMLTTP:

• An arbitrary number of sources can be created, either diffuse (non-directional), or
point-sources with specific positions relative to the head, whose azimuth can be set
as well.

• The “head”, i.e. the HRIR used, can be exchanged. By default, it is defined as a
KEMAR head.

• Sources can be set up to emit white noise or specific audio files.

• Sources can be set up to playback one audio file and then mute, or loop over this
audio file, or playback audio files from a set in random order, for a defined duration.

• Ear-signal-level average SNRs between sources can be fixed. They are defined as the
ratio of powers between the individual sources’ ear-signals.

• Simulated reverb (shoe-box room model) can be defined, or

• BRIRs can be used instead of HRIRs, in which case source positions are defined by
the BRIR. Multi-speaker BRIRs allow for scenes with multiple sources.
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• The ear-signals average level can be adjusted.

The above conditions together define a scene configuration. An arbitrary number of
such scenes can be specified and will be simulated to produce multi-conditional training
data. While models trained from single-conditional data, i.e. data generated from a single
configuration, possibly perform better within this condition because of their specialization,
we opted to train models using multi-conditional data. The motivation to use multi-
conditional data is to train models that can generalize across different conditions by using
data that enforces invariance. Both condition modes were used. Additionally, different
scene configurations can be used across training and testing to perform, so called, “cross-
testing” of configurations. This way, models can be evaluated under conditions that were
not included in their training data, which allows for assessing the models’ robustness.
Multi-conditional models can still be tested on individual conditions to evaluate them in
more detail.

Sample feature generation

After ear-signals have been generated, stage two is about constructing features for all the
samples. This stage consists of three subsequent steps: First, basic auditory feature like
ratemaps or ILDs are created by the auditory front-end (AFE), which takes the ear-signals
as inputs. Then, these basic feature streams get cut into blocks with predefined length
and overlap. The AFE operates directly on the ear-signal streams to avoid artefacts on
borders of blocks. After block extraction, the features within each block get transformed
with statistical or any other functions into sample feature vectors to use as model input.
This is performed in the AMLTTP by so-called FeatureCreators, producing one sample
vector per block.

FeatureCreators, which inherit from a common base interface and are thus seamlessly
usable, are modules to be implemented by the user of the AMLTTP to construct data
vectors in a form that is suitable for the model to be trained. Part of implementing
the common interface involves defining “AFE-requests” which set up the AFE’s output.
These requests are made in exactly the same way as in the Two!Ears blackboard system.
To be able to later evaluate models on a feature-level, e.g. for dimensionality reduction,
FeatureCreators automatically produce a detailed description of each feature dimension.
Masks can be used to incorporate results of feature selection methods and only train or test
with selected dimensions. The description of each feature also has its use for combining
the AMLTTP with external third-party tools such as the Caffe library for training neural
networks, as showcased in 3.3.3.
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Label creation

Similar to the generation of sample vectors described in the section above, the corresponding
target vectors (also called “labels”) are produced by “LabelCreators”. These labels are
used in the supervised training of models, and serve as ground truth in the testing of
models. Analogous to FeatureCreators, LabelCreators also implement a common interface
for quickly creating new labellers describing different object attributes. Any of these object
attributes are derived from annotations at different levels of abstraction (e.g. active sources,
source energies, etc.) around the ear-signals streams which were produced in the scene
generation stage and are passed through the pipeline. LabelCreators for producing source
class, source location and number of sources targets are already available and can be used
‘right out of the box’, including combinations thereof. Binomial, multinomial, or regression
targets can be produced, and combined to form multivariate labels.

Model training algorithms

Consistent with the concept of modularity and extendability, common interfaces exist for
models and their corresponding model trainers. Any algorithm for model construction
can be used, and any model type can be constructed and tested. A class inheriting from
the interfaces can implement its own technique and can be plugged into the AMLTTP.
Along with this, wrapper trainers for conducting stratified cross-validation or hyper-
parameter search are provided and can be used with any algorithm. We have already
implemented:

• Elastic net with Gaussian or poisson regression;

• Elastic net with binomial or multinomial classification;

• Online gradient descent with logistic, Gaussian, or hinge regression, with or without
regularization;

• Support-vector machines.

It is also possible to let the AMLTTP generate and save training samples to file, in order
to use external training tools such as the Caffe library for training neural networks as
presented in 3.3.3.

Tight coupling with the Two!Ears blackboard-system

The AMLTTP and the Two!Ears blackboad-system are tightly coupled in two central aspects:
AMLTTP-trained models can be used from within the blackboard system, and blackboard
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system knowledge sources can be used from within the AMLTTP.

Models created by the AMLTTP can be plugged into the blackboard-system and be
used there without any modification or interface adjustments: they fit into the respective
AMLTTP-knowledge source. They automatically employ the right FeatureCreator and
model, feeding the system with hypotheses about auditory object attributes. Regardless
of whether the ear-signals that are fed into the blackboard system were produced using a
binaural simulator or acquired from actual microphones, features are produced in exactly the
same manner as in the AMLTTP. The same block length is used, the same AFE requests are
made, and the features are constructed using the exact same code.

A particularly interesting feature is that the reverse of this process is also possible: existing
knowledge sources and the models that come packaged with them can be included as “data
processors” in the AMLTTP through a blackboard-KS wrapper interface. This enables the
incorporation of other models’ hypotheses about the auditory data, and modifying the data
passed to the FeatureCreator or adding to it, or modifying the attribute annotations passed
to the LabelCreator. Models that use other models’ outputs can be built through this
feature, incorporating into the training process the properties of the other models instead of
only adapting to ground truth. Four knowledge sources have already been plugged into the
AMLTTP through the blackboard-KS wrapper: DnnLocationKS, SegmentationKS,
NumberOfSourcesKS and IdentificationKS (see Deliverable D6.1.3 for descriptions
of these knowledge sources).

Utility

A lot of work has gone into making the AMLTTP both easy and effective to use. While
the first is accomplished through a clean high-level interface, the latter is enabled to a
large extent through the following two points:

• All products from intermediate stages, such as the generated ear-signals, or features
produced by the AFE, are saved together with their corresponding configurations
inside a caching system. Since these stages can be very time-costly for large data
sets: repeating trainings with a different model, resuming a process after a crash,
etc., are made possible without having to recompute everything again. Also, data are
saved in such a way that they will be recombined automatically whenever parts of a
configuration have already been computed before. This saves a lot of computation time
and helps assigning the produced data to many different experiments’ configurations
and reproduce experiments more easily.

• The AMLTTP can be run concurrently on many processes and/or machines, whilst
working from the same data. File semaphores ensure that processes don’t interfere
with one another when operating on the same configuration in the same stage.
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3.3.2 Feature selection and dimensionality reduction

In chapter 3 of Deliverable D3.4, we investigated the application of feature construction
by principle component analysis (PCA) and independent component analysis (ICA) to
improve auditory object type classification. Preprocessing with PCA did not yield any clear
benefit over using elementary features. Using ICA even decreased performance. Since both
preprocessing techniques come with additional computational costs, we did not consider
them further.

We analyzed the potential benefits of data-driven feature selection techniques for sound-type
classification. We trained type classification models using three schemes: the first scheme
employed linear classifiers and support vector learning on all features. The second scheme
employed the Least Absolute Shrinkage and Selection Operator (Lasso) technique, a linear
(logistic) regression model trained with a regularization term which penalizes a large number
of input features (Tibshirani, 1996). The second scheme thus selects informative features
while simultaneously constructing the sound-type classifier. The third scheme implements
a two-step procedure by combining the first two schemes. First, features are selected using
the Lasso technique, second, a linear classifier is constructed using support vector learning
on the selected features. This choice of schemes allowed for an assessment of the potential
benefits of data-driven feature selection. It also allowed for an assessment of robustness
of the results and the potential dependencies of classification performance on different
training methods. The above mentioned machine learning schemes were applied to three
sets of auditory scenes individually and in combination, and classifiers were constructed
for the block-based classification of sound-type.

In summary, we found that the additional feature selection step employed by the third
learning scheme usually did not improve average classification performance of a linear
SVM compared to a setting where all elementary features are considered. The number of
features to be included, however, could be drastically reduced without compromises on
classification performance. This also greatly cuts down on computation time necessary for
training the classifiers and leads to shorter classification times. Since the Lasso algorithm
selects features and trains models in one step and showed performance competitive with
the SVM, we concluded that it is a technique well suited for our needs. Each of our models
trained with this technique thus uses its own dedicated feature set tailored to the task.
Further details are provided in Deliverable D3.4.

3.3.3 Statistical learning

The AMLTTP (see Sec. 3.3.1) served as our framework for building auditory object annota-
tion models through statistical learning. Using it, we trained models that (a) detect auditory
objects of specific type in the ear-signals streams, (b) classify auditory object streams
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segregated according to the objects’ locations, (c) jointly classify and localize auditory
objects, and (d) estimate the number of active sound sources.

Detection and identification of auditory objects

In order to build models that detect acoustic objects of a particular type, and hence identify
them, we used statistical learning in the form of logistic binomial classification with Lasso
(Tibshirani, 1996). First results for sound event identification with using Lasso and other
classification algorithms have already been reported:

• Support-vector machines, in Deliverable D3.2, section 5.2.4, and D3.4, sections 3.3.2
and 4.2.5

• Gaussian mixture models, in Deliverable D3.2, section 5.2.5

• Mixture of factor analysers, in Deliverable D3.2, section 5.2.7, and D3.4, section 4.2.6

• Logistic classification with Lasso, in Deliverable D3.4, sections 3.3.2 and 4.2.5

Since logistic Lasso had the highest computational efficiency without loss in average classi-
fication performance, we concentrated further investigations to this method, utilizing the
“GLMNET” package (Friedman et al., 2010, Qian et al., 2013)) in the AMLTTP.

Lasso is a classification method with an embedded feature selection procedure. An important
factor in determining the sparsity of the final model is the strength of the L1 regularization
term, which is controlled by the regularization parameter λ. For adjusting its value, we
performed a 7-fold cross-validation on the training set for all 100 candidate values along the
regularization path. We then chose the value with the best cross-validation performance,
and used it with the model trained on the full training set. Since we are interested in
obtaining classifiers that work well both on detecting “positives” (auditory objects of the
respective type) as well as classifying “negatives” (blocks in which the respective auditory
object is not present) as such, we want to optimize both sensitivity and specificity, and
used a variant of balanced accuracy (BAC) that not only equally weighs sensitivity and
specificity, but also penalizes differences between them, as the performance measure for
this optimization:

BAC2 = 1−

√(
(1− sensitivity)2 + (1− specificity)2

2

)
(3.19)

Data were always split into a training set for model building and a test set for estimating
the generalization performance of the classifiers. In order to ensure that a block from
the training set and a block from the test set never contained parts of the same sound
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file, training-test splits as well as cross-validation splits were conducted at the level of the
original sound files. Additionally, splits were done stratified with respect to the classes
distribution. This means that the set of sound files for each class individually was randomly
split into training set and test set, 75% vs 25% in our general setup. Only sounds from the
training set were used to generate auditory scenes for building the classification models,
and only sounds from the test set were used to generate auditory scenes for evaluating the
prediction performance.

For each sound type, we trained a binary classifier in a one-vs.-all scheme, where each
classification model decides whether a given auditory stream contains a sound event
corresponding to this particular type.

In section 3.4.2, we describe different schemes and features used for training our identifica-
tion models. In section 4.3, we conduct a detailed analysis of sound event detection with
these models. We systematically investigate the impact of superimposed distracting sources
and demonstrate how robust models were obtained by including a range of conditions in
the training data, a procedure called multi-conditional training.

When training with multiple conditions, performance was always evaluated on individual
“single conditions”. We also turned back to standard BAC when evaluating our models on
the test data for its direct interpretability.

Classification of segregated auditory object streams

The previous section described the statistical model building process of classifiers that
detect particular auditory objects in the ear-signal streams. These models operate on the
“full” and all streams, with all sources’ signals overlapping and superimposed. We followed
a second approach of building models that identify objects in segregated auditory streams
for two reasons:

1. Concurrent auditory objects may be detected and identified with increased precision,
if they are separated into individual streams where each stream maximizes information
about the object it encloses.

2. If only one source emits sound at a time it is possible to bind the attributes of
the auditory objects such as type and location through their co-occurrence in time.
This cannot be achieved in scenarios with concurrent sound sources. If however,
the ear-signals are segregated into streams corresponding to one source each, this
problem can be solved and objects can be formed.

The operating point of statistical models (i.e. the decision thresholds) are tightly optimized
to the distributions of the data they operate on (in our case, the features built from
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auditory representations of the ear-signal streams). The segregation of this data changes
these distributions. Therefore, claim (2) made above would most probably only hold if
models are trained on the segregated streams, rather than applying the full-stream trained
models on the segregated streams.

Therefore, we deemed it necessary to include the segregation model – see “Segmentation
based on von Mises distributions” in section 3.2.1 for a description – into the data generation
and training process of the detection models. Consequently, since the segregation model
operates based on the azimuths of different sources, the respective azimuth distribution
estimation model (see Sec. 3.4.1) had to be incorporated as input to the segregation model.
While it would have been possible to use location ground truth as input to generate
training data, it seemed reasonable to rather include the respective model and its particular
output properties and distribution. Both models were included through the AMLTTP’s
ability to include blackboard-system knowledge sources (see Sec. 3.3.1, “Tight coupling
with the Two!Ears blackboard-system”). Thus, the segregated streams as soft-masked
by the segregation model served as auditory representations when generating features for
the detection models. Other than that, the models were built in the same way as the
“full-stream” models described in the section above.

In section 4.5.1, we analyze these models and evaluate their performance. We compare
them to the full-stream models, with respect to the advantage of training on already
segregated streams, and with respect to the influence of the estimation of number of active
sources.

Joint classification and localization of auditory objects

We developed models that simultaneously identify and localize a set of auditory objects
within an ear-signal’s stream. This attempts to solve the binding problem, assigning
different characteristics to the same object, in a bottom-up fashion. Neural networks were
trained end-to-end to jointly optimize for the identification and localization tasks. The
two tasks are combined by defining the output of the network as a two-dimensional map,
where columns represent azimuth location bins and each row represents a sound type.
Each node in the network’s output layer represents a classifier trained in a one-vs.-all
fashion. Its response is interpreted as the probability of a sound type present at a particular
azimuth.

The AMLTTP is used for multi-conditional auditory scene simulation and extraction of
features. A LabelCreator is defined that combines both sound type and azimuth location
ground truth for each sample, based on the scene configuration and annotated onsets
and offsets. The extracted features and their corresponding labels are fed into the Caffe
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library (Jia et al., 2014)1 for training neural networks using gradient-based learning. Caffe
is an open source library for developing and training deep neural networks. Networks
are developed in Caffe by defining their layered graph structure (i.e. how many layers,
nodes per layer, connectivity between layers), the operations performed at each layer (e.g.
convolution, non-linear transfer function, inner product) and the loss function. We also
used Caffe for defining and configuring the learning algorithm. In our case, the parameters
of mini-batch gradient descent, referred to in Caffe as the solver. Using the Caffe library
has the advantage of accelerating computationally intensive operations by offloading them
onto a Graphical Processing Unit (GPU) to quickly leverage the large amount of data
used in training. The library handles the execution of feeding input features into the
network, propagating them through its layers, computing the loss function and computing
the gradients of the weights throughout the network through backpropagation algorithm
for the solver to update the network’s weights. After several iterations through the training
dataset, the network is applied to the test set to assess its generalization performance. A
trained network represented by the layer definition and final set of weights are deployed
into an IdentityLocationKS of the Two!Ears system.

The procedure we use to train the models is to first simulate the auditory scenes in
the AMLTTP. There we also define and extract the set of features. These features are
then saved to disk and reformatted2 to achieve compatibility with the Caffe library. The
description that the AMLTTP provides for each individual feature element in the feature
vector is essential for resolving the spatial dimensions of the network’s input features. The
training process provided by Caffe is then configured and launched.

Estimation of number of sources

For computational auditory scene analysis (CASA), estimating the number of active sound
sources is an important part in analyzing scenes, not only as a number of interest in itself,
but also since other tools like stream segregation (see Sec. 3.2.1) depend on it. We thus
built statistical models for estimating this number, and incorporated the means to do so
into the AMLTTP. We investigated three learning schemes:

• Treating the estimation as a classification problem and building models with multi-
nomial logistic classification with Lasso;

• Building regression models through Gaussian regression with Lasso;

• Building regression models with underlying Poisson distribution assumption, regular-
ized through Lasso.

1 Caffe library URL: http://caffe.berkeleyvision.org/
2 Tools for preparing data for the Caffe library https://github.com/nigroup/nideep
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As done for our detection models described above, we used the “GLMNET” package
(Friedman et al., 2010, Qian et al., 2013) in the AMLTTP for all three cases, with the same
methods of cross-validation, splitting into training and testing sets, etc. However, differing
from this description were of course the performance measures used for optimizing λ: for
the classification model, we used “multinomial BAC”, which extends balanced accuracy to
the multi-class case (weighing all classes’ sensitivities equally); for the regression models,
we used (negative) squared error.

The choice of using Lasso for building number-of-sources estimators was also influenced by
the fact that we wanted to “offer” a wide range of representations to the model, among
them ILDs, ITDs and so-called DUET-features – see description in section 3.5.2 – and thus
needed a model training algorithm with effective feature selection; generalized linear models
with L1 regularization are exactly such, as proven in Ng (2004).

In addition to the basic auditory representations, we wanted to present two more abstract
and high-level “features” to the models that we suspected to be helpful in determining the
number of active sources: (a) the azimuth sources distribution generated by the azimuth
distribution estimation model (Sec. 3.4.1), and (b) the detection probability outputs of
our models as described in Sec. 3.4.2 and “Detection and identification of auditory objects”
above. In the same way as in the case of our detection models working on segregated streams,
we thus incorporated those trained models into the data generation and training process of
the number-of-sources estimators, accessing their knowledge.

Section 3.5.2 provides a more detailed description of the model and features, with section
4.6 featuring an analysis of them.

3.3.4 Logical rule learning

Several approaches were taken to learning logical rules from imperfect data. In par-
ticular, decision trees were used to learn the characteristics of time-frequency regions
that are likely to provide reliable information for source localisation. The software ar-
chitecture includes the facility to interface with an engine for the Prolog programming
language, enabling the scheduler to reason using sets of rules expressed as predicates in
Prolog.

The use of rough sets theory was envisioned in the original workplan, but as work on the
TwoEars architecture progressed this became inappropriate. The graphical-model-based
blackboard system is based on the assumption that latent variables exist, denoting the
actual state of the environment (e.g., states such as ‘speaker one is active’ or ‘there is an
emergency’). We aim to estimate the probability distribution of these latent variables,
whereas the adoption of rough sets theory implies logical reasoning with variables that are
true or false in part. Since this idea was at odds with the overall reasoning and knowledge
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representation framework that has been designed, we decided against the inclusion of this
approach and focused on probabilistic methods.

Learning grouping rules

Grouping rules can be learned using a suitable learning technique. In this section we
describe work in progress on learning rules for estimating a precedence mask using decision
trees. A binaural precedence effect model is proposed to select the reliable time-frequency
regions for localisation in the presence of reverberation. The model is derived from a series
of binaural features that reflect the transient parts of the direct sound arriving from the
parts that are polluted by sound reflections. Decision trees are then applied on the features
to estimate a time-frequency mask, which can be used to selectively weight the output of a
binaural localisation system.

Precedence mask. The precedence effect is a well-known binaural psychoacoustic effect
involved in resolving competition for localisation between a direct sound and its reflections.
Such an effect contributes largely to human listeners’ ability to localise sound sources in a
reverberant environment. In contrast, the performance of sound localisation in machine
hearing systems is usually degraded by reverberations. While multi-conditional training can
improve the robustness of a localisation system to reverberation, modelling the precedence
effect could be a more direct way to bridge the gap between the human and machine
sound localisation (Lindemann, 1986, Faller and Merimaa, 2004, Braasch and Blauert,
2011, Braasch et al., 2003).

In this work, a precedence effect model is implemented as a series of decision trees in order
to estimate a spectro-temporal mask, a precedence mask, that indicates time-frequency
regions dominated by direct sound. Such a precedence mask can be employed by a sound
localisation system to weight more on the direct-sound dominated regions, thus producing
more reliable estimation of sound locations.

Learning rules for mask estimation using decision trees. We employed decision trees
to learn rules for mask estimation and selection of localisation features. Fig. 3.6 shows a
schematic diagram of the proposed system of binaural sound localisation. At the training
stage, binaural features that reflect the activity of direct sound are extracted for the
reverberant training speech, and the ideal precedence mask is calculated for the posterior
probability of each azimuth as the reference labels. The relationship between the features
and the reference labels is learned by decision trees in each auditory channel. In the testing
stage, the precedence mask is generated from the decision trees based on the features, and
the precedence effect is realised by weighting the contribution of the direct-sound-dominated
time-frequency regions.
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Set parameters for Mask: sigma, frameshift.  Set training database: 
nMixture, Rooms, azRange, nSpeakers, minDisDeg, rooms

Testing

Generate Ideal Mask

Extract direct sound features: 
IC, FR, deltaIC, etc

Train Decision Tree on AFE features

Set testing database

Ideal mask

Final localisation

Mask from AFE tree

Training

Train Decision Tree on PE 
features

Rule-based mask

Final localisationFinal localisation

DNN localisation

Extract two-ears frontend features

Mask from PE tree

Final localisation

DNN localisation

Figure 3.6: Schematic diagram of the proposed system, showing steps during training (top) and
testing (bottom). During training, the ideal mask is generated based on the posterior probability
of each azimuth, which is the output of the DNN. Then a decision tree is trained for each auditory
channel to map between the features and the reliability of the time-frequency region, which direct
sound mask. In the testing stage, the mask is derived from the feature based on the decision trees.

The precedence mask can be derived from the binaural cues of the input signal according
to some rules and models. Three methods of generating the precedence mask have been
tested in this work. The first is to generate the mask directly based on some features
that reflect the activity of direct sound. The second and third train decision trees for
particular feature sets based on training sets in reverberant environments. In the testing,
the mask is generated from the decision trees based on the auditory cues of the input
signal. In the second method, the features of auditory front end are used directly. In
the third method, the features were pre-processed as “precedence features” to enhance
the sensitivity to direct sound, and the training and testing were both based on those
precedence features.
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Precedence features. In (Faller and Merimaa, 2004), the interaural coherence (IC) was
used as an indicator for time instants with reliable binaural cues. However, IC only reflects
the coherence of two signals, and it may also be high when reverberation is included in the
observed segment. Moreover, it is still a problem for a machine listening system to select
an appropriate threshold for each auditory channel and environment, while the human
auditory system can quickly adapt.

The Franssen effect experiments (Hartmann and Rakerd, 1989, Yost et al., 1997) show
that the human auditory system may fail to localise sounds with a constant amplitude and
spectrum in reverberant sound fields. As long as no new sound source arrives, the direction
of the last localised sound source remains as the perceived direction. This is consistent
with the precedence effect if we consider two sounds as the lead and lag signal, and it
shows that the lag signal can be neglected during localisation until a new onset appears. It
is therefore reasonable to hypothesise that the auditory system separates tones with the
same frequency based on their onsets, which tends to merge sounds that do not have a
strong onset with the localised source immediately before them.

We propose precedence features based on this explanation of the precedence effect for
localisation. The onset of the direct sound causes a peak in the interaural cross-correlation
function, and this is followed by stabilised cross-correlation output with the peaks drifting
slowly due to arrival of reflections. If the analysis window includes only the direct sound,
then the height of the peak in the IC increases abruptly after more direct sound is included
in the window. When the analysis window is extended to include more reflections, the
IC values start to decrease or fluctuate and the lags begin to decline and drift. This
gives us a good indication of the boundary between direct sounds and reflections in each
auditory filter. IC values of increasing window lengths are therefore employed as precedence
features.

Preliminary results. We trained regression trees to select useful precedence features and
estimate a precedence mask. In our preliminary experiments, we used only 10 utterances
for training the decision trees. The DNN-based localisation system (Section 3.4.1) was
used as the baseline system. The localisation accuracies of the system when employing
the ideal and estimated masks are listed in Table 3.1. Systems were tested on mixtures
of 1, 2 or 3 speakers in 5 acoustic environments (anechoic, and four rooms from the
Surrey database which varied in reverberation time). Bold figures indicate whether the
best performance in each condition (for the no mask and decision tree mask systems
only).

The DNN baseline is already a robust localisation system and included multiconditional
training to combat the adverse effect of reverberation. When the ideal mask was employed,
the improvement was mainly found in the most challenging multi-speaker conditions.
The estimated precedence mask shows only a limited benefit, with improved localisation
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Table 3.1: Localisation accuracy (%) for three systems in which no time-frequency masking is
used (no mask), time-frequency regions are selected according to a priori knowledge of the ideal
mask (ideal mask) and a system in which the localisation mask is estimated from auditory features
using a decision tree (decision tree mask).

Speakers Anechoic Surrey A Surrey B Surrey C Surrey D

No mask
1 100.00 99.78 97.30 100.00 97.30
2 100.00 98.15 94.09 97.82 94.89
3 99.90 91.74 87.69 92.43 88.16

Ideal mask
1 100.00 100.00 100.00 100.00 100.00
2 100.00 100.00 98.89 100.00 99.89
3 100.00 98.62 98.19 98.91 97.54

Decision tree mask
1 100.00 100.00 96.97 100.00 97.30
2 100.00 99.10 93.46 98.00 93.97
3 100.00 91.70 86.68 91.43 87.15

accuracy in some conditions and degraded performance in others. This could be largely
due to the fact that the decision trees were trained using a small data set. However, the
performance when using ideal masks shows this could be a promising approach to robust
sound localisation using a precedence model.

Integration with engines for logic programming

AMATLAB interface to the Prolog logic programming language was developed to enable the
assessment and evaluation of first order logic rule-bases within the Two!Ears blackboard
framework. The interface is based on the SWI-Prolog environment3, which is embedded into
a wrapper function that can be called from within MATLAB. It allows for testing hypothesis
on rule bases, formulated in first-order logic. The rule-bases have to be specified as Prolog
programs in corresponding .pl-files, which can be handled by the interface. A logical variable
is returned upon a hypothesis was tested, being either “True” is the hypothesis was accepted
or “False” if a contradiction was found by the Prolog interpreter.

3 http://www.swi-prolog.org/
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3.3.5 Autonomous learning and active data selection

Active data selection on tone in noise experiments data

The motivation of active learning, or active data selection, is to reduce the cost of labeling
in supervised learning by automatically avoiding samples that do not add to further training
a classifier. These algorithms thus strive to only query for labels of samples that supposedly
will be most informative about the underlying problem (see Settles (2012) for an overview
of the field of active learning).

One of the problems of active learning is that for most schemes even to exhibit theoretical
advantages over passive learning, tight constraints concerning data distributions and
separability of data have to be fulfilled. In “Agnostic Active Learning Without Constraints”
(AALWC) (Beygelzimer et al., 2010), a more generally applicable probabilistic active
learning algorithm with a promising approach is described, that produces theoretical
advantages over passive learning even for non-separable problems and has an error bound
roughly the same as a passive learner after n unlabelled examples in the worst case, and in
the best case provides polynomial label complexity improvement.

This algorithm, with a few modifications necessary to be able to practically implement it,
is available in the software tool “Vowpal Wabbit” (Langford et al., 2007). Vowpal Wabbit
(VW) basically implements an online gradient descent with logistic, hinge or Gaussian
regression, and additionally applies the AALWC algorithm to this.

We tested this algorithm through VW on synthetic as well as experimental data. With the
synthetic data, we tested sets in different dimensionalities and with different separabilities,
the experimental data was taken from tone-in-noise (TiN) experiments as described in
Schönfelder and Wichmann (2013). We were able to indeed produce great reductions of
label complexity for the synthetic separable problems, in low as well as high dimensions.
However, this advantage quickly vanished with increased overlap of classes in the data,
and would also turn to disadvantages in the form of worse mean error compared to passive
supervised learning. This was confirmed with the experimental data, where classes also
overlapped: in Fig. 3.7, right panel, results for one batch of TiN data are shown, and
in the left panel results for separable data of the same dimensionality are presented. It
is clearly observable that in the separable case, the active learning algorithm shows its
benefit, while in the non-separable real-life case, it shows disadvanatages over passive
learning.

Since in general, there are not many separable problems with real-world data, and we
did not suspect data in Two!Ears to be separable, we decided to not follow the active
learning approach further.
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Figure 3.7: Learning curves of active data selection algorithm with different query probabilites on
46-dimensional data. “pmodel” denotes the passive data selection model, i.e. standard supervised
with all data labeled. Left panel: Artificial, separable data. Right panel: Tone in noise
experiment data.

3.4 Task 3.4: Semantic labelling and event-expert layer

3.4.1 Source locations

One of the main sound event attributes is its location. Human listeners have little dif-
ficulty in localising sounds under conditions where multiple sound sources and room
reverberation are present. They are able to decode the complex acoustic mixture that
arrives at each ear with apparent ease (Blauert, 1997). In contrast, sound localisation by
machine systems is usually unreliable in the presence of interfering sources and reverbera-
tion.

We developed a novel machine-hearing system that exploits DNNs for robust localisation of
multiple sound sources in such conditions (Ma et al., 2015c). In contrast to many previous
binaural hearing systems, the approach proposed here is not restricted to localisation
of sound sources in the frontal hemifield; we consider source positions in the full 360 ◦

azimuth range around the head. In this unconstrained case, the location of a sound
cannot be uniquely determined by ITD and ILD; due to the similarity of these cues
in the frontal and rear hemifields, front-back confusions occur (Wightman and Kistler,
1999).
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System overview

Fig. 3.8 shows a schematic diagram of the system for sound localisation in the full 360 ◦

azimuth range. During training, clean speech signals were spatialised using HRIRs, and
diffuse noise was added before being processed by a binaural model for feature extraction.
The noisy binaural features were used to train DNNs to learn the relationship between
binaural cues and sound azimuths. During testing, sound mixtures consisting of several
talkers are rendered in a virtual acoustic environment, in which a binaural receiver is
moved in order to simulate the head rotation of a human listener. Output from the DNN is
combined with a head movement strategy to robustly localise multiple talkers in reverberant
environments.

binaural
model

binaural cuestraining corpus
(clean speech)

diffuse noiseTraining

Testing
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speaker 1

speaker N

virtual
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binaural
model

binaural cues

azimuth
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Figure 3.8: Schematic diagram of the sound localisation system, showing steps during training
(top) and testing (bottom). During testing, sound mixtures consisting of several talkers are rendered
in a virtual acoustic environment, in which a binaural receiver is moved in order to simulate the
head rotation of a human listener.

Binaural feature extraction

An auditory front-end (WP2) was employed to analyse binaural ear signals with a bank of 32
overlapping Gammatone filters, with centre frequencies uniformly spaced on the equivalent
rectangular bandwidth (ERB) scale between 80Hz and 8 kHz (Wang and Brown, 2006).
Inner-hair-cell processing was approximated by half-wave rectification. Afterwards, a cross-
correlation function (CCF) between the right and left ears was computed independently for
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each frequency band using overlapping frames of 20 ms duration with a shift of 10 ms. The
CCF was further normalised by an auto-correlation function at lag zero as described in (May
et al., 2011) and evaluated for time lags in the range of ±1.1ms.

Two binaural features, ITDs and ILDs, are typically used in binaural localisation systems
(Blauert, 1997). ITD is estimated as the lag corresponding to the maximum in the cross-
correlation function. ILD corresponds to the energy ratio between the left and right ears
within the analysis window, expressed in dB. In this study, instead of estimating the ITDs,
the entire cross-correlation function was used as localisation features. This approach was
motivated by two observations. First, computation of the ITDs involves a peak-picking
operation which may not be robust in the presence of noise and reverberation. Second,
there are systematic changes in the cross-correlation function with source azimuth (in
particular, changes in the main peak with respect to its side peaks). Even in multi-source
scenarios, these can be exploited by a suitable classifier.

For signals sampled at a rate of 16 kHz, the CCF with a lag range of ±1ms produced a
33-dimensional binaural feature space for each frequency band. This was supplemented by
the ILD, forming a final 34-dimensional (34D) feature vector.

DNN localisation

DNNs were used to map the 34D binaural feature set to corresponding azimuth angles.
A separate DNN was trained for each of the 32 frequency bands. Employing frequency-
dependent DNNs was found to be effective for localising simultaneous sound sources.
Although simultaneous sources overlap in time, within a local time frame each frequency
band is mostly dominated by a single source, according to the principle of ‘exclusive
allocation’ (Bregman, 1990a). Hence, this allows training using single-source data and
removes the need to include multi-source data for training.

The DNN consists of an input layer, two hidden layers, and an output layer. The input
layer contained 34 nodes and each node was assumed to be a Gaussian random variable
with zero mean and unit variance. The 34D binaural feature inputs for each frequency band
were Gaussian normalised, and white Gaussian noise (variance 0.4) was added to avoid
overfitting, before being used as input to the DNN. The hidden layers had sigmoid activation
functions, and each layer contained 128 hidden nodes. The number of hidden nodes was
heuristically selected – more hidden nodes increased the computation time but did not
improve localisation accuracy. The output layer contained 72 nodes corresponding to the
72 azimuth angles in the full 360 ◦ azimuth range, with a 5 ◦ step. The ‘softmax’ activation
function was applied at the output layer. The same DNN architecture was used for all
frequency bands and we did not optimise it for individual frequencies.

Given the observed feature set ~xt,f at time frame t and frequency band f , the 72 ‘softmax’
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output values from the DNN for frequency band f were considered as posterior probabilities
P(k|~xt,f ), where k is the azimuth angle and

∑
k P(k|~xt,f ) = 1. The posteriors were then

integrated across frequency to yield the probability of azimuth k, given features of the
entire frequency range at time t

P(k|~xt) =
P (k)

∏
f P(k|~xt,f )∑

k P (k)
∏
f P(k|~xt,f )

, (3.20)

where P (k) is the prior probability of each azimuth k. Assuming no prior knowl-
edge of source positions and equal probabilities for all source directions, Eq. 3.20 be-
comes

P(k|~xt) =

∏
f P(k|~xt,f )∑

k

∏
f P(k|~xt,f )

. (3.21)

Sound localisation was performed for a signal chunk consisting of T time frames. Therefore
the frame posteriors were further averaged across time to produce a posterior distribution
P(k) of sound source activity

P(k) =
1

T

t+T−1∑
t

P(k|~xt). (3.22)

The target location was given by the azimuth k that maximises P(k)

k̂ = arg max
k

P(k) (3.23)

Localisation with head movements

In order to reduce the number of front-back confusions, the DNN localisation model employs
a hypothesis-driven feedback stage that triggers a head movement if the source location
cannot be unambiguously estimated (Ma et al., 2015f, May et al., 2015b). A signal chunk
is used to compute an initial posterior distribution of the source azimuth using the trained
DNNs. In an ideal situation, the local peaks in the posterior distribution correspond to the
azimuth of true sources. However, due to early reflections and the similarity of binaural
features in the front and rear hemifields, phantom sources may also be apparent as peaks in
the azimuth posterior distribution. In this case, a random head movement within the range
of [−30◦, 30◦] is triggered to solve the localisation confusion. Other possible strategies for
head movement are discussed in (Ma et al., 2015f).

A second posterior distribution is computed for the signal chunk after the completion
of the head movement. Assuming that sources are stationary before and after the head
movement, if a peak in the first posterior distribution corresponds to a true source position,
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then it will appear in the second posterior distribution and will be shifted by an amount
corresponding to the angle of head rotation. On the other hand, if a peak is due to a
phantom source, it will not occur in the second posterior distribution. By exploiting
this relationship, potential phantom source peaks are identified and eliminated from both
posterior distributions. After the phantom sources have been removed, the two posterior
distributions were averaged to further emphasise the local peaks corresponding to true
sources. The most prominent peaks in the averaged posterior distribution were assumed to
correspond to active source positions. Here the number of active sources was assumed to
be known a priori (see Sect. 3.5.2).

Multi-conditional training

Previous studies have shown that multi-conditional training (MCT) features can increase
the robustness of localisation systems in reverberant multi-source conditions (May et al.,
2015b, Woodruff and Wang, 2012, May et al., 2013). Here, localisation models were trained
on binaural MCT features created by mixing a target signal at a specified azimuth with
diffuse noise at various signal-to-noise ratios (SNRs). The diffuse noise consisted of 72
uncorrelated, white Gaussian noise sources that were placed across the full 360deg azimuth
range in steps of 5 ◦. Both the target signals and the diffuse noise were spatialised by using
the same anechoic HRIR (Wierstorf et al., 2011). More details about the training HRIR
can be found in WP1 deliverables.

The training material consisted of speech sentences from the TIMIT database (Garofolo
et al., 1993b). A set of 30 sentences was randomly selected for each of the 72 azimuth
locations. For each spatialised training sentence, the anechoic signal was corrupted with
diffuse noise at three SNRs (20, 10 and 0 dB SNR). Only those features for which the a
priori SNR between the target and the diffuse noise exceeded −5 dB were used for training.
This negative SNR criterion ensured that the multi-modal clusters in the binaural feature
space at higher frequencies, which are caused by periodic ambiguities in the cross-correlation
analysis, were properly captured.

3.4.2 Source detection and identification

A central attribute of sound sources or auditory objects (depending on level of consideration)
is the type (also “class” or “identity”, we use all three terms throughout this work), expressing
the “contents” of the event or object on an abstract and semantic level. Determining the
type of sound events occurring is a central matter of CASA, which we approached through
building detection or identification models: models that decide whether the ear-signals
stream contain a particular sound event at the moment, or not. Given models of all
available types, the type of sound events can be identified; detection and identification
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are in this sense directly related. The difficulty of identifying objects in the ear-signals
stream in realistic environments is that they very often occur in situations with other
superimposed sounds under very different SNRs.

In the following, we describe our system for detecting auditory events with emphasis on
detection in realistic scenarios with concurrent sound sources, using statistical learning
to find the relationship between auditory features of the ear-signals stream and par-
ticular sound events; and give a thorough evaluation in Sect. 4.3. All steps described
below were conducted using the AMLTTP (Sec. 3.3.1) with the methods described in
Sec. 3.3.3.

Generation of auditory scenes

Since the detection models were to be built using statistical learning, which relies on
providing many training examples, and we furthermore strive to attain models working
under a large variety of acoustic conditions, we generated training data with the Two!Ears
binaural simulator (embedded in the AMLTTP, see Sec.3.3.1) in many scenes with different
acoustic settings.

The input to this scene generation were the sounds of the NIGENS database, which we
collected with this aim. The database provides audio files of fourteen different event
classes: running engine, crash, footsteps, piano, barking dog, phone, knocking, burning
fire, crying baby, alarm, female speech, male speech, screams, and a “general” class. Most
of those sounds were attained from a commercial stock sound provider (stockmusic.com),
the speech classes from the GRiD and TIMIT corpora (Cooke et al., 2006a, Garofolo
et al., 1993a), and the scream sounds plus a few general sounds from freesound.org.
The NIGENS database contains 1050 WAV files, 305 of which are in the “general” class
– an “anything else but the thirteen provided regular types” class with sounds chosen to
exhibit as much variety as possible, e.g. including nature sounds such as wind, rain, or
animals, sounds from man-made environments such as honks, doors, or guns, as well as
human sounds like coughs. All audio files contain sound events in isolation, i.e. without
superposition of ambient sounds or other sources. All sound files were manually annotated
for onsets and offsets of sound events.

The binaural auditory scenes were rendered by the binaural simulator in two basic modes:
(1) convolving with anechoic HRIRs measured with a KEMAR head, and (2) convolving
with BRIRs recorded inside the ADREAM apartment (see Deliverable D1.3), thus including
reverberation, at four head × four speaker positions. Figure 4.36 provides a schematic
layout of the apartment with the different positions.

We generated the following general types of binaural auditory scenes:
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Figure 3.9: Top view of our coordinate system. The head and two sources are shown. The
azimuth is always given with respect to the nose of the head in clockwise direction. Target and
distractor sources in this example are located at 45◦/135◦.

1. Anechoic scenes composed of a single point source emitting sounds from all classes
at different azimuth angles – we refer to these scenes as “clean” scenes;

2. Ancechoic scenes containing two point sound sources emitting sounds simultaneously
(see Fig. 3.9), one of them being fed by sounds from all classes, and the other one
only from sounds of the general class;

3. Anechoic scenes containing an ambient (i.e. non-directional) source emitting sounds
from all classes;

4. Ancechoic scenes containing two ambient sound sources emitting sounds simultane-
ously, one of them being fed by sounds from all classes, and the other one only from
sounds of the general class;

5. ADREAM apartment scenes containing one to four point sound sources emitting
sounds simultaneously, all of them being fed by sounds from all classes;

6. ADREAM apartment scenes containing one to four point sound sources emitting
sounds simultaneously, all of them being fed by sounds from all classes, plus an
ambient white noise source.

Binaural simulation was conducted for each source separately to allow control over the
energy ratio of the sources at ear-signals level – this is justified because sound mixing is
linear. Therefore, the resulting ear-signals streams for each source were mixed at different
ratios of squared amplitudes averaged over both binaural channels and time. The time-
averaging only included times of sound activity, such that the ratio does not take periods
of silence into account which is a frequent occurrence in general environmental sounds.
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Hence, to be precise, what we fixed are the ratios of the energies between the sources when
they emit sound simultaneously. We later refer to these ratios as SNRs even when there is
no classic “noise” involved.

For the anechoic scenes, the distance of the point sources to the head was fixed at three
meters, since the HRIR was recorded at that distance, and we assumed that distance
would not be a parameter influencing detection other than through the change of SNR this
implies when sources’ distances are changed.

Feature extraction

The generated binaural signals were then preprocessed by the AFE of the Two!Ears
system to obtain, depending on the experiment, several of the following representa-
tions:

ratemaps Auditory spectrograms that resemble auditory nerve firing rates for each 20 ms
time frame and individual gammatone frequency channel, computed by smoothing the
corresponding inner hair cell signal representation with a leaky integrator (Glasberg
and Moore, 1990, Patterson and Holdsworth, 1996, Cooke et al., 2001, May et al.,
2012)

spectral features 14 different statistics such as flatness, kurtosis, etc., which summarize the
spectral content of the ratemap for each time frame (Peeters et al., 2011, Tzanetakis
and Cook, 2002, Jensen and Andersen, 2003, Misra et al., 2004, Lerch, 2012)

onset strengths measured in decibels for each time frame and frequency channel, calculated
by the frame-based increase in energy of the ratemap representation (Klapuri, 1999)

amplitude modulation spectrogram Each frequency channel of the inner hair cell representa-
tion is analyzed by a bank of logarithmically-scaled modulation filters (Moritz et al.,
2011, May and Dau, 2014b). Each time frame was assigned x frequency channels ×
y modulation filters values

gabor features Spectro-temporal orientation sensitive edge detectors operating on the
ratemap representation (Schädler et al., 2012).

Since our detection models operate on blocks of data (in contrast to the continuous
stream), these auditory feature representation streams were subsequently decomposed into
overlapping blocks, by default of 500 ms length. From the representations of each block we
constructed two general different types of feature vectors that were used as input for the
sound event detection models:
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• mean-channel features: AFE representations were averaged over the left and right
channels; in addition, the first two deltas (discrete time derivatives) were calculated.
Features were then constructed by computing L-statistics4 (L-mean, L-scale, L-
skewness, L-kurtosis) of representations and deltas over time.

• two-channel features : Instead of averaging the signals over the two channels, features
were constructed for each channel separately. Applying the same procedure as for
the mean-channel features resulted in double the feature dimensions.

To create the learning targets and testing ground truth for our models, we used our
annotations of sound events’ onset and offset times to automatically label all blocks for
each sound type (except “general”) according to whether this type (the “target” class)
was present (+1) or absent (−1) within the block. Blocks for which the target class
occupied less than 75% but more than 0%, were excluded from training and testing, as
both labels would seem right and assigning a hard “truth” would manipulate both training
and evaluation in unclear ways.

Sound event detector training

For each of our sound classes (except “general”) we trained a binary classifier in a one-vs-all
scheme: each classification model decides whether a given auditory signal block contains
a sound event of its target type. For classification, we used Lasso (Tibshirani, 1996),
a linear logistic classification model with an L1 penalty for the regression coefficients.
This regularization method leads to a sparse selection of the most informative features
for the trained model, disregarding uninformative or unnecessary (because of correlation
with others) features. Additional details about the learning method can be found in
section 3.3.3.

Since we wanted control over the SNRs and in order to be able to evaluate reasonably, for
each detector (that is for each type) we restricted sounds of the target class to only be
emitted from one source per scene. This way, the other sources served as “distractor” sources
and the SNR was set with the one source that also emits target sounds as reference. Note
that the source allowed to emit target sounds also emitted all other classes’ sounds (including
“general”) to provide a large base of counter-examples for the detector model training. In
the anechoic scenes, only general class sounds were emitted from the distractor sources.
We loosened this constraint in the ADREAM apartment scenes.

4 L-statistics are given by L-moments, a sequence of statistics used to summarize the shape of a probability
distribution Hosking (1990). L-statistics are shown to be more robust than conventional statistics, in
particular with respect to the higher moments and when a small amount of data is available (David
and Nagaraja, 2003, Ch. 9).
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We considered and evaluated two types of training schemes and resulting models:

single-conditional (sc) training : models were trained on data taken from one type and
configuration of auditory scene only. These models were expected to excel under
their specialized conditions, but degrade when deviating from them.

multi-conditional (mc) training : models were trained on data taken across multiple audi-
tory scenes and different conditions. These models were assumed to feature increased
robustness to differing acoustic conditions and varying situations with superimposed
sources.

We analyze these schemes and models thoroughly with respect to robustness and de-
pendence of conditions, both for the anechoic and ADREAM settings and, in Sect. 4.3,
for the Two!Ears development system and in Sect. 4.7 for the Two!Ears deployment
system.

Application in Two!Ears-system

Our sound event type identification models can be plugged into the IdentificationKS of
the Two!Ears system. This knowledge source wraps the detection model, the block-based
feature extraction and the block extraction, and provides an interface to the blackboard
system: it gets access to the Two!Ears system’s auditory streams, and puts the model’s
output probabilities and decisions as hypotheses onto the blackboard. The specifications
of this knowledge source is presented in Deliverable D6.1.3.

3.4.3 Speaker recognition

In the previous section we presented work on classification of general sounds. In this section
we investigate a specific sound classification problem: speaker recognition.

GMM-UBM

Many widely used speaker identification methods are based on GMMs, which model feature
vectors from each speaker with a weighted sum of Gaussian distributions. The basic
approach is realised by the log-likelihood ratio test from signal detection theory. GMMs
are used for both target and background models. The target model is trained using speech
signals from the target speaker. The background model, often referred to as the universal
background model (UBM), is trained using speech signals from as many speakers as possible.
Given a test signal ~x, the log-likelihood ratio between the target model and the UBM is
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computed as

Λ = log
p(~x|λs)
p(~x|λubm)

(3.24)

where p(~x|λ) is the likelihood of ~x given model λ. The log-likelihood ratio is compared to
a pre-defined threshold for acceptance of the target speaker.

p(~x|λs) =
M∑
i=1

ωif(~x|µi, Σi), (3.25)

where ~x is a D-dimensional continuous-valued feature vector, ωi, i = 1, . . . ,M are the
mixture weights, and f(~x|µi, Σi) are the ith component Gaussian densities with mean
vector µi and covariance matrix Σi.

In order to use a GMM, we need to compute the likelihood of a sequence of features
given a GMM and estimate the parameters of a GMM given a set of feature vectors. If
independence between feature vectors in a sequence is assumed, then the likelihood can be
computed as

p(~x1, . . . , ~xN |λs) =

N∏
n=1

p(~xn|λs) (3.26)

The parameters of UBM are estimated by maximising the likelihood of a set of training
feature vectors using the EM algorithm. The target speaker model, however, is often
trained by adapting from the universal background model, particularly when there is limited
amount of training speech from the target speaker. We employ a popular adaptation
method, relevance maximum a posteriori (MAP) adaptation, which is a linear interpolation
of all mixture components of the UBM that increase likelihood of speech from the target
speaker. It is found empirically better to adapt both mean and variance matrices from the
UBM.

i-vectors

One of the problems of relevance MAP is that it adapts not only to speaker-specific
information but also to channel and other undesired factors. This problem is addressed
by the joint factor analysis (JFA) model proposed for the GMM framework (Kenny
et al., 2008). JFA has become the basis for the state-of-the-art in speaker identification,
and has the following two properties. First, a speech recording of a variable length
is represented by a fixed-length supervector. Secondly, and more importantly, such a
supervector representation allows explicit modelling of the undesired variability in the
speech signal. The speaker supervector can be decomposed into speaker-dependent factors
and channel-dependent factors. The values of the speaker factors are assumed to be the
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same for all recordings of the speaker but the channel factors are assumed to vary from one
recording to another. The supervector is constructed by concatenating mean vectors from
each GMM component. As a result, the JFA model has to estimate hyper-parameters with
a huge dimensionality. Therefore principle component analysis (PCA) is typically applied
with JFA.

Dehak et al. (2011) showed that the channel factors in the JFA model also contain some
speaker information. They proposed the i-vector model based on JFA, which makes no
distinction between speaker effects and channel effects in the GMM supervector space.
Instead, a total variability space that contains both speaker and channel variabilities is
defined. The hyperparameters of the i-vector model can be extracted by using the EM
algorithm and have a much lower dimensionality than JFA. Channel compensation can be
further applied in the i-vector space using probabilistic linear discriminant analysis (PDLA)
(Prince and Elder, 2007).

Given a test speech signal, the test i-vector w is extracted and compared to speaker model
i-vectors ws. Let H1 indicate the hypothesis that the two i-vectors are from the same
speaker, and H0 be the hypothesis that the two i-vectors are from different speakers. The
verification score is computed as the log-likelihood ratio of the same versus different speaker
models hypotheses:

Λ = log
p(w,ws|H1)

p(w|H0)p(ws|H0)
(3.27)

Similar to the GMM-UBM approach, the log-likelihood ratio is compared to a pre-defined
threshold to make a decision on the target speaker.

3.4.4 Joint source type and source location determination

In Sect. 3.4.2 above, we described our system for identification of sound events. This system
operates directly on the ear-signals stream, hence often on mixtures of superimposed sound
sources and accordingly also detects sources concurrently. Ultimately, the goal however
is to form auditory objects, which means compiling attributes like type and location of
sources that belong together in a coherent way. This assignment of different attributes
determined directly from the ear-signals’ mixture is challenging. In order to solve this so-
called “binding”-problem (binding of attributes to form coherent objects), we developed two
systems following two approaches: (1) an extension of our identification system to operate
on streams segregated from the ear-signals stream by through masking time-frequency
space according to estimated source locations, and (2) a new system that tries to jointly
estimate type and location of objects from the ear-signals stream.
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Auditory object identification on streams segregated by location

In this section we describe system (1) introduced above; the extension of our identification
system to operate on streams segregated from the ear-signals, where ideally each stream can
be assigned to one auditory object and contains as much information about the generating
source (and as little information about other sources) as possible.

In principle, the detection models developed in Sec. 3.4.2 did not have to be modified in
their general functionality, since they still worked on the same kind of data and still should
produce the same kind of data – namely the type of sound events occurring, only that in
this approach they supposedly would not work on streams of superimposed and overlapping
but isolated events. Hence everything explained in the section “Source detection and
identification” is valid for this approach too, supplemented by the methods described in
“Classification of segregated auditory object streams” of Sec. 3.3.3.

The main difference is the inserted step of stream segregation into the feature genera-
tion – inserted after the AFE processing which produces streams of different auditory
representations and before the construction of feature vectors from the blocked auditory
representations. The segregation is accomplished using the method described in Sec. 3.2.1,
which produces a set of so-called probabilistic time-frequency soft-masks, with the number
of masks corresponding to the number of sources in the acoustic scene. These masks in our
extended system thus were applied to all auditory representations that can be masked in the
time-frequency domain, namely ratemaps, onset strength maps, and amplitude modulation
spectrograms, and produced one set of these representations per source. Representations
that could not be masked like the spectral features were nevertheless used, but hence still
represented the original, mixed stream.

This segregation itself step relies on other information: the number of active sources and
the location (azimuth) of those sources; both need to be estimated themselves first. We
used the azimuth distribution estimation model described in Sec. 3.4.1 and the number of
sources estimation model described in Sec. 3.5.2 for this.

Hence, the whole system for object identification on segregated streams consists of the
azimuth distribution model, full-stream detection models, number of sources estimation
model, segregation model and finally segregated-stream detection models, operating in a
connected manner. Figure 3.10 shows a schematic of this framework.

Joint classification and localization of auditory objects

In this section we describe system (2) introduced above. The joint classification and
localization task is accomplished using the auditory scenes generated using the sounds
and procedures described in Sect. 3.4.2. For the localization part, the 360◦ azimuth plane
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Figure 3.10: Schematic of the system for object identification on segregated streams, showing
the interaction of the different involved models.

is discretized into 5◦ azimuth bins, resulting in a total of 72 azimuth bins. The large
variation in the durations of the sound files used causes an imbalance between sound type
occurrences. Before training, the class occurrences are re-sampled to reach a more uniform
class occurrence distribution for reducing this imbalance 5. Frequently occurring classes
are sub-sampled, while rarely occurring instances are oversampled. The general class is
handled similarly. Networks are trained on two different types of datasets. The first dataset
is composed of clean anechoic sounds. A source is activated to play sounds from the set of
11 classes alarm, baby, crash, dog, engine, female speech, fire, foot steps, knock, phone,
piano and an additional general class. The source is placed once in each of the 72 azimuth
bins. This mitigates the risk of bias towards any particular locations. The balancing
procedure results in a clean sounds training set containing approximately 720,000 blocks
of positive instances for each class. The second dataset is composed of mixtures with up
to four sources active simultaneously using ADREAM apartment scenes as described in
Sect. 3.4.2. The scenes are identical to the ones used in the detection models developed in
Sect. 3.4.2. However, samples containing multiple instances of the same sound type are
kept and not excluded as done for the detection models.

A convolutional neural network is defined to learn a representation for the joint identification
and localization of auditory objects using environmental sounds. Spatiotemporal AFE
representations such as ratemaps, amplitude modulation spectrogram (AMS) and ILD
between left and right ear representations are extracted. The spatiotemporal dimensions are
preserved. It is left to the earlier layers in the network to learn a hierarchical transformation

5 URL to external tools for balancing the data before training https://github.com/nigroup/nideep
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for these representations without further manual intervention.

The convolutional architecture provides implicit regularization by reducing the number of
weights that need to be optimized as well as spatial invariance (Lecun et al., 1998). Rectified
Linear Units (ReLU) are used as the non-linear transfer function between successive layers.
Max pooling is used for selecting the highest response within a local patch to propagate
further to the next layer in the network. The filters, subsampling and non-linearity steps
make out a convolutional stage as depicted in Fig. 3.11. A technique used for combating
overfitting in networks with a large number of learnable weights is the ‘dropout’ technique.
Dropout consists of randomly selecting neurons at various stages in the network and
setting their response to zero. This perturbation eliminates these neurons’ involvement
in the forward as well as backward passes of the backpropagation algorithm and their
weights do not get updated during that iteration of the learning algorithm. Dropout has
been shown to have a strong regularization impact on neural networks and effectively
reduces overfitting (Srivastava et al., 2014). As neurons randomly drop out in different
iterations, other neurons from the same layer are forced to contribute to the minimization
of the loss function. A weight that has previously been a dominant factor in reducing
the error function, will not necessarily be available each iteration. Therefore the network
is constantly forced to recruit other neurons to compensate for the neurons that drop
out. It has also been interpreted as implicitly training an ensemble of networks, where
each new randomly selected routing represents a new network and that over time, the
network contains multiple different routings where all are capable of minimizing the loss
function (Srivastava et al., 2014). During testing and deployment of the network, all
neurons contribute to the network’s response.

A schematic of the network architecture is shown in Fig. 3.12. Designing the networks
involves the following aspects:

• Feature selection. Varying the AFE representation input to the network. Whether
ratemaps only, AMS features only, both or combining them with ILD. In all cases,
the representations from the binaural signals are preserved. Keeping left and right
representations separate may not be critical for the identification task. However,
combining them would eliminate the network’s ability in performing the localization
task.

• Network depth. Setting the number of layers in a neural network is a design decision
that comes with developing any network architecture. Our convolutional neural
network is made out of a number of convolutional layers as well as deeper fully
connected layers towards the two-dimensional output representing both identity and
location of sound types. For the variants that involve different AFE representations,
we decide at which stage they are fused together.

The output or decision layers of a network produces a two-dimensional K ∗ (A+1) response,
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Figure 3.11: A convolutional stage. Input features are transformed by learnable filters to produce
more abstract feature maps. Pooling spatially subsamples the feature maps. A non-linearity such
as ReLU or sigmoidal function is applied to each element in the feature maps and the response
is propagated downstream in the network which can be another convolutional stage or a fully
connected layer. The order of pooling and the non-linearity may be changed or even omitted
altogether.

where K is the number of sound types and A is the number of azimuth bins. Discretizing
the 360◦ azimuth plane into 5◦ bins yields 72 azimuth bins. Each output neuron indicates
whether a particular class is located at a specific azimuth bin. An additional node is added
for each sound type for the network to decide if a particular sound type is absent from the
scene. This is referred to as the void bin. Each element of this response matrix is defined as
a sigmoidal neuron that acts as a one-vs-all classifier. Therefore, localization is articulated
as a classification task rather than a regression task. This is a simple solution to enable the
network to respond to multiple sources being present in the auditory scene. This accounts
for the following cases in the multi-conditional training data:

• No sources present;

• A single source present;

• Multiple sources of different types present at different azimuth locations;

• Multiple sources of different types present at the same azimuth location;

• Multiple sources of the same type present at different azimuth locations.

The void bin is used to evaluate the network’s source identification ability separately from
the localization task. Cross entropy is used as the loss function for training the output
layer to collectively perform a many-vs-many classification. Mini-batch gradient descent is
used for updating the weights of the network. Figure 3.13 illustrates the two-dimensional
ground truth.
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Figure 3.12: Schematic for the convolutional architecture for join classification and localization.
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Figure 3.13: The two-dimensional ground truth matrix. In this instance the block is assigned a
dog sound at 180◦ directly behind the head and a second fire source at −145◦ to the right behind
the head. The vector on the left represents the void bin for each sound type.

Smooth auditory object formation

The methods described in the sections above both operate in a block-based manner,
producing output independently for each block, disregarding temporal or spatial context.
Since we use blocks of 0.5 s length, output is indicating the very current situation, based on
the information included in the latest block of signals only. This on one hand creates quite
fluctuating estimates, and on the other hand does not make use of two assumptions emerging
from the relation between the auditory object to be formed and the actual sound source
represented by it: (a) objects do not change their type suddenly, and (b) objects do not
teleport, but either remain at the same place or move about smoothly.

In order to include these two smoothness priors, we added a module integrating ob-
ject information both over time and location to our systems. This module – called
IntegrateSegregatedIdentitiesKS, see Deliverable D 6.1.3 – implements the following
mechanisms, executed per block:

• Spatially imposing a Gaussian probability distribution onto current blocks’ hypotheses
from the segregated detection or joint identification and localization system. This
Gaussian has a standard deviation of 10◦ and is multiplied by hypotheses’ scores.
Summing the resulting probabilities over hypotheses creates a distribution over the
whole azimuth range for each class.
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• Leaky integrating these classes’ probability maps over time, such that the integrated
probability map is a result of the distribution created from the current block and of
the integrated distribution from the last time step.

• Leaky integrating the number of active sources estimate, aiming rather for a number
of objects estimate (objects can be “inactive” temporarily, like when a crying baby
takes a breath).

• Averaging integrated probability maps over classes. The resulting type-independent
probability map is parsed for the N highest peaks (N being the estimated number of
objects), determining the current locations of auditory objects. At these locations,
class probabilities in the type-dependent integrated maps are scanned, setting the
auditory objects types.

Figure 3.14 visualizes the output of the integrated system, correctly forming two auditory
objects at about 65◦ (fire) and −110◦ (crying baby). This example scene was analyzed live
by the deployment system in the ADREAM appartment.

3.4.5 Musical genre recognition

The assessment of acoustic scenes containing music often requires knowledge about the
genre of the musical piece that is presented to the listener. For instance, the evaluation of
the quality of a reproduction system is likely to depend on subjective preferences of human
listeners based on preferred musical genres. By explicitly including a recognition system of
genres in the analysis process, predictive models of quality assessment can benefit from
this additional information.

Aucouturier and Pachet (2003) state that the term genre suffers from an intrinsic ambiguity,
deeply rooted in our dualist view of the world. It can be seen either as

• An intentional concept, where the term genre lies in a linguistic category to be able
to talk about music, or

• An extensional concept, where the choice of the genre is solved by analysis.

In both cases, a musical genre can be seen as an effort to order a set of songs, by putting
songs that share some common features into classes, thus providing a method of finding
similar songs more efficiently.

Within the Two!Ears framework, the task of musical genre recognition is tackled via
the extensional approach or, more specifically, by applying methods of machine learn-
ing to derive predictions about the most likely musical genre given a set of acoustic
features.
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Figure 3.14: Visualization of the blackboard-system output, depicting object formation. Yellow
bars around the head indicate source location estimation, scores with labels in the upper right
corner state full-stream detection probabilities, and the two labeled balls illustrate formed auditory
objects.

The recognition system is encapsulated into a knowledge source named GenreRecog-
nitionKS available within the Two!Ears blackboard system. It takes ratemaps in the
log-domain, averaged between both ears, as input features. Additionally, the first and
second time derivatives are computed at each frame and concatenated to the raw ratemap
features, yielding a 3L-dimensional feature vector, where L is the number of filterbank
channels used in the auditory front-end. Feature vectors are accumulated within blocks of
10 seconds length each. These blocks serve as input to the classification system used to
recognize the most likely musical genre.

The classification system is based on linear discriminant analysis (LDA), performed frame-
wise within each block of feature vectors. The final decision for the most likely class is derived
via a majority-voting scheme over all classification results in one block.
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3.5 Task 3.5: Assigning meaning

3.5.1 Sound localisation with top-down source knowledge

Human listeners must answer two questions in order to fully understand an acoustic scene;
what the sound sources are, and where they are. In machine hearing, these two issues have
been addressed in many studies via computational approaches for sound source separation,
classification and localisation (Wang and Brown, 2006). However, machine systems for
answering ‘what’ and ‘where’ questions are typically much less tightly-integrated than
they appear to be in biological hearing. We addressed this issue by developing a machine
system for binaural localisation that exploits top-down knowledge about the source spectral
characteristics. Information from source models is used to selectively weight binaural
localisation cues, which allows the system to combine top-down and bottom-up information
flow within a single computational framework.

Overview

Fig. 3.15 shows the graphical model of the proposed localisation framework that combines
top-down source knowledge and bottom-up localisation information. Top-down knowledge
of the spectral profile of sources (speech source Sx and noise source Sn) is used to jointly
explain the observed noisy ratemap features ytf at each time-frequency bin via hidden
source features xtf (speech) and ntf (noise). As we will see below in more details, the
combined source models can estimate the probability of each time-frequency bin ytf being
dominated by the speech source, wtf , which can be seen as a segmentation of the speech
source. The segmentation is used as a weighting factor for selectively weighting the
contribution of binaural cues from each time-frequency bin in order to better localise the
attended speech source in the presence of the noise source.

Localisation model

The localisation model is the DNN system as described in Section 3.4.1. We introduce
a weighting factor wtf for selectively weighting the contribution of binaural cues from
each time-frequency bin in order to localise the attended target source in the presence
of competing sources. The azimuth posteriors are integrated across frequency to pro-
duce the probability of azimuth k given localisation features ~ot of the entire frequency
range,

P (k|~ot) =

∏
f P (k|~otf )wtf

P (~ot)
, (3.28)
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Figure 3.15: Graphical model of the proposed localisation framework that combines top-down
and bottom-up information. Top-down knowledge of sources is used to selectively weight binaural
localisation cues via an estimated segmentation wtf .

where
P (~ot) =

∑
k

∏
f
P (k|~otf )wtf . (3.29)

Here wtf is a factor between [0, 1]. When wtf is 0 the time-frequency bin is excluded from
localisation of the target source. Next we discuss in detail how top-down knowledge from
source models can be used to jointly estimate the weighting factors.

Exploiting top-down source models

A set of parameters wtf in Eq. (3.28) are employed to selectively weight binaural cues
when performing source localisation. This allows cues that derive from a frequency channel
dominated by the target source to be emphasised; or conversely, cues that derive from an
interfering source can be penalised. Here, top-down information from source models is
combined to jointly estimate these localisation weights.

Let λs represent the spectral characteristics of a sound source s in a set of source models
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s = 1, . . . ,S. The set of source models are employed to jointly explain the observed
ratemap features. In particular, given the observed log-compressed ratemap feature vector
~yt = [yt1, . . . , yt32]

> extracted at time frame t from the binaural signals, we want to
determine whether each feature ytf is dominated by the energy of the target source
xtf or corrupted by the combined energy of interfering sources ntf . Under the log-max
approximation (Varga and Moore, 1990) of the interaction function between two acoustic
sources, i.e. ytf ≈ max(xtf , ntf ), the localisation weight wtf can be defined as the
probability of ytf being dominated by xtf

wtf = P (xtf = ytf , ntf ≤ ytf |~yt, λx, λn), (3.30)

where λx and λn are the models for the target and interfering sources, respectively. Here, the
source models λs are represented as GMMs with diagonal covariance matrices. Then, λn is
built by combining all the source models except that of the target source. Alternatively, the
above model can be expressed as a large GMM by pooling the Gaussians from all the source
models together and multiplying the mixture weights by the corresponding source prior
probabilities, so that the resulting mixture weights sum up to one.

Using the expressions for the λx and λn models in Eq. (3.30), the final expression for the
localisation weights wtf is given by

wtf =
∑

mx,mn

γ
(mx,mn)
t px(ytf |mx)Cn(ytf |mn)

px(ytf |mx)Cn(ytf |mn) + pn(ytf |mn)Cx(ytf |mx)
, (3.31)

where mx and mn are the indices for the mixture components in the target source and
interfering sources models, respectively, px and pn denote the Gaussian of the target and
competing GMM models, and Cx and Cn are the corresponding Gaussian cumulative
distribution functions.

3.5.2 Number of sources estimation

A part of computational auditory scene analysis is the estimation of the number of sources.
This information provides a valuable prior for stochastic mixture models, beam formers,
speaker tracking and localization systems. The availability of a reliable a priori estimate
for the number of sources can lead to better calibration of learning problems and often
reduces the run-time requirements by orders of magnitude.

The number of sources can be determined by counting the modes in a suitable feature
distribution. Therefore, a feature is optimal if it yields a singular and disjunct representation
per source. For this we explored several features sets:

1. Short-time Fourier transform (STFT) using the DUET method;
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2. ITD and ILD features from the AFE;

3. Cross-correlation, on-set strengths and spectral features from the AFE;

4. An azimuth distribution provided by the localization model described in Sec. 3.4.1;

5. An identification probability per class provided by the identification models described
in Sec. 3.4.2.

The features are described in detail below.

Degenerate Unmixing Estimation Technique (DUET)

The DUET method (Rickard, 2007) is a blind source separation technique, specifically
addressing the degenerate case of exactly two receivers for an arbitrary amount of sources
(e.g. as in binaural hearing). The DUET algorithm formulates a binaural mixture model
for n sources in the time-frequency domain:

[
x̂L(τ, ω)
x̂R(τ, ω)

]
=

[
1 .. 1

a1e
−iωδ1 .. aNe

−iωδN

] ŝ1(τ, ω)
..

ŝN (τ, ω)

 (3.32)

The limiting assumptions are that the mixture is stationary, anechoic, and the sources
have disjunct time-frequency signatures (W-disjoint orthogonality), and are thus spatially
separable. Under these assumptions, Eq. (3.32) is reduced to,

[
x̂L(τ, ω)
x̂R(τ, ω)

]
=

[
1

aje
−iωδj

]
ŝj(τ, ω) (3.33)

where exactly one source is responsible for the power in a time-frequency bin. This
assumption holds only approximately for wide-band signals in echoic mixtures. The DUET
method subsequently estimates the sources by clustering in the space spanned by the
mixture parameters a and δ, then builds a mask on the input signal to reconstruct isolated
sources and a lossy version of the input mixture.

The feature space relevant for the number of sources estimation is a two-dimensional
smoothed weighted histogram over the mixture parameters a and δ for all time-frequency
bins of the signal (Fig. 3.16, left). The time-frequency representation is obtained by a short-
term Fourier transform (STFT). Time-frequency bins that cluster together in the space
spanned by a and δ are attributed to the same source and appear as extrema; the problem
is thus reduced to a mode determination in the DUET histogram.
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We use a Matlab heuristic 2D extrema finder to search for all sufficiently isolated extrema
in the histogram. We normalise the histogram with respect to the most prominent
extrema and then use the spectrum of the first seven extremal points in descending
order plus the first four L-Moments of the normalised histogram as input for a learning
problem.
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Figure 3.16: A sample DUET histogram (left) and a corresponding histogram built from ILD
and ITD (right).

ILD and ITD-based mode determination

The time-frequency representation for the DUET method is obtained by STFT, rather than
auditory filters. Since the processing pipeline of the AFE closely mimics the processing in
the early sensory stages of the auditory system, we wanted to try to find an AFE-based
version of the DUET histogram feature.

The a parameter (symmetric attenuation) of the DUET method corresponds to the ILD of
the AFE. The δ parameter (phase delay) of the DUET method corresponds to the ITD.
Both features are used to replace the corresponding quantities used for the DUET histogram.
We build a two-dimensional histogram from ILDs and ITDs for all time-frequency bins of
the signal in the same manner that the DEUT-histogram is built.

For most cases the histogram build this way did not show the clear contrast that was ob-
tained from the DUET histogram (compare Fig. 3.16 left and right).

The two-dimensional histogram based on ILDs and ITDs was processed in the same way
as the DUET histogram and produced a similar feature of normalised extrema spectrum
and L-Moments that was used as input for a learning problem.

60



3.5 Task 3.5: Assigning meaning

Azimuth distribution based mode determination

The azimuth distribution estimation model described in Sec. 3.4.1 provides an azimuth
distribution with a resolution of 5 degrees. The distribution has a considerable front/back
confusion, leading to ambiguous estimates for sources sources straight ahead and right
behind. We therefore fused the bins of the backward and forward field and used the
resulting fused half-field azimuth distribution.

The fused half-field azimuth distribution was processed in the same way as the DUET
histogram and produced a similar feature of normalised extrema spectrum and L-Moments
that was used as input for a learning problem.

AFE processors

In addition to the above described features we incorporated several features provided by
AFE processors. The feature processors used were ILDs, ITDs, onset strengths, spectral
features (see Sec. 3.4.2) and cross correlations. For all these features we aggregated the
first four L-Moments per frequency channel and averaged the left and right channels if the
processors yielded a binaural output.

Evaluation of features

Only the joint combination of all described features has been used for the number of sources
estimation. An evaluation of the individual feature groups may still be worth investigating
for further studies.

3.5.3 Integration of visual and auditory information

While acoustic signals are the core focus of the Two!Ears system, much can be gained
in terms of robustness by using a second modality like vision to extend the available
information. This is especially helpful under very noisy or reverberant conditions, such as
those considered in the multi-source scenarios. We have considered video information for
two purposes here: recognition of keywords and speech enhancement.

For both cases, we have employed the GRID/CHiME corpus, since matching audio and video
recordings were available with sufficient amounts of training and test data, and since the
acoustic recordings of speech and noise were given in binaural form.

The audio data is hence taken from the first CHiME challenge (Barker et al., 2013), and it
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is combined with matching video data from the GRiD corpus (Cooke et al., 2006b). The
recordings consist of 1000 sentences spoken by 33 talkers each. All utterances include the
annunciation of a letter (A. . .Z, excluding W) and a digit (0. . .9), which are hence utilized
in evaluating the keyword recognition accuracy.

Audio-visual keyword recognition

Audio-only keyword recognition is still not sufficiently reliable when used under highly
noisy or reverberant conditions, and in the presence of multiple sources. Currently the most
successful approaches for audiovisual ASR systems, coupled hidden Markov models (HMMs)
and turbo decoding, both allow for slight asynchrony between audio and video features,
and significantly improve recognition rates in this way. However, both typically still neglect
residual errors in the estimation of audio features, so-called observation uncertainties. We
have therefore considered two methods for including the observation uncertainties into the
decoder, and have shown that significant recognition rate improvements are achievable for
both coupled HMMs and turbo decoding.

In contrast to standard single-modality data, audiovisual data contains inherent asyn-
chronicities. As speakers may bring articulators into position before the start of phonation,
for example at the beginning of an utterance, the information in the visual modality can
precede that of the acoustic modality by up to 120 ms (Luettin et al., 2001). Different
model topologies have been considered to address this issue. Ideas range from the use of
a standard HMM with concatenated features, so-called feature fusion (Neti et al., 2000),
to a number of so-called decision fusion approaches. This decision fusion can take place
at different stages of the recognition process. Early integration, for example, fuses the
information at the state level, whereas late integration may go as far as recognizing audio
and video data separately and then fusing the decisions at the sentence-level (Nefian et al.,
2002).

In the following, we consider two methods of classifier integration. Both allow for nat-
ural, asynchronous behavior inherent to audiovisual speech, while providing the means
to enforce some constraints on synchronicity through the choice of the model topology.
The first method, the coupled HMM (CHMM), has been shown to be superior to fea-
ture fusion as well as to a number of graphical-model-based approaches (Nefian et al.,
2002).

The second method uses turbo decoding to combine classifier information and it has recently
been shown to deliver a performance superior to CHMMs by Scheler et al. (2012). We
have extended both approaches to incorporate the handling of uncertain observations, as
described below and as addressed in detail in (Zeiler et al., 2016b).
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Coupled HMM decoding

In a coupled hidden Markov model (CHMM) the joint state transition probability is
modeled as a linear combination of marginal transition probabilities. An audio stream
weight λC is used to capture the interactions among audio oa and video observations ov
and their respective individual observation likelihoods ba and bv. For the joint audiovisual
state likelihood we obtain

p(oa, ov|qa, qv) = ba(oa|qa)λC · bv(ov|qv)1−λC . (3.34)

For our experiments we used a token passing decoder to find the best word sequence w∗ as
the Viterbi path through a network of CHMM word models.

Turbo decoding

Turbo decoding (Berrou et al., 1993) is an information fusion technique, which originated
from a breakthrough in digital communication applications. More recently the turbo
principle emerged as an alternative decoding scheme in multimodal speech recognition
(Shivappa et al., 2008, Receveur et al., 2014) and proved to be useful for other applications
such as blind speech separation (Tran Vu and Haeb-Umbach, 2013) and speech enhancement
(Hong and Maitre, 2009).

Turbo decoding is based on the iterative exchange of soft information, deduced from state
posteriors, between different decoders. This extra information, ga and gv, is used like a prior
to modify the observation likelihoods ba and bv in the forward-backward algorithm (FBA).
The modified audio and video likelihoods become

b̃a(oa|qa) = ba(oa|qa) · ga(qa)λTλP , (3.35)

b̃v(ov|qv) = bv(ov|qv) · gv(qv)(1−λT )λP , (3.36)

in which λT acts like an audio stream weight and the constant λP balances the likelihood
and prior probability. From the FBA, we obtain new state posteriors γ̃, which subsume
the likelihood, the prior probability and the extrinsic probability (Receveur et al., 2014).
To find the extrinsic probability γ̇(qt) for state q and frame t, we have to remove all excess
information via

γ̇(qt) ∝
γ̃(qt)

b(ot|qt) · g(qt)
. (3.37)

The final step of each such half-iteration is to map the extrinsic probabilities to the
state space of the respective other decoder. This is done by a linear transformation.
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ga = Tva γ̇v audio ← video (3.38)
gv = Tav γ̇a video ← audio (3.39)

The process of modified FBA followed by the deduction of extrinsic probabilities and their
transfer to the corresponding state space is iterated for the audio and the video model a
few, e.g. 4, times.

Despite objections against the applicability of plain forward-backward inference in loopy
graphical models (McEliece et al., 1998), we have experienced no convergence problems in
our experiments.

Observation uncertainties

In typical keyword recognition systems, the probabilistic model treats all observations
as though they were estimated with complete precision. However, observations that are
gathered in noisy, reverberant or multi-source conditions typically come with estimation
errors, which, to complicate matters significantly, clearly vary over time. Uncertainty-of-
observation approaches attempt to model these residual estimation errors through probabil-
ity distributions, whose first two moments are estimated and used for focussing the decoder
more on the reliable and less on the unreliable sources of information.

As this approach is fully in keeping with the graphical-modelling ideas in the Two!Ears
project, we have applied them to the fusion of acoustic and visual information. More specif-
ically, we have considered two uncertainty-of-observation approaches: uncertainty decoding
(Deng et al., 2005) and noise-adaptive LDA (Kolossa et al., 2013).

Results for both approaches, integrated into CHMM decoding as well as into the turbo
decoding system, will be shown in Section 4.10.1.

Neural-network based audio-visual keyword recognition

Neural networks have led to impressive gains in acoustic speech recognition. We have there-
fore also considered their application to the task of audio-visual recognition in most recent
work. One core question that needed answering in this context is, whether the integration of
acoustic and visual streams — supported by observation uncertainties in the HMM/GMM
setup — can be learned by a neural network through discriminative training, or whether it
should be supported by more explicit strategies for stream weighting.

In the experiments, described below in Section 4.10.1, we show that indeed, discriminative
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training — even when including dynamic reliability estimates of the feature values — is
insufficient for optimally learning the best fusion of both feature streams. Instead, as
demonstrated in Meutzner et al. (2017), it significantly better to explicitly combine separate
acoustic and visual DNNs, e.g. at each HMM state, by computing joint state posteriors in
accordance with

log p̃(oAVt |s) = λt log p′(oAt |s) + (1−λt) log p′′(oVt |s). (3.40)

Here, λt ∈ [0, 1] denotes the time-dependent stream weight of the acoustic feature stream
and log p′(oAt |s) and log p′′(oVt |s) correspond with the log-likelihood of the acoustic fea-
ture vector oAt and the visual feature vector oVt , respectively, given state index s. The
resulting audiovisual log-likelihood log p̃(oAVt |s) is then applied in decoding the sequence
of bimodal observations oAVt = (oAt ,o

V
t ). The stream weights λt are estimated by a simple

logistic regression function, based on the approach introduced by Abdelaziz and Kolossa
(2014)

While this combination leads to a more complex architecture, the gains with respect to
training a single, audiovisual DNN are notable, leading to the conclusion that at least
under dynamically varying conditions, it is quite helpful to model each modality as well as
the fusion weight, explicitly rather than relying on the discriminative training approach by
itself.

3.5.4 Audio-visual speech enhancement

Models for automatic speech recognition (ASR) contain detailed information about the
spectro-temporal characteristics of clean speech signals. Employing these models for speech
enhancement has therefore been the target of many past research efforts. In such model-
based speech enhancement systems, a powerful ASR is of fundamental importance. We have
therefore investigated the use of the visual modality for deriving a more reliable, model-based
clean speech estimator. Since acoustic and visual information can be integrated optimally
by joint inference in both modalities within the turbo-decoding framework, we have chosen
this framework as a basis of audiovisual speech enhancement.

For this purpose, we have made use of the so-called twin-HMM, a statistical model that is
endowed with two associated output distributions per acoustic HMM state. One output
distribution is used for inferring the acoustic HMM state, and the other is available for
speech enhancement. We have extended this architecture by the additional inclusion of
visual information, based on the turbo-decoding principle outlined above. Overall, this
results in the following architecture, shown in Figure 3.17
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Figure 3.17: Architecture or turbo-twin-HMM-based speech enhancement.

As can be seen, the system, described in Zeiler et al. (2016a), unifies the turbo principle for
multimodal keyword recognition with the Twin-HMM for speech reconstruction. For this
purpose, joint inference in the audio and video sequence of an utterance is carried out using
turbo decoding. After a few iterations, audio state posteriors are obtained, which serve as
a prerequisite for the clean speech estimation. To find an estimate of the clean speech, we
attach an additional set of output density functions to the states of the acoustic model, in
keeping with the Twin-HMM principle (Abdelaziz and Kolossa, 2014). Here we compare
two ways of synthesis, all-path (AP) and best-path (BP) synthesis. For AP synthesis, we
calculate the minimum-mean square error estimate of the clean speech amplitude spectrum
x̂AP(t) as

E
(
x(t)|o(t)

)
=

N∑
i=1

p
(
q(t) = i|o(t)

)
E
(
x(t)|q(t) = i

)
. (3.41)

This corresponds to a sum of synthesis output density function (ODF) mean values µi over
all states i weighted by the corresponding audio state posterior γ̃a(i, t) for frame index
t,

x̂AP(t) =
N∑
i=1

γ̃a(i, t) µi. (3.42)

For BP synthesis, instead of a weighted sum, we use the most probable state i∗(t) for each
frame t, to compute the clean speech signal estimate

x̂BP(t) = µi∗(t). (3.43)
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We find i∗(t) via a best path search in the state posterior matrix γ̃ constrained by the
transition structure of the audio model. BP synthesis is done by using only ODFs that
belong to states on the best path. Thus, in every frame only a single expectation with
unity weight is used to calculate an estimate of the clean speech signal, an approach that
is more efficient than the MMSE estimator above, albeit at the cost of making a hard
decision on the state identity before synthesis.

Both of these ideas, all-path and best-path synthesis, will be compared in terms of human
listening accuracy in Section 4.10.2, below.
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4.1 Pre-segmentation

4.1.1 System configurations

In order to systemically analyze the impact of spectro-temporal context strategies in the
front-end and the back-end of the AMS-based segmentation system described in Sect. 3.2.1,
the following four system configurations were tested, as listed in Table 4.1. “No context”
denotes the baseline configuration with no delta features in the front-end and no spectro-
temporal integration in the back-end, corresponding to setting the window size W to
unity (∆t = 1, ∆f = 1). “Front-end” includes the delta features while “Back-end” only
includes the second-layer classification stage in the back-end (∆t = 3, ∆f = 9). “Front- &
back-end” employs both the front-end and the back-end spectro-temporal context strategies.

Front-end Back-end
Delta Feature W sizeConfiguration

features dimension ∆t ∆f

No context no 6 1 1
Front-end yes 18 1 1
Back-end no 6 3 9
Front- & back-end yes 18 3 9

Table 4.1: Configurations of the speech segregation system

4.1.2 Stimuli

The speech material came from the Danish conversational language understanding evalua-
tion (CLUE) database (Nielsen and Dau, 2009). It consists of 70 sentences in 7 lists for
training and 180 sentences in 18 balanced test lists with 10 sentences per list for testing,
and is spoken by a Danish male. Noisy speech mixtures with an average duration of 3.6 s
were created by mixing individual sentences with a stationary (ICRA1) and a fluctuating
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6-talker (ICRA7) noise (Dreschler et al., 2001). A long term average spectrum (LTAS)
template was computed based on the CLUE corpus and the LTAS of each noise masker
was adjusted to the template LTAS. A randomly-selected noise segment was used for each
sentence. The noise segment started 1000 ms before the speech onset and ended 600 ms
after the speech offset.

4.1.3 System training and evaluation

The segregation system was trained for each of the two noise types with the noises limited
to 10 s in duration1. The first layer of the classification back-end consisted of a subband
GMM classifier with either 16 (moderate complexity classifier) or 64 Gaussian components
(high complexity classifier) and full covariance matrices. The classifiers were first initialized
by 15 iterations of the K-means clustering algorithm, followed by 5 (moderate complexity
classifier) or 50 (high complexity classifier) iterations of the expectation-maximization
algorithm. The classifiers were trained with the 70 training sentences that were each
mixed three times with a randomly-selected noise segment at −5, 0, and 5 dB SNR. The
subsequent linear SVM classifier was trained for each subband with only 10 sentences
mixed at −5, 0, and 5 dB SNR. Afterwards, a re-thresholding procedure was applied (May
and Dau, 2014a, Han and Wang, 2012) using a validation set of 10 sentences, where new
SVM decision thresholds were obtained which maximized the HIT - FA rates. Both the first
and second-layer classifiers employed a local criterion (LC) of −5 dB in a similar manner
as Han and Wang (2012) and May and Dau (2013). The segregation system was evaluated
with the 180 CLUE sentences for testing. Each sentence was mixed with the noises at
−5 and 0 dB SNR. The trained models were evaluated with the same limited noise 10 s
recordings used during training.

4.1.4 Perceptual outcome measures

Four different perceptual outcome measures were used for evaluation, namely the hit rate
minus false alarm rate (H-FA) (Kim et al., 2009), the clustering parameter γ (Kressner
and Rozell, 2015), and the extended short term objective intelligibility (ESTOI) (Jensen
and Taal, 2016), as well as measured intelligibility scores. To compute the H-FA rate, the
correctly classified speech-dominated T-F units and incorrectly classified noise-dominated
T-F units were derived by comparing the EBM with the ideal binary mask (IBM) unit
for unit. The clustering parameter γ was estimated by the graphical model described
in Kressner and Rozell (2015). Given a binary mask, the graphical model predicts the

1 Originally, the ICRA1 consists of a 60 s noise recording and ICRA7 of a 600 s recording (Dreschler
et al., 2001)

70



4.1 Pre-segmentation

amount of clustering γ as a single number, where γ = 1.0 reflects a mask with uniformly
and randomly connected T-F units. Larger values (e.g., γ = 2.0) reflect binary masks with
T-F units that are twice as likely to be in the same state as its neighboring units (Kressner
and Rozell, 2015). The ESTOI (Jensen and Taal, 2016) is a modified version of short term
objective intelligibility (STOI) (Taal et al., 2011) to better account for modulated noise
maskers. The STOI metric is based on a short-term correlation analysis between the clean
and the degraded speech (Taal et al., 2011), mapped to a value between 0 and 1. In the
current study, ESTOI improvements (∆ ESTOI) were reported as the relative difference
between the predicted ESTOI values for the processed and the unprocessed noisy speech
signal.

4.1.5 Test procedure and subjects

The following 24 conditions were tested: (UN, No integration, Front-end, Back-end, Front-
& back-end, IBM) × (ICRA1, ICRA7) × ( moderate complexity, high-complexity). As the
total number of conditions (24 conditions) exceeded the number of available CLUElists, the
experiment was conducted with two subject groups, each with n = 15 normal hearing (NH)
listeners. The first subject group was exposed to the 12 conditions with only the moderate
classifier complexity, and the second group was exposed to the 12 conditions with only the
high-classifier complexity.

The listener age was between 20 and 32 years with a mean of 24.5 years. Requirements for
participation were: (1) age between 18-40 years (2) audiometric thresholds were less than
or equal to 20 dB HL in both ears (0.125 to 8 kHz) and (3) Danish as native language,
and (4) no previous experience with hearing in noise test (HINT) or CLUE (Nielsen
and Dau, 2009). The total experimental time was around 2 hours including the screen-
ing process. Most subjects were paid for the participation except when payment was
declined.

4.1.6 Results

First, the results from the listener study are considered and, secondly, the outcome measures
are included and compared to the human intelligibility data. The results are presented by
considering the effect of system configurations, the effect of system classifier complexity
and finally the effect of noise types.
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Effect of system configurations

Figure 4.1 shows word recognition scores (WRSs) for the four different system configurations
in the two classifier complexities and two noise types. The unprocessed stimuli (“Noisy
speech”) is included as the baseline and the IBM as a reference for the ideal condition
where the speech and the noise signals are known a priori. The baseline differs across noise
types. Approximately 50− 55% WRS is observed for the stationary ICRA1 and 65% for
the fluctuating ICRA7, presumably as the listeners were able to listen in the dips of the
competing talkers noise of ICRA7. The IBMs in all combinations of classifier complexity
and noise type reach ceiling levels in WRSs close to 100%. This is expected as the IBM
exploits a priori information about the speech and the noise.

Across-list averaged WRSs for the four different system configurations in the two classifier
complexities and two noise types were used as the response factor to construct a mixed
linear model with three fixed factors, namely configuration (4 levels), noise type (2 levels)
and complexity (2 levels), and subjects as random factor. Prior to the modeling, a normal
scores plot of the intelligibility scores indicated that the ANOVA normality criteria was ful-
filled. All fixed effects and all interactions amongst fixed effects were tested in the analysis
on a 5% significance level. The p-values are calculated from F statistics where the degrees
of freedom of the denominator are based on the Satterthwaite approximation. Least-squares
means and CIs were extracted from the mixed linear model. A summary of the three-way
ANOVA indicated a highly significant effect of configuration (F [3, 199] = 69.23, p < 0.001).
The least-squares means and the CIs for levels of configurations, averaged across factors
noise type and complexity, indicated the following order with non-overlapping CIs: “Front-
end” (67.4% [64.4% 70.5%]) , “Front- & back-end” (56.5% [53.5% 59.5%]), “No context”
(48.8% [45.7% 51.8%]) and “Back-end” (41.5% [38.4% 44.5%]). Therefore, the “Front-end”
strategy led to significantly higher scores than all other configurations and the “Back-end”
resulted in the lowest scores of all system configurations.

To asses speech intelligibility improvements, Paired Student‘s t-tests between the noisy
speech and each of the system configurations were made. As a reference, maximal improve-
ments over noisy speech are given by IBM improvements and are approximately 50% for
ICRA1 and 35% for ICRA7. The t-tests indicated only significant (on a 5% significance
level) improvements for the high-complexity classifier of 64 GMM components for configura-
tions “No Context” (t[14] = −2.16, p = 0.02), “Front-end” (t[14] = −4.29, p =< 0.001) and
“Front- & back-end” (t[14] = −2.82, p = 0.007) for the ICRA1 noise and only “Front-end”
(t[14] = −7.44, p =< 0.001) for the ICRA7 noise.

Figure 4.2 shows WRS improvements, H-FA rates, γ values and ESTOI improvements over
noisy speech for the four different system configurations in the two noise types and classifier
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Figure 4.1: Intelligibility scores for the four different system configurations for the moderate
complexity classifier (left panel) and the high complexity classifier (right panel) in the two noise
types at -5 dB SNR. The unprocessed “Noisy speech” has been included as a baseline and the IBM
has been added as a reference. For the baseline and the reference, sample means across subjects
were computed and 95% Student‘s t-based CIs of the mean were computed using 14 degrees of
freedom. For the other data points, the least square means and 95% CIs from a fitted mixed linear
model were used.

complexities. The improvements in WRS over noisy speech from the Paired Student‘s
t-tests are shown in the first panel in Figure 4.2. WRS improvements are derived from
the Paired Student‘s t-tests and significant improvements (on a 5% significance level) are
marked with an asterisk.

The second panel shows sample mean H-FA rates. For both noise types and classifier
complexities, the lowest HIT -FA rates were observed for the “No context” configuration
and the highest H-FA rates for the “Front- & back-end” configuration. Also, larger HIT -
FA rates were obtained for the “Back-end” than the “Front-end” configuration. The
comparison of the H-FA rates to the WRSs indicated a mismatch as the “Front-end”
configuration led to the highest intelligibility scores, but not the highest segregation
performance.

The third panel shows the computed γ. Reported values of γ from the “No context”
configuration are consistent with previous results (Kressner and Rozell, 2015, 2016).
Furthermore, Figure 4.2 reveals that the IBM itself contains a certain amount of structure,
presumably due to the compact representation of speech-dominated T-F units forming
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Figure 4.2: WRS improvements, H-FA rates, γ values and ESTOI improvements for the four
different system configurations in the two classifier complexities (16 and 64 GMM components)
and two noise types (ICRA1 and ICRA7). The IBM has been included as a reference for the ideal
condition where the speech and the noise signals are known a priori. WRS improvements are
derived from the Paired Student‘s t-tests and significant improvements (on a 5% significance level)
are marked with an asterisk. The other outcome measures are averaged across the 180 sentences
for a SNR of −5 dB.

glimpses of the target signal. Most importantly, the γ values from configurations that
exploited spectro-temporal context through the SVM classifier in the back-end (“Back-end”
and “Front- & back-end”) are consistently larger than those from configurations “Front-end”
where the SVM classifier did not incorporate contextual information across adjacent T-F
units (“No context”). On the contrary, the delta features alone do not seem to increase the
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amount of clustering in the mask.

The fourth panel in Figure 4.2 shows the ESTOI improvement over the unprocessed noisy
mixture baselines. For the baselines, ESTOI predicted on average 0.59 for ICRA1 and
0.55 for ICRA7. The IBM marker in Figure 4.2 indicates the largest possible intelligibility
improvement that the system configurations can achieve. Overall, the largest improve-
ments were predicted for the configuration “Front- & back-end”. However, the results
for the remaining configurations were inconsistent across the noise types and classifier
complexity.

Effect of the classifier complexity

The three-way ANOVA found a significant effect of complexity (F [1, 28] = 24.38, p < 0.001).
Furthermore, significant interactions between complexity and configuration (F [3, 196] =
3.04, p = 0.03) and between complexity and noise type (F [1, 196] = 6.99, p = 0.009) were ob-
served. The least-squares means and the CIs for levels of complexity, averaged across factors
noise type and configuration, indicated with non-overlapping CIs that the high-complexity
classifier of 64 GMM components resulted in scores (58.5% [55.5% 61.4%]) significantly
higher than the 16 GMM components (48.6% [45.7% 51.5%]). From Figure 4.1, it is evi-
dent that the ranking of the configurations remained unchanged across classifier complexity.

Comparing the left panels with the right panels in Figure 4.2, higher H-FA rates were
obtained using the high-complexity classifier over the moderate complexity classifier.
Furthermore, it is interesting that an increase of 2.7% in H-FA leads to an increase in
WRS of 15.6% with increasing classifier complexity. Also, larger ESTOI improvements
over noisy speech were generally observed using the high-complexity classifier over the
moderate complexity classifier. However, γ remained unchanged, suggesting that the
structure of the mask was not affected by the classifier complexity in the segregation
system.

Effect of noise type

The three-way ANOVA indicated a non-significant effect of noise type (F [1, 196] = 0.27, p =
0.6). A significant effect of interactions between noise type and configuration (F [3, 196] =
8.47, p < 0.001) was observed. The interaction amongst all three fixed factors was not
significant (F [3, 196] = 0.71, p = 0.55). From Figure 4.1, it is also here evident that the
ranking of the configurations remained unchanged across noise type. Averaged H-FA rates
in Figure 4.2 indicate that the system in general produced higher H-FA rates in the presence
of the stationary ICRA1 noise than for the ICRA7 noise, presumably because it was more
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difficult to separate the speech modulations from the non-stationary 6-talker babble noise.
Also, γ values were on average larger for ICRA1 than ICRA7. In general, ESTOI predicted
larger intelligibility improvements for ICRA7 than ICRA1.

4.1.7 Discussion and conclusion

In the present study the impact of different spectro-temporal context strategies in a
computational speech segregation system was investigated systematically in the front-end,
by computing the delta features, and in the back-end, by using a second layer SVM. The
listener study in 4.1.6 showed that exploring spectro-temporal context in the front-end
strategy led to significantly higher intelligibility scores than using the strategy in the
back-end. Furthermore, the back-end strategy actually resulted in the lowest scores of all
system configurations. The predictions of the outcome measures in Figure 4.2 indicated
that the back-end strategy increased the H-FA rates but, at the same time, the amount of
clustering of the mask. Previously, it has been shown that clustering of the two error types
reduces the intelligibility scores in comparison to the randomly distributed errors (Kressner
and Rozell, 2015), which is likely to explain the detrimental effect of the back-end strategy
on the present intelligibility scores. Furthermore, from Figure 4.2 it was evident that
the ranking of the system configurations remained unchanged across classifier complexity
and noise type. This emphasizes these findings. Therefore, in the considered segregation
system, a better spectro-temporal strategy is therefore to compute delta features of the
AMS features rather than employing the selected spectro-temporal integration strategy,
despite the fact that the H-FA rate does not increase as much as when exploiting contextual
knowledge through a SVM classifier.

4.2 Source localisation

In this section we evaluate sound source localisation in a cocktail party scenario (DASA-1,
WP6). Both bottom-up and top-down systems are at play in the perceptual organisation
of sound, via a process termed ‘auditory scene analysis’ (ASA) by Bregman (1990a). In
the cocktail party scenario, the voice of the target speaker and interfering (masker) voices
will originate from different locations. Hence, binaural cues will differ for the target and
maskers, providing a means to identify them. In addition to this bottom-up cue, top-down
knowledge can also be applied. In the cocktail party, this includes information about the
vocal characteristics of the target and masker voices, and also knowledge about their spatial
positions. In the latter regard, listeners could potentially exploit the fact that the spatial
locations of the masker voices are known.

Indeed, a recent psychophysical study has shown that listeners are able to exploit prior
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knowledge of the masker locations in a cocktail party scenario. Kopco et al. (2010)
investigated the ability of listeners to localise a female target voice in the presence of four
male masking voices. They found that listeners were better able to localise the target when
the spatial locations of the masker voices were cued before the task.

We conducted listening experiments to investigate whether listeners are able to exploit
prior information about the masker locations in Kopco et al.’s task when listening over
headphones, where binaural cues are limited to those present in the HRIRs used to
spatialise the signals for headphone listening. In headphone listening, head movements are
not available and room characteristics can be carefully controlled; hence, we also investigate
whether prior knowledge of the masker locations can assist localisation in both anechoic
and reverberant conditions.

The approaches described in previous chapters (DNN localisation, Section 3.4.1; source
segregation and localisation with top-down knowledge, Section 3.5.1) are integrated in
a computational system and evaluated in the same task. In particular, we ask whether
the sources of knowledge available to listeners in this scenario – speaker characteristics
and masker locations – can be successfully exploited in a computational system for sound
localisation. Such information is not typically used in machine listening systems for source
localisation (Ma et al., 2015b).

The remainder of the section is structured as follows. First, we describe a listening test which
broadly follows the method of Kopco et al., but uses headphone listening and assesses listener
performance under both reverberant and anechoic conditions. A computational model is
then described, which exploits speaker models and prior information of masker locations
within a DNN architecture. Finally, a comparison of listener and model performance on
the same localisation task is presented.

4.2.1 Methods

Eleven normal-hearing listeners participated in the listening test, including four females
and seven males between the ages of 22 and 50 years.

Speech materials were taken from a corpus of monosyllabic words recorded at Boston Uni-
versity’s Hearing Research Centre (Kidd et al., 2008), as used in (Kopco et al., 2010). The
target was a female voice speaking the word ‘two’. The four maskers were male voices speak-
ing non-digit words, drawn randomly from a set of 32 words. Speech material was recorded
at a sample rate of 44.1 kHz with an average duration of 0.4 s.

Participants listened to the stimuli via headphones in a simulation of binaural localisation.
Two listening sessions were included. For the anechoic session, binaural speech signals were
created by convolving monaural signals with HRIRs recorded from the Knowles Electronic
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Manikin for Acoustic Research (KEMAR) dummy head (Wierstorf et al., 2011, WP1). For
the reverberant session, the BRIR of Room A from the Surrey BRIR database (Hummersone
et al., 2010) was used to simulate reverberant room conditions. The Surrey database was
captured using a Cortex head and torso simulator (HATS). Room A has a reverberation
time (T60) of 0.32 s and a DRR of 6.1 dB. The room has dimensions 5.7 × 6.6 × 2.3m (width
× length × height), and the BRIR was measured at a head height of 1.78m and a distance
of 1.5m between the circular loudspeaker array and the HATS.

Binaural mixtures of five competing talkers (one female target, four male maskers) were
created by spatialising each talker separately before adding them together in each of the
two binaural channels. For both anechoic and reverberant sessions, each masker was equal
in level to the target.

Listeners participated in the experiment in a sound-attenuating booth using a computer
running MATLAB. Stimuli were presented over a pair of Sennheiser HD 600 headphones.
A graphical user interface (GUI) was used to record participants’ responses. Their task
was to report the location of the female-voice target either in isolation (control runs), or
in the presence of four male-voice maskers (masker runs). Participants indicated their
response by selecting a loudspeaker location in a loudspeaker array shown on the computer
screen using a computer mouse. There was also a button in the GUI that listeners could
press to indicate that no target was heard.

The listening tests were administered across two sessions that were completed on different
days. In one session anechoic stimuli were used while in the other session reverberant
stimuli were used. At the beginning of each session, a practice run was included in which
the participants listened to the female-voice target in isolation from all target locations.
After that, 12 runs were presented following a similar procedure adopted in (Kopco et al.,
2010). The first and last of these were no-masker control runs, each of which consisted
of 55 trials (5 trials per target location). In the masker runs the maskers were presented
in one of five masker patterns. There were five runs where the masker pattern was kept
fixed for the duration of the run (Fixed), and five runs where the masker pattern was
randomly chosen on each trial (Mixed). Each masker run consisted of 60 trials including
five catch trials, in which the target was replaced by another random male masker. The
catch trials were included in order to monitor false alarm rates. The type of masker
runs was indicated at the beginning of each run by presenting a recording of the phrase
‘fixed maskers’ sequentially at each of the four masker locations for the Fixed runs, and a
recording of the phrase ‘mixed maskers’ for the Mixed runs. The Fixed and Mixed runs
were interleaved.
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4.2.2 Configuration of the Two!Ears system

We now show how the Two!Ears system can model listener performance in this task.
The system uses DNNs to learn the relationship between binaural cues and source azimuth
(Section 3.4.1). It also exploits top-down knowledge about the spectral characteristics
of the target source, and the prior knowledge of masker positions when available (Sec-
tion 3.5.1).

The auditory front-end (WP2) consisted of a bank of 32 overlapping Gammatone filters,
with centre frequencies uniformly spaced on the ERB scale between 80Hz and 8 kHz (Wang
and Brown, 2006). Inner-hair-cell processing was approximated by half-wave rectification.
Following this, the cross-correlation between the right and left ears was computed inde-
pendently for each frequency channel using overlapping frames of 20 ms duration with a
shift of 10 ms. As in (Ma et al., 2015d), the system used the whole cross-correlation func-
tion, instead of ITD, as localisation cues. When sampled at 16 kHz, the cross-correlation
function with a lag range of ±1ms produced a 33-dimensional binaural feature vector for
each frequency channel. This was supplemented by the ILD, forming a final 34-d feature
vector.

The relationship between binaural cues and source azimuth in each frequency channel
was learned by a DNN. The DNN consists of an input layer, 4 hidden layers, and an
output layer. The input layer contained 34 nodes and each node was assumed to be a
Gaussian random variable with zero mean and unit variance. The hidden layers had
sigmoid activation functions, and each layer contained 128 hidden nodes. The output layer
contained 51 nodes corresponding to 51 azimuth angles between -50 deg and 50 deg with an
azimuth resolution of 2 deg. The ‘softmax’ activation function was applied at the output
layer.

The DNNs were trained using speech signals from the GRID corpus (Cooke et al., 2006c),
spatialised using an anechoic HRIR measured with a KEMAR dummy head (Wierstorf
et al., 2011). Diffuse noise were added during training and there was no retraining using
the matching BRIR for this study.

Source spectral characteristics were modelled using ratemap features (Brown and Cooke,
1994a). A ratemap is a spectro-temporal representation of auditory nerve firing rates,
extracted from the inner hair cell output of each frequency channel by leaky integration
and downsampling. Ratemaps were computed for each ear, averaged across the two ears,
and finally log-compressed (cf. the log-max approximation noted above). The stimuli from
the practice run were used to estimate source model parameters for the target talker, and
the signals of the catch trials were used to estimate the masker model, i.e. the system used
the same information that was available to the listeners.

In the Fixed runs prior knowledge about masker locations was available. Such information
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can be exploited in the system by reducing the probability for azimuth φ where a masker
is located. However, since a target and a masker can be co-located, by doing so the
probability at the true target location is also reduced. The proposed system therefore only
reduced the probabilities at a masker location φ in the time-frequency region considered to
be dominated by the maskers.

4.2.3 Results and discussion

Results of listening tests

Figure 4.3 plots RMS errors averaged across participants in the no-masker control condition
as a function of the target location. For the anechoic case, RMS errors grew approximately
with target laterality from about 11◦ to 22◦. The V-shape trend is consistent with that
reported in (Kopco et al., 2010) where localisation was performed in a real room, but the
localisation accuracy is substantially lower for headphone listening and the V shape is also
less pronounced.
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Figure 4.3: Localisation performance in the no-masker control condition. Across-participant
averages (±1SEM) of the RMS error are plotted as a function of the target location for both
anechoic (dry) and reverberant (reverb) sessions.

For the reverberant case, however, control data did not show a dip at the central locations,
with RMS errors ranging between 12◦ to 17◦. This is most likely due to the effect of
reverberation on perceived location. Many participants reported that the target speech
appeared to emirate from above them, presumably due to reflections from the ceiling
in which the BRIRs were recorded. Another possible explanation is that the mismatch
between the listeners’ HRIRs and the one used to simulate binaural listening in this study
could disrupt speech localisation more when reverberation is present, as shown in (Begault,
1992).

Figure 4.5 shows the effect of maskers on RMS errors for each target location and each
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masker pattern, by subtracting control RMS errors for each participant from those in the
different masker conditions. The effect of masking on RMS errors depended in a complex
way on various parameters manipulated in this study. First, the presence of maskers
resulted in a larger increase in error in the more challenging reverberant condition, in
particular at more lateral target locations. In the anechoic condition, however, the RMS
errors tended to increase most at more central locations between -20 deg and 20 deg. This
is in contrast to findings by Kopco et al. (2010), where the RMS errors tended to increase
most at target locations that corresponded to masker locations.
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Figure 4.4: Effect of maskers on localisation accuracy shown as the increase in RMS error (re.
the no-masker control condition).
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Figure 4.5: Across-participant average (± SEM) of the increases in RMS errors (re. the no-masker
control condition) as a function of the target location. Masker locations are indicated by the filled
triangles along the abscissa.

The effect of maskers on RMS errors also depended on whether the masker locations were
fixed or mixed within a run. This is better illustrated in Figure 4.4, which shows the
increase in the RMS error averaged across all masker patterns and across either all target
locations (all), across the target locations where the target was presented with a co-located
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masker (on-masker), or across the target locations where the target was not co-located
with a masker (off-masker). The availability of a priori information about masker locations
had a main effect in the reverberant condition. Averaged across all target locations, the
RMS error reduction in the Fixed condition compared to the Mixed condition was 1.1◦ (or
31%). The effect of a priori knowledge was even larger when only the off-masker target
locations were considered, reducing the RMS error by 2◦ (or 51%). On the other hand,
the a priori information had a modest effect on the on-masker targets, increasing the
RMS error by 0.6◦. The effect is also modest under the anechoic condition. A repeated
measures analysis of variance (ANOVA) confirms that the a priori information only has a
significant main effect on localisation accuracy in the reverberant condition when all target
locations are considered [F = 5.56, p < .05] or only the off-masker locations are considered
[F = 13, p < .005]. No significant main effect was found for the on-masker data and in the
anechoic condition.

Results of model simulation

The proposed model achieved 100% target location accuracy in the no-masker control runs
under both anechoic and reverberant conditions, compared to an average of 15◦ error by
listeners.
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Figure 4.6: RMS errors of the proposed model as a function of the target location. Average
listeners’ RMS errors are plotted as dotted lines in each panel for comparison.

Model RMS errors in masker conditions are plotted in Figure 4.6, which also shows
the average listener data for comparison. The machine system outperformed listeners
in many conditions. This can be largely attributed to the use of source models in the
system (Section 3.5.1), without which performance was poor in this relatively challenging
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localisation task2.

The system did not perform well when the target was not co-located with a masker,
especially for masker patterns 1–3 in which the maskers were more clustered. Apparently,
in such conditions the maskers disrupted the localisation cues for the target more than
when maskers were distributed in space, and the DNN failed to indicate a high probability
of a sound source occurring at the target location.

Figure 4.7 shows that the machine system also benefitted from prior knowledge about the
masker locations. The average error reduction in the Fixed condition compared to the
Mixed condition was 3.2◦ in the anechoic condition and 2◦ in the reverberant condition
(both significant with p < .005). As in listeners’ data, this error reduction became larger
when only the off-masker locations were considered.
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Figure 4.7: Effect of maskers on localisation accuracy of the proposed model shown as RMS
error.

4.3 Source identification

In this section, we evaluate our identification system described in Sect. 3.4.2 on the
development system, i.e. on simulated auditory scenes. We first show in Sec. 4.3.1 how
the performance depends on scene conditions and that models can be very sensitive to
changes of conditions under which they were trained, that is we evaluate the robustness of
detection. Then, we show how we solved this issue in Sec. 4.3.2 through “multi-conditional”
training; and finally present our evaluation results for this kind of models under realistic
reverberant conditions in Sec. 4.3.3.

2 Each masker was equal in level to the target, which is equivalent to about -12 dB target-to-masker-ratio
with four maskers.
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4.3.1 Robustness of single-conditional source detectors

In this study, we used simulated auditory scenes to evaluate our single-conditional sound
type classification models (Sec. 3.4.2) obtained with the Lasso classifier (see Sec. 3.3.3) by
inductive learning. In particular, we investigated the impact of different angular source
configurations and signal-to-noise ratios. We chose these configurations in such a way that
we could also investigate the effect the orientation of the head (relative to the sources) has
on the detection of environmental sounds (see Deliverable D4.3, Sec. 4.2.6). By building
machine learning models on training data under particular conditions and evaluating these
models both under the same (iso) and under different (cross) conditions, we quantified how
differences between the conditions affect generalization performance.

Furthermore, we showed that model robustness can be improved (i) by augmenting the
training data of the sound type classifiers by superimposing general environmental sounds,
and in the next section described, (ii) by using multi-conditional training, in which training
data for model building is composed from many different scene configurations, in which
signal-to-noise ratios and/or angular source directions are varied.

Data and model construction

As with training, for all evaluations of sound event detection we used the NIGENS
database, with its 13 + 1 specific event classes of environmental sound types. Due to the
high computational demand of the following analysis of single-conditional models (tens
of thousands of cross-tests), we used only four of our classes as detection targets in this
study: alarm, crying baby, female speech, and fire. All sounds of the other classes still
provided counter-examples for model training and testing. The very diverse set of sounds
from the general class served both as counter-examples for the classifiers and as distractor
signals.

Auditory scenes were generated as described in Sec. 3.4.2, with the following specifics in
this case:

1. Scenes composed of a single point source emitting sounds from all classes (including
the general class) at 5 azimuth angles {0◦, 22.5◦, 45◦, 67.5◦, 90◦} (all azimuths are
given with respect to the direction of the nose of the binaural head, see Fig. 3.9).

2. Scenes containing two point sources emitting sound simultaneously: A target source
emitting sounds from all classes, and a distractor source emitting only sounds
from the general class. Target and distractor sound sources were located at 17
combinations of azimuth angles: {0◦/0◦, 0◦/45◦, 45◦/0◦, 22.5◦/−22.5◦, 67.5◦/112.5◦,
0◦/90◦, 22.5◦/112.5◦, 45◦/135◦, 90◦/180◦, 22.5◦/−67.5◦, 45◦/−45◦, 90◦/0◦, 0◦/180◦,
22.5◦/−157.5◦, 45◦/−135◦, 67.5◦/−112.5◦, 90◦/−90◦}. The SNR between the target
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4.3 Source identification

and distractor source was set (with the method described in 3.4.2) to the values
−20 dB, −10 dB, 0 dB, or 10 dB.

In the following we refer to the sounds of scene 1 both as clean sounds or as scenes with
an SNR of inf dB, mixing terminology of scenes 1 and 2.

In the study of single-conditional models’ generalization, we used both mean-channel and
two-channel feature sets, based on ratemaps and onset strength maps with 16 frequency
channels, spectral features based on 32 frequency channels (all three framed in 20 ms time
bins), and amplitude modulation spectrograms with 32 ms time frames over 8 frequency
channels with 9 modulation filters. Regardless of the number, frequency channels always
ranged from 80 Hz to 8 kHz.

Training of models was conducted using logistic Lasso in the AMLTTP (see Sec. 3.4.2)
using data from exactly one acoustic scene with one SNR and azimuth configuration
only. The training set amounted to roughly 75k feature vectors (1082-dimensional for
mean-channel, and 2164-dimensional for two-channel feature sets) and corresponding
labels.

Evaluation method

Data were split into a training set for model building and a test set for estimating the
generalization performance of the classifiers. In order to ensure that a block from the
training set and a block from the test set never contained parts of the same sound file,
training-test splits as well as cross-validation splits were conducted at the level of the
original sound files. This means that the set of sound files for each class was randomly
split into training set (75%) and test set (25%). Only the sounds from the training set
were used to generate the auditory scenes for building the classification models, and only
the sounds from the test set were used to generate the auditory scenes for evaluating
the prediction performance. All evaluations were done on three different training-test
splits.

Performance was always evaluated on individual “single conditions”, either

• on test data chosen from a scene and combination of SNR and azimuth configuration
included in the training data (iso-testing), or

• on test data chosen from a scene and combination of SNR and azimuth configuration
excluded from the training data (cross-testing).

Below, we will use the term iso-azimuth to refer to generalization performance estimates
where the same azimuth configuration was used for testing and training, but where the SNR
value was chosen randomly from the 5 SNR values, independently for training and testing.
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Likewise, we will use the term iso-SNR to refer to generalization performance estimates
where the same SNR was used for testing and training, but where the azimuth configuration
was chosen randomly from the 17 simulated azimuth configurations, independently for
training and testing.

The balanced accuracy (BAC) is used as performance measure, which is defined as the
arithmetic mean of sensitivity, i.e. the true positives (TP) divided by the size of the positive
class (PC), and specificity, i.e. the true negatives (TN) divided by the size of the negative
class (NC):

BAC =
1

2

(
TP

PC
+
TN

NC

)
(4.1)

Generalization from clean to noisy sounds

In the first analysis, we investigated how well sound categorization models trained on clean
sounds generalize to noisy situations where an additional distractor source is present. To
this purpose, we evaluated our models trained on clean sounds (scinf) under iso-testing
(identical SNR (inf) and azimuth configuration on training and test set), as well as on
the scenarios where a distractor source from the general class was superimposed on the
target source at signal-to-noise ratios (SNR) of 10 dB, 0 dB, −10 dB and −20 dB (cross-
testing; iso-azimuth). Target and distractor sound sources were placed at various azimuth
configurations (set 2).

Fig. 4.8 shows the test set model performance values pooled over all four target classes, all
angular configurations, and all data set splits. The figure shows two groups of box-plots
corresponding to mean-channel features (left) and two-channel features (right). The first
box-plot in each group corresponds to iso-testing (trained on clean sounds, tested on
clean sounds, same azimuth configuration), whereas the next four plots correspond to
cross-testing (trained on clean sounds, tested on noisy sounds; same azimuth configuration)
with increasing noise level. On each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
notches represent the 95% confidence interval for the true median, while the whiskers
indicate the minimum and maximum values.

While models trained on clean sounds perform well under iso-conditions, their median
cross-test performance, even when only a relatively quiet distractor source is added
to the scene (SNR of 10 dB), is much worse, and decreases further with increasing
noise level (decreasing SNR). For models trained on clean sounds, there is no significant
difference between the median performance of the mean-channel and two-channel feature
sets.

This finding gave rise to the question whether the bad generalization of clean models to noisy
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Figure 4.8: Performance of the scinf model, separately for mean- (left) and two-channel features
(right), including all dataset splits, classes and iso-azm configurations.

data was due to the intrinsic increased difficulty of the task, i.e. a better performance could
not be expected, or whether models trained on clean sounds might be sub-optimal when ap-
plied in a setting where multiple sources are present simultaneously.

To answer this question, we conducted a second analysis, where we not only considered
classification models trained on clean sounds, but also classification models trained on scenes
where a distractor source from the general class was superimposed on the target sound. SNR
and angular configuration were set to the same values that were later used for testing (iso-
testing). The corresponding performances are shown in Fig. 4.9, pooled over the 17× 3× 4
model tests for each box (azimuths, dataset splits, target classes).

We continue to observe a drop in performance with increasing noise levels – however, it is
much less steep compared to Fig. 4.8. We can see that for each SNR, the iso models perform
significantly better than the models trained only on clean sounds, with differences up to
15%. We also see that the intrinsic performance decrease with SNR is shaped differently
from the performance decrease of the clean models, namely going from a small drop to
higher ones, instead of the other way around.

For models trained on set 2, the iso-test performances are significantly higher for the
two-channel than for the mean-channel feature set, the difference growing with increasing
SNR. We hence assume that models using the two-channel feature set can make better use
of angular separation between target and distractor sources.

These results suggest that models trained on clean sounds do not generalize well to realistic
acoustic environments occupied by additional distractor sound sources. Instead, models
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Figure 4.9: Performances of sciso models, separately for mean- (left) and two-channel features
(right). The boxplots include all dataset splits, classes and iso-azm configurations.

specialized to the particular SNR condition at training time were shown to yield significantly
better performance at test time. One likely explanation is that the models trained on clean
data over-fit on features that are well discriminating in the noise-free case, but no longer
in the noisy scenario. However, if distractors are already superimposed during training,
models obtain a higher robustness against such noise.

Note that the general sound class used for generating the distractor signals contains a
very diverse set of environmental sounds, hardly showing any similarities other than being
a sound at all, and that neither distractor nor target sounds used for testing have been
involved in the training process at any point. Therefore, the models do not adapt to a
particular type of distractor signal and filter it out, but rather learn to be robust against a
wide spectrum of possible distractors by finding the features that uniquely discriminate
the target class from all others.

Generalization across conditions

In the previous analysis, we had looked at the generalization of models from clean sounds
to sounds with a superimposed environmental sound source as additional distractor. In
the following analysis, we addressed the more general question of how well models trained
under a particular condition predict when applied to a different condition than the one used
for training. In particular, we were interested in how far the performance of such cross-tests
depends on the similarity between training and test conditions.
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Figure 4.10: Performance difference of cross- and iso-tests at particular SNR distances (d =
SNRte − SNRtr, e.g. tested at 0 dB, trained at -20 dB equals a distance of +20 dB), averaged
over all iso-azimuth configurations, dataset splits, and sound classes. Left: mean-channel feature
set, right: two-channel feature set.

In the scenes of set 2 with two simultaneously present sound sources two factors describe
the conditions: (i) the signal-to-noise ratio (SNR) between the two sources, and (ii), the
azimuth angles of the two sources relative to the nose of the head. In order to understand
how cross-testing the two factors affects generalization, we modulated each factor separately
giving iso-azimuth and iso-SNR conditions as before.

The effects of SNR differences between testing and training on the generalization perfor-
mance are depicted in Fig. 4.10, summarizing the iso-azimuth tests. The curves show
the difference in balanced accuracy between cross-SNR/iso-azimuth and the respective
iso-SNR/iso-azimuth tests as a function of the difference between the SNR at test time and
the SNR at train time. The results were averaged over all azimuth configurations, data set
splits and target sound types and plotted separately for mean-channel and two-channel
feature sets. The results from testing or training on the ‘clean” sounds (inf dB condition)
were not included in this analysis.

By definition, the difference at iso-testing (0 dB distance) is zero. As the test SNR deviates
further away from the training SNR, the performance loss as compared to iso-models
increases monotonically, across all testing SNRs, and in both directions of deviation.
However, there is one exception: if tested at −20 dB, mean-channel models (Fig. 4.10)
trained at −10 dB perform as well as iso-trained models. If we focus on the range from
+10 dB to −10 dB, we see an indication that models trained at a lower SNR than at
which they were tested degrade less compared to models that have been trained at a higher
SNR.

In order to assess the effect of changing the angular configuration of target and distractor
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Figure 4.11: Performance of single-condition training cross-azimuth tests, averaged over all data
set splits, classes, and iso-SNR configurations. The x-axis groups cross tests by “azimuth distance”
of the cross configurations.

source, we defined a simple (geometric) distance measure for two angular source con-
figurations (φ1, ψ1) and (φ2, ψ2) for conditions c1, c2. If the smallest angular distance
α(φ1, φ2) ∈ [0◦, 180◦] between the two azimuths φ1, φ2 ∈ (−180◦, 180◦] of one source in
conditions c1 and c2 is defined as

α(φ1, φ2) = min(β(φ1, φ2), 360◦ − β(φ1, φ2)) (4.2)
with β(φ1, φ2) = max(φ2, φ1)−min(φ2, φ1), (4.3)

then the distance δ(c1, c2) ∈ [0◦, 360◦] between the two angular source configurations is
defined as

δ(c1, c2) = α(φ1, φ2) + α(ψ1, ψ2). (4.4)

Fig. 4.11 shows the average balanced accuracy of our iso-SNR tests as a function of this
distance δ between testing and training configurations for both the mean-channel and
the two-channel feature set. The average includes all data set splits, target classes, and
iso-SNR conditions.

Three effects can be observed:

• For the mean-channel feature set, the performance decreases only slightly with the
distance in angular source configuration. The increase at the end of the distance
curve can be explained by the geometric nature of our distance measure, which does
not account for symmetry effects in binaural auditory perception, as there is a certain
degree of symmetry between sounds coming from the front and the back of the head.
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• For the two-channel feature set, the performance drops much more steeply as δ
increases. For a δ of 180◦, the drop in average BAC is larger then 10%.

• For δ = 0◦ (iso-azimuth), the two-channel feature set models exhibit a much higher
average performance than the mean-channel models. The two curves cross at a
distance of about 100◦ to 150◦. This shows that sound type classification models
on the two-channel feature set are better at making use of directional separation of
sources, but are at the same time more strongly affected by deviations of the true
angular source configuration from the training situation.

4.3.2 Multi-conditional in comparison to single-conditional detection
models

Section 4.3.1 showed that the application of models is very sensitive to deviations of the
environment from training conditions. Practical applications are confronted with two
problems:

1. Training specialized models for every possible combination of conditions would be
extremely demanding, if not prohibitive.

2. Inferring the current conditions is very difficult, in particular for the SNR, which also
varies strongly over time. Unfortunately, model performance is particularly sensitive
to the deviation of the SNR from the training situation.

In order to obtain classifiers that are robust against varying conditions, we suggested the
use of multi-conditional (MC) training, in which the data for training the classification
model is pooled over different conditions.

Three sets of scenes were added to the ones used with the single-condition (SC) models in
Sec. 4.3.1:

2.b Scenes containing two point sources emitting sound simultanously: A “target source”
emitting sounds from all classes, and a “distractor source” emitting only sounds from
the general class. Target and distractor sound sources were located at 16 combinations
of azimuth angles: {0◦/0◦, 0◦/45◦, 45◦/135◦, 45◦/−135◦, −45◦/−45◦, −45◦/−90◦,
90◦/180◦, 90◦/−90◦, −90◦/−45◦, −90◦/90◦, 135◦/−135◦, 135◦/45◦, −135◦/−90◦,
−135◦/45◦, 180◦/180◦, 180◦/0◦}. The SNR between the target and distractor source
was set (with the method described in 3.4.2) to the values −20 dB, −10 dB, 0 dB, or
10 dB.

3. Scenes containing an ambient (or diffuse, i.e. non-directional) “target source” emitting
sounds from all classes.
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4. Scenes containing two ambient sources emitting sounds simultaneously: an ambient
“target source” emitting sounds from all classes and an ambient “distractor source”
emitting sounds from the general class.

Sets 2 from Sec. 4.3.1 (in the following: set 2.a) and 2.b from this analysis differ in the
distribution of azimuths: in 2.a, the target source azimuth resolution was higher, but the
target source was always located between 0◦ and 90◦ in all 17 configurations (the distractor
locations were distributed also outside this quadrant). This set was used for all tests. In
set 2.b, the target and distractor sources were distributed uniformly around the circle, at
the cost of resolution. This set was used to train our multi-conditional models in order to
avoid a bias in performance towards quadrant one.

We investigated two types of multi-condition models:

1. mcamb: Models trained by combining data from the ambient source configurations
from the sets of scenes 3 and 4 described above at all SNRs. Since there are only
ambient (or diffuse) sources present, these models cannot learn any directional
information or head-related changes of the signals through the training data; they
can also not adapt to a particular SNR because all SNRs are equally present in the
data.

2. mcps: Models trained by combining data from all point source configurations from
set 2.b at all SNRs. In this set, target and distractor source angles were uniformly
distributed around the circle. These models cannot adapt to a particular SNR either,
but get information about head orientation-related changes of the signal through
training data.

In Fig. 4.12 we compare the generalization performance of mcamb and mcps models
to the generalization performance of single-conditional models tested in the following
paradigms:

• sciso: training and testing under the same conditions, both with respect to SNR and
azimuth.

• scisoAzm: training and testing at the same azimuth configuration, but at all SNR
combinations (including iso). This displays a situation in which there is no information
about the true SNR and thus a (in this respect) random model is chosen.

• sc: training and testing at arbitrary iso- and cross-configurations, resembling a situa-
tion in which there is no information about the true SNR and azimuth configuration.

The multi-condition models are tested on the same data as the single-condition models,
using sets 1 and 2.a. The figure shows box-plots of the balanced accuracy for each
model/test situation. Results were pooled over all azimuth configurations on the test
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scenario, all data set splits, and all target sound classes, both for the mean-channel feature
set (left-hand side) and the two-channel feature set (right-hand side). On each box, the
central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The notches represent the 95% confidence
interval for the true median, while the whiskers indicate the minimum and maximum
value.

The best median performance is obtained for the sciso models. This is not surprising, as
these models are specialized to the particular angular source configuration and SNR present
in the test set. The scisoAzm models, which are only specialized to the correct angular
source configuration but trained at an arbitrary SNR, perform on average much worse
(about 10%). For the “arbitrary” single-condition model, performance drops even further,
by about 2% on the mean-channel feature set and by about 4% on the two-channel feature
set (recall from Sec. 4.3.1 that the two-channel models suffer from stronger degradation in
cross-azimuth situations).

The multi-conditional ambient (mcamb) models, which were not trained on directional
information at all, (i) perform on average slightly better than the scisoAzm models, although
the latter were specialized on the correct angular configuration, and (ii) clearly outperform
the single-condition models trained at an arbitrary SNR and azimuth configuration. This
means that in the absence of reliable information about the testing conditions, which would
allow a suitable choice of trained model, the mcamb models offer a stronger performance –
without the need to train many models and predetermine conditions.

However, the multi-conditional ambient models are clearly outperformed by the multi-
conditional point source models (mcps), which were trained on a uniformly distributed
set of target and distractor source angles under varied SNR. The median performance of
the mcps models lies close to the performance of sciso models that were trained at the
true angular source distribution and SNR. Note that this is the case even though most of
the azimuth configurations from set 2.a that have been used for testing have not been in
the training set for the mcps models, which underlines the strong generalization of these
models. All models except the mcps models exhibited a higher median performance on the
two-channel feature set than on the mean-channel feature set.

Fig. 4.13 shows how the mcamb and mcps models compare to single-conditional iso-azimuth
models that were trained at specific SNRs and tested at all SNR conditions. It shows
the average balanced accuracy as a function of the SNR for tests using the mean-channel
feature set (a), and the two-channel feature set (b).

We observe the following effects:

• The performance of the mcps model always lies close to the iso-SNR/iso-azimuth
SC performance, and even exceeds it on the mean-channel feature set for low SNRs.
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Figure 4.12: Performances of 5 different model/test-paradigms for each feature set (mean-channel
left, two-channel right), each box pooling over the SNRs {inf, 10, 0,−10,−20}, all corresponding
iso- and/or cross-azimuth configurations, all data set splits and sound classes.

Obviously, when not being able to use the features of both channels to better
separate spatially distributed sources (in the case of two-channel feature set the single
conditional models perform better in iso-SNR/-iso-azimuth tests for all SNRs), the
mcps models generalize better to low SNRs than the specialized sciso models.

• The mcamb models do not quite reach the performance of the iso-SNR/iso-azimuth
SC models, but outperform many cross-SNR/iso-azimuth models. This is without
making use of any directional information during the training phase.

Inspecting the SC models again, we see that the performance curves of the scinf models are
convex, whereas the curves of other SC models are mostly concave. A possible explanation
for this finding is that the models trained on clean sounds have not learned to accommodate
the presence of simultaneous distractors at all, and are more strongly affected even by
small amounts of noise than the other SC models. For these other SC models, we observe
saturation effects at SNRs that are higher than the SNR at which they were trained. One
reason for this could be that these models specialize on features that do not not get more
discriminative with increasing SNR.

In summary, our results show that multi-conditional training by including different SNRs
in the training data produces robust models that perform well over a wide range of
SNRs. Although this also works if training is conducted with ambient sources, close-to-
optimal performance can be achieved when the multi-conditional training is conducted
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Figure 4.13: Performance of different model groups at particular SNRs, averaged over all (iso, for
sc models) azimuth configurations, data set splits, and sound classes. Left: mean-channel feature
set, right: two-channel feature set.

on point sources varying not only in SNR but also including multiple angular source
configurations. We can thus conclude that multi-conditional point-source (mcps) models
are the best choice for practical applications: only a single model needs to be trained for
each target sound class, inferring the conditions a priori is not required, and the resulting
models are robust with respect to scene conditions and even reach a close-to-optimal
performance.

4.3.3 Robust detection models trained with BRIRs

The detection models as evaluated in section “Multi-conditional in comparison to single-
conditional detection models” suggest a method to be able to identify sound events
even in adverse, changing and differing from the training conditions. However, the
system was still restricted to anechoic scenes with two sources. We thus also considered
a more challenging acoustic condition, and built an identification system trained and
evaluated on reverberant scenes with up to four sources plus up to one diffuse white noise
source.

ADREAM apartment multi-conditional data

The general method concerning data generation, feature extraction, and model training
stayed the same as described in sections 3.3.3, 3.4.2 and 4.3.2. Binary sound identifi-
cation models were trained for each of the 13 classes found in the NIGENS database.
Instead of the so far used anechoic scenes, for these models we used the ADREAM apart-
ment scenes through applying the respective BRIRs in the binaural simulator. Figure
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4.36 shows the layout of these scenes with the different available positions of head and
sources.

We generated a set of 100 scenes, one half of type (5) (without diffuse white noise) described
in Sec. 3.4.2 and one half of type (6) (with diffuse white noise). The number of sources was
distributed equally across these scenes, accordingly resulting in 25% with each condition
(one to four sources). For all scenes, we randomly chose

• the head position (uniformly from one to four),

• the head’s orientation (uniformly from all measured BRIR’s orientations)

• the point source positions (uniformly from one to four),

• the SNRs between sources (uniformly between −20 and +20),

• and, if applicable, the diffuse white noise’s SNR (uniformly between −5 and +20).

The random sampling of the scene parameters was due to the explosion of the parameter
space because of it’s increased dimensionality, and inspired by Bergstra and Bengio (2012)
where the authors show that it is more efficient to randomly sample a large hyperparameter
space than doing grid search or even careful manual search.

Since the evaluation of section 4.3.2 showed that with the multi-conditonal point source mod-
els the two-channel feature set did not yield advantages, we used the mean-channel feature
set as defined in 3.4.2 only in this study. We tested three variants:

fc2 Based on ratemaps with 24 frequency channels, spectral features based on 32 frequency
channels (both framed in 25 ms time bins), and amplitude modulation spectrograms
with 128 ms time frames over 16 frequency channels with 8 modulation filters.

fc3 Same as fc2, but additionally based on Gabor filter responses (calculated from 24
frequency channels), framed in 25 ms time bins.

fc31s Same as fc3, but constructed from 1.0 s blocks instead of the default 0.5 s.

Regardless of the number, frequency channels always ranged from 80 Hz to 8 kHz.

Anechoic versus ADREAM schemes

First, we asked whether results from the anechoic two-source multi-conditional system
carry over to the realistic reverberant environment with up to four sources. To examine this
matter, we compared multi-conditional models of the alarm, baby, female and fire classes,
(a) trained in the mcps scheme described in Sec. 4.3.2 and (b) trained in the ADREAM
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scheme with fc2 as described above. In Figure 4.14, the mean balanced accuracy (averaged
over classes) of both systems is plotted over SNR. Because of the many different and
randomly sampled parameters in the ADREAM scenes, the ADREAM model’s curve is a
running average over 20 scene configurations sorted by “aggregate” SNR, defined as the
power ratio between the source emitting target sounds and all others, including diffuse
white noise. It is obvious that our results from the anechoic case, even though considered
“easier” in several aspects, match the results with the ADREAM models quite well – not
only qualitatively, but even quantitatively. This affirmed our assumption that reverberation
(at least for the condition here) does not substantially influence the identification of objects,
and that the random sampling of scene parameters serve the purpose of multi-conditional
training well.

Evaluating multi-conditional models in the ADREAM scenes

Since the approach of multi-conditionally trained models proved to still be valid under
realistic conditions, we went on to compare the three different feature sets described above
and describe the behavior of the system under different conditions. For all following results,
models targeting all 13 NIGENS classes have been trained and tested.

Figure 4.15 shows the mean balanced accuracies, sensitivities and specificities of our models
trained on the ADREAM scenes and their dependencies on aggregate SNR (as defined
above) (left panel) and number of sources (right panel). The three different feature sets
are plotted in different colors. The following can be observed:

• The performance difference between the feature sets are small but consistent. The
fc31s models perform best and fc2 models worst (considering the small difference,
least best may be more suitable). The average advantage over all scenes of fc31s
models over fc2 models is 0.0123, and with the difference between the fc2 and fc3
models being the smaller part of this advantage, we conclude that the effect is mainly
due to the longer blocksize and not due to increased information with the Gabor
features. The graphs show that the longer blocks yield a higher specificity throughout
all SNR or number of sources levels, and help with finding targets (sensitivity) only
for lower SNRs.

• Sensitivity shows a very strong and unambiguous dependence on SNR. It peaks at
about 95 % detected targets, stays almost uninfluenced until about 7 dB, and below
that starts to fall into a linear descend of about 10 % per 5 dB.

• The specificity is more variable with regard to SNR; it seems to be more directly
dependent on the number of sources – in the right plot, specificity and number of
sources show very proportional decline. In any case, the accuracy of labeling blocks
without target event as negatives is much more stable than the sensitivity.

97



4 Evaluation

-20 -15 -10 -5 0 5 10 15 20

aggregate SNR

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

b
a
c

adream vs anechoic: wosegm

adream
fc2

anechoic
fc1

-20 -15 -10 -5 0 5 10 15 20

aggregate SNR

1

2

3

4

#
 s

o
u
rc

e
s

Figure 4.14: Mean performance of detection models built with anechoic vs ADREAM schemes
(averaged over sound types alarm, baby, female speech, fire), depending on SNR in dB between
source emitting target sounds and all other sources (determined at ears). The “adream” curve is
constructed as running average over 20 scene configurations sorted by aggregate SNR, “anechoic”
curve shows average over 16 scene configurations at particular SNRs (−20, −10, 0, 10, inf).
Bottom panel shows average number of sources in the ADREAM scenes (excluding diffuse white
noise) depending on the aggregate SNR.

Observations two and three are intuitive: whether an event is detected strongly depends on
the energy this event exhibits compared to all other sources. Whether false positives arise,
strongly depends on how many sources are active and thus how many different sounds are
emitted concurrently. However, as can be noticed in the lower panels, average SNR and
average number of sources correlate and are not independent. To validate the interpretation
above, we thus additionally plotted mean performances over SNR and number of sources
conditioned on particular values or ranges of the correlated variable. The upper row in
Figure 4.17 shows the graphs with number of sources fixed to two (left) and three (right),
and the bottom row shows the graphs with the SNR fixed to ranges of −10 dB to 0 dB
(left) and −5 dB to +5 dB (right). Indeed, our observations are confirmed here: with
fixed number of sources, specificity shows very small dependence on SNR. With SNR fixed
in a smaller range, sensitivity exhibits small (and ambiguous) dependence on number of
sources.

Finally, we investigated the individual classes’ performances of the fc31s models, Figure 4.18
showing the results in the same form of graphs as above and Fig. 4.16 a version with boxplots
summarizing all scene results per class. For a placement of the median performance values
shown in the boxplots, consider that the median SNR over all 100 scenes was −2.2 dB.
Knock models’ performance is superior to all others, followed by male and female speech
and then fire, dog, footsteps, and phone. The one class standing out negatively is crash
with a median far below all others. Having a closer look at sensitivities and specificities, we
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Figure 4.15: Mean performance of detection models built with different feature sets (averaged
over all 13 sound types). Curves are constructed by running averages over 20 scene configurations
sorted by aggregate SNR. Left panel shows performance depending on aggregate SNR in dB
between source emitting target sound and all other sources (determined at ears), right panel shows
performance depending on average number of sources (excluding diffuse white noise).

note the following: crash, engine, baby and fire seem to be types that more often produce
false positives, that is, they seem to be less specific. Crash, alarm, baby and scream are
the classes that are least easiest to detect.
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Figure 4.16: Performance of detection models showing differences between sound types. Boxplots
include performances of all 100 scene configurations, showing the median (central line), max and
min values (upper and lower whiskers), 25% and 75% percentiles (lower and upper end of boxes).
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Figure 4.17: Mean performance of detection models built with different feature sets (averaged
over all 13 sound types). Curves are constructed as running averages over 10 scene configurations
sorted by aggregate SNR (top row) and number of sources (bottom graphs). In the top row, only
scenes with two (left panel) and three (right panel) sources are evaluated; and in the bottom row,
only scenes with aggregate SNR between −10 dB and 0 dB (left panel) and between −5 dB and
+5 dB (right panel) sources are evaluated.
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Figure 4.18: Balanced accuracy (top), sensitivity (bottom right) and specificity (bottom left) of
detection models depending on aggregate SNR in dB between source emitting target sound and
all other sources (determined at ears). Curves are constructed as running averages over 20 scene
configurations sorted by aggregate SNR. Bottom panel shows average number of sources (excluding
diffuse white noise) depending on the aggregate SNR.
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4.4 Speaker recognition

In this section, we evaluate our speaker recognition system described in Section 3.4.3 on
the development system.

4.4.1 Experimental setup

We used speech materials from the GRID corpus (Cooke et al., 2006b) for evaluation. The
corpus consists of 1000 simple command-like sentences spoken by each of 34 speakers.
There are 18 male speakers and 16 female speakers in the corpus. The monaural speech
signals were spatialised by convolution with a set of BRIRs measured with a KEMAR
dummy head in the ADREAM apartment at the LAAS in Toulouse (See Deliverable D1.3).
The set of BRIRs consists of four listeners positions and at each listener position BRIRs
were recorded for four fixed source positions (Fig. 4.36).

For each of the 34 GRID speakers, and each of the 16 BRIR conditions, 20 different
sentences were randomly selected from the GRID corpus. Three quarters of the signals
were used as the training set (320 sentences per speaker) and the remaining signals were
used as the test set (80 sentences per speaker).

4.4.2 Feature extraction

The auditory front-end in the Two!Ears system was used to extract ratemap features from
a bank of 32 gammatone filters with centre frequencies equally spaced on the ERB scale
between 80 and 8000 Hz (Wang and Brown, 2006). Ratemaps are spectral features that
represent a map of auditory nerve firing rate (Brown and Cooke, 1994b). In the binaural
setting of Two!Ears, ratemaps were extracted for both ears. The average ratemaps
were constructed by taking the average ratemap value of each pair of time-frequency cells
between the two ears, before compression. The binaural ratemaps were constructed by
concatenating the left ear and right ear ratemaps to form 64D feature vectors. The features
were then log-compressed.

We also estimated the first derivatives of each ratemap feature dimension as a way of
converting dynamic, contextual behaviour into a relatively fixed point in the new feature
space. Delta features were computed using a 7-frame window (10ms frame rate) and they
are used to supplement the static ratemap features.

Many state-of-the-art speaker recognition systems employ MFCC features. To make
the ratemap features more orthogonal, we also tested similar features by applying a
discrete cosine transform (DCT) to the ratemap features, known as the gammatone filter
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cepstral coefficients (GFCCs). The first 12 cepstral coefficients were used together with
the energy term, producing a 13-dimensional feature space. Cepstral mean normalisation
was then applied. The average GFCCs were computed from the average ratemap features
and the binaural GFCCs were constructed by concatenating GFCCs of individual ears.
Similar to the ratemap features, the first and second derivatives of the GFCCs were
computed and used to supplement the static GFCCs, producing final 39-dimensional
feature vectors.

4.4.3 Model setup

The UBM was trained using the training set from all the 34 speakers using a 64-component
GMM. For the GMM-UBM model, each speaker model was then produced by adapting
means, variances and mixture weights from the UBM using the MAP relevance adaptation.
The i-vector model used the same UBM to train the total variability subspace (100-
dimension) and extract the sentence i-vectors. Final model i-vectors were obtained by
taking the average of the extracted i-vectors. A Gaussian PLDA model was trained with
the extracted i-vectors to score the testing trials.

4.4.4 Results

The speaker recognition accuracies of both models using various feature sets were listed in
Table 4.2. Both models produced very good accuracies for this simple speaker recognition
task. For the GMM-UBM system, the best performing features are the binaural ratemaps
while for the i-vector system the best performing features are the average ratemaps. The
GFCC features produced inferior results for both systems when compared to ratemap
features, especially for the i-vector system. This is likely due to an optimisation issue as
we did not extensively optimise the parameters of the models.

Table 4.2: Speaker recognition accuracies (%) of various speaker recognition systems.

Model Ratemap GFCC
Average Binaural Average Binaural

GMM-UBM 98.38 99.08 98.24 98.57
i-vector 99.15 99.08 96.80 95.11

Figures 4.19 and 4.20 show the log-likelihood ratio scores of all speaker models plotted
as confusion matrices for various systems. In each figure, the diagonals (bottom left
to top right) show correct speaker model. The speaker ID axis is organised in such a
way that the 18 male speakers were in a sequence before the 16 female speakers. It is
clear that among all the systems, the speakers of the same gender tend to have more
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(a) GMM-UBM system using average ratemaps
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(b) GMM-UBM system using binaural ratemaps
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(c) i-vector system using average ratemaps
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(d) i-vector system using binaural ratemaps

Figure 4.19: Log-likelihood ratio scores of all speaker models plotted as confusion matrices for
various systems using ratemap features.

confusions than those of the opposite gender. Visually, the i-vector system using average
ratemaps (Figure 4.19c) shows the largest contrast between the scores of the correct speaker
model and the other speaker models. The i-vector systems using GFCC features show
more confusions among the speakers of the same gender, partly explaining their poorer
recognition performance.
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(a) GMM-UBM system using average GFCCs
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(b) GMM-UBM system using binaural GFCCs
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(c) i-vector system using average GFCCs
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(d) i-vector system using binaural GFCCs

Figure 4.20: Log-likelihood ratio scores of all speaker models plotted as confusion matrices for
various systems using GFCC features.
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4.5 Joint Identification and Localisation

The sections above in this chapter, 4.2 and 4.3, presented the evaluation results of the
independently from each other working localization and identification systems. As described
in section 3.4.4, we additionally built systems to jointly determine location and type of
sources in order to be able to form auditory objects. In the following two sections, we
evaluate those systems.

4.5.1 Auditory object identification on segregated streams

Building onto the successful construction of robust multi-conditional detection models
operating in realistic environments (see Sec. 4.3.3), we designed a system to identify
localized sources, detailed in Sec. 3.4.4, and depicted in Fig. 3.10. We trained this system
using the ADREAM scenes with the methods elaborated on in Section 3.3.3. Feature set
fc2 (defined in Sec. 4.3.3) was used with this system, as the Gabor features employed in
fc3 were not segregatable with the time-frequency soft-masks produced by the segregation
model.

We present results concerning three questions in this evaluation: (i) can the detection
models trained on the “full’ ear-signals stream (Sec. 3.4.2) be applied to the segregated
streams directly, (ii) how does unprecise estimation of active number of sources influence
the system, and (iii) how does the joint system perform in comparison to the full-stream
identification system?

Figure 4.21 gives an answer to question one by showing the performances of (a) our
identification system trained on unsegregated streams but applied to the segregated
streams, versus (b) our identification system trained on segregated streams and tested on
segregated streams. The models trained on unsegregated streams cannot deal well with
the segregated streams’ data and show a strongly degrading sensitivity with increasing
number of sources (i.e. with segregating into more streams).

Due to the fact that the number-of-active-sources estimation model (see Sections 3.5.2 and
4.6) was not ready to be used at the time of building the segregated-streams identification
models, we used ground truth for this variable in training. However, when this estimator
became available for use, we tested the trained system with it, hence evaluating how the
uncertainty in the estimation of the number of active sources impacts the identification
of the segregated streams. Figure 4.22 depicts (a) the mean performance of segregated
identification models with number-of-sources ground truth and (b) the mean performance
of segregated identification models with estimated number-of-sources. Since the two curves
almost coincide, we conclude that the estimated number of active sources provides a well-
behaving input to the segregation system and accordingly, that the segregated identification
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Figure 4.21: Mean performance of detection models (averaged over all 13 sound types) tested
on segregated streams but trained on unsegregated streams versus trained on segregated streams,
depending on average number of sources (excluding diffuse white noise). Curves are constructed as
running averages over 20 scene configurations sorted by number of sources. Bottom panel shows
aggregate SNR depending on average number of sources.

system can be applied with good performance expectations under realistic conditions
without a priori knowledge of the number of sources being active.

We finally compared the performance of the segregated identication system to the per-
formance of the full-stream identification system, and display the results in Figure 4.23
averaged over classes with dependency to scene conditions, and in Figure 4.24 for the
individual classes, summarized over scenes. As clearly notable from the first figure, the two
systems exhibit almost the same performance curves as a function of the number of sources.
Investigating the performance differences between the two systems on a class-wise basis,
we observe that for most classes, the identification success is more or less independent of
the two systems, with the particular exception of the alarm class, which seems to suffer
from segregation more than the others, and the class phone, which seems to profit from
segregation.

Concluding, we can say that our segregated identification system detects sound events
almost as well as the full-stream one, however in addition it can attribute the event’s
type also to a source location and hence provides an important step in forming coherent
auditory objects.
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Figure 4.22: Mean performance of detection models trained on segregated streams (averaged
over all 13 sound types) tested one time on streams segregated with number of sources ground
truth and one time on streams segregated with number of sources estimated by a model, depending
on average number of sources (excluding diffuse white noise). Curves are constructed as running
averages over 20 scene configurations sorted by number of sources.

4.5.2 Joint identification and localization with Convolutional Neural
Networks

Multiple Convolutional Neural Networks (CNNs) were trained to perform joint bottom-up
identification and localization. The following presents the key experiments conducted
on multiple networks whilst investigating the effect of network design decisions on the
network’s performance on either task.

Fig. 4.25 visualizes the response of a network for different input blocks sampled randomly
from the test set. The response consists of multiple vectors. One vector for each class
and each node representing the probability of the respective sound type being located
within an azimuth bin. The probabilities of all nodes are all independent. The network’s
ability at solving the joint identification and localization task is evaluated by measuring the
classification performance of each node in the response matrix over the test set composed
of 100 configurations from the ADREAM scenes.

To account for the large imbalance that each node encounters during training and testing
we continue to use balanced accuracy (BAC) as defined in 4.1. Given the much steeper
imbalance encountered by the localization node, we add the F1 score as an additional
measure to increase the resolution over a node’s performance. The high imbalance also
requires the selection of a threshold at which we draw a decision from the sigmoidal response
of each node (i.e. selecting the classifier’s operating point). The BAC is computed for each
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Figure 4.23: Mean performance of detection models (averaged over all 13 sound types) working
on segregated versus unsegregated streams (training and testing), depending on average number of
sources (excluding diffuse white noise). Curves are constructed as running averages over 20 scene
configurations sorted by number of sources. Bottom panel shows aggregate SNR depending on
average number of sources.

classifier at different thresholds. For each classifier the threshold value that maximizes
its respective BAC is selected for further evaluation as well as deployment. In 4.5.2 the
evaluation of a single output node is presented ncluding the procedure for selecting its
operating point. 4.5.2 builds on this measurement and summarizes the performance of
the models for the identification and localization tasks by pooling over the performance
measures calculated for their respective classifiers. This evaluation in 4.5.2 is performed
on models trained using clean anechoic sounds. It is repeated for ADREAM scenes in
4.5.2.

Networks were trained using mini-batch gradient descent with a batch size of 512, learning
rate α=0.001, momentum µ=0.9 and weight decay=0.005.

Individual classifier performance measure

Each output node is a sigmoidal neuron. It can either be a neuron that indicates the
presence of a particular sound type at a specific azimuth location, or a neuron that responds
to the complete absence of that sound type from the auditory scene. To account for the
imbalance between positive and negative examples that each output node encounters, we
analyze the performance of each individual classifier in order to select its operating point
that maximizes its performance. The operating point is selected by generating the receiver
operating characteristic (ROC) for each classifier and calculating the BAC at the threshold
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Figure 4.24: BAC differences between full-stream identification and segregated identification
models. Boxplots include performance differences at all 100 scene configurations, showing the
median (central line), max and min values (upper and lower whiskers), 25% and 75% percentiles
(lower and upper end of boxes).

a) b) c) d)

Figure 4.25: Examples of network responses. The color of a star represents the sound type. The
stars are positioned at the ground truth azimuth. The radial access represents the raw probability
produced by the localization nodes. a) two misidentified, correctly localized sources, b) correct
identification and localization of a sound in a single source scene, c) correct classification and
localization of sounds in a scene with two sources d) 3-source scene with partially correct and
incorrect identification and localization estimates.

points used for generating the ROC curve. Figure 4.26 illustrates a ROC curve for a single
classifier responsible for identifying the presence of alarm sounds in a scene. The threshold
that maximizes BAC along the ROC curve is selected as the classifier’s operating point.
For purpose of illustration, we select here the classifiers that respond to the absence of a
sound type from a scene, or presence of the sound type, if we choose to invert the response.
Figure 4.27 illustrates an example of analyzing the ROC curves of sound type identification
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neurons, the corresponding BAC along this curve and the threshold that maximizes each
individual classifier’s BAC. Classifiers for localizing a sound type at a particular azimuth
are treated the same way.

A model’s sound type identification performance is assessed by pooling the results of its
identification classifiers’ maximum BAC. The model’s localization performance is measured
by pooling over the maximum BAC of its localization nodes.

Performance on clean sounds

The set of models was trained on the clean sounds dataset to assess the effects of (i) feature
groups (i.e. ratemap, AMS, or both) and (ii) the effect of the number of decision layers
have on this joint task.

dataset features left-right decision model
convolutions layers code

clean anechoic ratemap combined 2 rmCombLR2out
clean anechoic ratemap combined 4 rmCombLR4out
clean anechoic ratemap combined 5 rmCombLR5out
clean anechoic ratemap separate 1 rmSepLR1out
clean anechoic AMS separate 1 amsSepLR1out
clean anechoic ratemap separate 1 rm+amsSepLR1out

AMS

Figure 4.28(a) depicts model identification performance on clean anechoic sounds. The
maximum BAC of identification nodes are pooled together for each network. Both tasks
benefit from increased model complexity. However, the variance of performance between
different classes increases as well. As expected, the localization task becomes easier than
the identification task when only a single or no source is active at a time. Keeping two
separate tracks for the left and right channels with shared convolutional weights is inferior
to feeding the channels directly into the first convolutional layer. The networks with
combined left and right input seem to resolve channel invariance implicitly. The need
for designing this explicitly into the architecture by re-using the weights of left and right
convolutions tracks becomes unnecessary. The overall performance for the localization task
improves when using both rate maps and AMS than only using a single AFE representation.
However, the combination of both AFE representations leads to an overfitting for the
identification task.
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Figure 4.26: Example of an ROC curve with markings of the different thresholds.

Figure 4.27: Example of ROC curves (left) measured for identification neurons and resulting
BAC curves (right). Per-classifier thresholds that maximize BAC are depicted in the legend.

Performance on ADREAM scenes

The set of models was trained on ADREAM scenes with up to 4 multiple active sources to
assess (i) the effects feature groups (i.e. ratemap, AMS, ILD, or all) have on this joint task
as well as (ii) the number of convolutional stages and (iii) the number of decision layers.
All models employ a combined convolution of AFE representations.
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(a) identification (b) localization

Figure 4.28: BAC of identification and localization nodes

dataset features conv. decision model
stages layers code

ADREAM ratemap 3 4 rm3xConv4out
ADREAM ratemap 3 5 rm3xConv5out
ADREAM ratemap 2 5 rm+ams2xConv5out

AMS
ADREAM ratemap 2 4 rm+ams2xConv4out

AMS
ratemap

ADREAM AMS 2 5 rm+ams+ild2xConv5out
ILD

ratemap
ADREAM AMS 1 4 rm+ams+ild2xConv4out

ILD

Figure 4.29(a) depicts model performance on BRIR sounds in the ADREAM apartment.
The decision threshold for each sigmoidal output node is calibrated to maximize BAC. The
performance of nodes for each task are then pooled together to compare different networks
with each other. We observe that performance for either task is insensitive to the network
complexity, except that inter-sound-type variance is least for the deepest network which
uses both AMS and ratemap, two convolutional stages and 5 decision layers. We conclude
this for either task. Performance is affected strongly by the type of AFE representation that

113



4 Evaluation

is fed into the network. Adding ILD yields significant improvement on a network’s ability
to localize multiple sources. Including AMS benefits the identification task by decreasing
the variance in inter-class performances. ILD provides the strongest indicator for source
location. Without the ILDs, the network is still able to find cues of inter-channel differences
within the ratemap or both the ratemap and AMS that correlate with location. However,
the normalization of the left and right channels for these representations would render
localization solely based on ratemaps and/or AMS more difficult. A possible explanation is
that the cues selected by the network are due to the impulse response shaping the frequency
bands of both left and right channels differently.

(a) identification (b) localization

Figure 4.29: BAC of identification and localization nodes in ADREAM scenes

An additional test separates samples from the test set according to the number of active
sound sources. Results for testing on these meta-conditions are presented in Fig. 4.30.
At first we confirm an imbalance of data points for each condition and that performance
correlates with this to some degree which could possibly indicate that the networks picked
up on this bias. The first condition with zero number of sources only reflects specificity.
This condition simply does not contain any positive examples. Together with the next
condition, in which a single source is present, both conditions make out the “clean” subset
of the test set. Although a direct comparison is not completely justified, we notice that
performance is lower than that observed on networks trained to specifically on clean
data in Fig. 4.28(a). Observing that the relation between model performances across
conditions is similar is an indicator that different models did not specialize to any of these
5 conditions. A similar observation can be made in Fig. 4.31(a), where conditions are
sorted according to aggregate SNR instead of number of sources directly. Here we find that
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the performance of all networks is nearly constant until it drops below an aggregate SNR
of 5 dB and drops almost linearly with decreasing SNR. This gives us additional resolution
over which conditions are more favorable for which networks. In particular we observe how
networks employing ILDs have a slight advantage over the other networks in the < -10 dB
range.

Figure 4.30: BAC of identification nodes in ADREAM scenes with different number of active
sounds. The dots indicate the number of data points for each condition
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Figure 4.31: BAC of identification nodes in ADREAM scenes with respect to aggregate SNR.
Curves are constructed as running averages over 20 scene configurations sorted by aggregate SNR.
The bottom panel shows the average number of sources (excluding diffuse white noise) depending
on the aggregate SNR.
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Splitting the test set into bins according to the number of active sources is repeated for the
localization task. Here we find the F1 source to be a performance measure that is more
sensitive to high imbalance encountered by the localization nodes. We no longer observe a
bias with respect to the number of data points for the different conditions. Inter-model
differences appear consistent across all conditions, which is also indicative that the different
networks did not specialize themselves towards a particular condition. Finally the results
reiterate the advantage of ILD for the localization task.

(a) localization BAC (b) localization F1 score

Figure 4.32: BAC and F1 scores of localization nodes in ADREAM scenes with different number
of active sounds. The dots indicate the number of data points for each condition

4.6 Number of sources

The following presents an evaluation of the models trained for estimating the number of
sound sources within a scene. Auditory scenes were simulated using the BRIRs measured
in the ADREAM apartment. The configuration of the auditory scenes used in the following
experiments is described in Sec. 3.4.2.

The combined feature set described in Sec. 3.5.2 was trained using a penalized generalized
linear model from the multinomial and Poisson families. The models were trained using
the GLMNET package (Qian et al., 2013) with a `1-Norm penalty (Lasso). A third model
was trained from the Poisson family that additionally received input from identification
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Figure 4.33: BACM (left) and MAElµ (right) for all models and all scenes.

knowledge sources, as described in Sec. 3.3.3. Fig. 4.34 shows confusion matrices for all
models and all scenes.

The chance level baseline for all scenes is 0.2 for the five classes representing zero to four
sources present in the scene. The (macro) balanced accuracy3 (BACM ) for all scenes was
determined at 0.4346 (median 0.3679) for the multinomial model, 0.3540 (median 0.3056)
for the Poisson model and 0.3795 (median 0.3363) for the Poisson model with identification
input (Fig. 4.33, left).

We further investigated the class-wise (micro) mean absolute error (MAElµ)4 for the
models. The MAElµ quantifies the extent of error per class, to better understand the
errors made by the models. The BACM performance suggests a class-wise (macro) mean
average error of > 0.5, which can be interpreted as estimates bleeding into the surrounding
classes (Fig. 4.33, right). The MAElµ will quantify the magnitude of that bleeding
effect.

Although the multinomial model scores a higher BACM , and therefore makes fewer errors,
the Poisson models have a lower error magnitude MAElµ for one, two and three sources
while also showing higher MAElµ for zero and four sources. This effect is consistent for
both models from the Poisson family. The addition of the identification input results in a
slight quantitative improvement without qualitative change. The Poisson models have a
tendency to underestimate for three and four sources, but have overall better calibration
in the critical regime of one, two and three sources.

3 BACM : (macro) balanced accuracy:
∑L

i=1
tpi+tni

tpi+fni+fni+tni
L

, L the class count

4 MAEl
µ: class-wise (micro) mean absolute error:

∑N
i=1 | by

i
predel−y

i
true |

N
, N the sample count
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Figure 4.34: Confusion matrices for multinomial (left) and Poisson (center) and Poisson with
identification input (right) models over all scenes.

Performance with respect to scene conditions

To increase the resolution of the evaluation we measured model errors under various scene
conditions. The scene conditions under investigation were the presence and strength of noise,
the mean absolute source SNR and the head position of the KEMAR head dummy in the
scene. These scene conditions were analysed with the MAElµ. Only those scenes where the
condition under consideration was true were included in the respective analysis. Since both
models from the Poisson family show qualitatively comparable results, we only show the
Poisson model with identification input for this part of the analysis.

Noise condition. This condition stratifies for the presence, and if present, strength of an
ambient white noise process in the scene. Scenes were roughly split in half by the noise
condition. The scenes with an ambient white noise process were further divided according
to the strength of the noise. (cf. Fig. 4.35, top row)

“w/o noise” “w/ noise” “noise SNR≤0” “noise SNR>0”
count n=48 n=52 n=15 n=37

The ambient white noise process has a consistent impact on the prediction performance. It
reduces the error for both zero and single source and only slightly confounds the predictions
for two and more sources.

SNR condition. This condition stratifies for the mean absolute SNR5 of sources in the
scene. (cf. fig. 4.35, center row)

“SNR 1” “SNR 2” “SNR 3” “SNR 4”
count n=24 n=25 n=25 n=25

interval [0,6] ]6,11.2858] ]11.2858,16.2121] [16.2121,29.2980]

5 maSINR: mean absolute SNR: 1
N

∑N
i |20 log10

pr
S1
i∑

j 6=i pr
S1
j

|, prS1
i the power ratio w.r.t S1
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“head pos idx 1” “head pos idx 2” “head pos idx 3” “head pos idx 4”
count n=20 n=18 n=28 n=34

The SNR condition rates the scene from easy (1) to hard (4). Most of the scenes in the “SNR
4” condition can be considered hard for human listeners. The error scales approximately
with the difficulty of the SNR condition, the case of zero and one sources is especially
affected.

Head Position. This condition stratifies for the position of the KEMAR head within the
ADREAM apartment in the scene. There are four predefined positions at which the head
can be positioned while also having an arbitrary azimuthal angle (see Fig 4.36). The
azimuthal angle of the KEMAR head was not considered for this analysis. Position 1 is
notable: this might be explained by the fact it is the position at which the sources are
closest to each other with respect to azimuth, thus possibly creating less pronounced peaks
in the used DUET and ITD/ILD histograms and accordingly rendering the problem more
difficult. (cf. Fig. 4.35, bottom row)
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Figure 4.35: Mean absolute error per class for multinomial (left column) and Poisson with
identification input (right column) under various scene conditions. The gray curve shows the error
for all scenes for the respective model. The first row shows the error stratified by noise conditions.
The second row shows the error stratified by SNR conditions. The third row shows the error
stratified by KEMAR head position.
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4.7 Evaluation on recorded scenes

Using the binaural simulator along with BRIRs enabled the generation of hundreds of
realistic acoustic scenes in strongly varying configurations, as for example described in
Section “Generation of auditory scenes”, Sec. 3.4.2.

However, realistic synthesized scenes are not real scenes, hence we recorded scenes with the
deployment system in the ADREAM apartment. The purpose of this data collection and
the experiments built on top of them was to identify possible discrepancies between model
performance measured on generated data and data recorded through the robot’s ears. It
also serves as a validation to how robust models are in less controlled environments and
acoustic scenes with unfamiliar conditions.

Collecting these recordings allowed for a systematic evaluation of models by employing
them in their respective knowledge sources in the blackboard-system (cf. Deliverable
D6.1.3) and provided us overview over the models’ (inter-) operation in the deployment
system.

4.7.1 Setup

As audio source files, NIGENS sounds from the test set were used. The sounds included in
this test set and hence in these recordings were a subset, but otherwise the same as used
in evaluations on generated data, and had not been involved in model training. Audio
files were normalized to an RMS of one and concatenated in time with a random gap
of silence between [200, 3000] ms length, and saved as a mono channel sequence audio
file. Single sequence audio files as well as mixtures of up to four sequence files were
put together, with each sequence occupying one channel. Short sequences were looped
until covering a predetermined duration. In the case of mixtures, the power between
channels was adjusted such that all channels had the same mean power. A chirp signal
was prepended and appended to the mixture to help in the alignment of sound event
annotations.

The scene was setup as depicted in Fig. 4.36 similar to the setup of the ADREAM BRIR
recordings. Speakers were placed at positions one to four, volume being set to the same
level for all speakers. Each channel of the sound sequence files was assigned to one speaker.
Recordings were made while the robot was (i) positioned approximately at one of the four
BRIR recording positions, (ii) within the adream apartment but not at a BRIR recording
position, or (iii) moving about outside as well as inside the ADREAM apartment. Table 4.3
lists all recordings.
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robot position speaker 1 speaker 2 speaker 3 speaker 4 duration
[mm:ss]

1,2,4 alarm 03:17,03:07*
2,3 alarm general footsteps fire 11:29
1,2,4 baby 05:42,05:37*
1,2,5 baby maleSpeech femaleSpeech scream 05:42
2 scream 02:48
1,2,3 scream baby 05:42
moving,2,3,5 femaleSpeech 01:25
2 femaleSpeech baby 05:42
2,4 fire 11:29,11:16*
moving,1,2,5 fire alarm baby femaleSpeech 05:42
1,2 footsteps 05:13
2 general 24:25
1,2 general femaleSpeech 01:25
2,2 general femaleSpeech maleSpeech 01:25
2,3 maleSpeech 01:16
2,3 maleSpeech femaleSpeech 01:25
2 alarm general 03:17
2 femaleSpeech baby general 05:42
2 baby fire 11:29
1,2,3 alarm baby scream fire 11:29
2 fire alarm scream 11:29
moving,4 fire dog baby 01:44*
4 baby piano 02:58*
4 dog 01:44*
4 baby fire dog piano 01:44*

Table 4.3: Description of the recordings denoting the robot’s position and which sound type is
played on which speaker for how long. *Recordings at position 4 differ from the rest in duration of
the entire sequence played as well as the silent gaps between sounds within a sequence.

4.7.2 Sound type identification system results

We tested our sound type identification systems described in Sec. 3.4.2 (full-stream) and
Sec. 3.4.4 (segregated) on all recorded scenes, and compared with our corresponding
results from evaluations in Sec. 4.3.3 and Sec. 4.5.1. We used the same methods as in
those sections, but using the deployment system ADREAM recorded scenes instead of the
binaural simulator-generated scenes. In Fig. 4.37, for the two full-stream system variants
with feature sets fc2 and fc31s and the segregated system, the resulting performances
both on the development and deployment system are displayed over the number of sources
in the scene. We note the following effects:

• The qualitative behavior of development and deployment system with regard to
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Figure 4.36: Layout of positions and orientations of the robot and the loud speakers in the
adream apartment used during recordings. The arcs around the positions indicate the orientation
ranges at which the BRIR were recorded.

dependence on number of sources and difference between models is similar.

• The tests on the deployment system result in roughly 0.05 lower balanced accuracies,
leveling even for scenes with four sources. A slightly lower performance was expected,
as in the recordings there are additional disturbing sources such as computer fans,
the robot’s noises, human noises, etc. However, the quantitative comparison is in
any case difficult and may be misleading, since the tests were not performed on
exactly the same scenes – in particular, the distribution of sound types played back
concurrently through the speakers was different than in the generated scenes, as only
a subset of types was used for the recordings.
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• The advantage of the fc31s models is slightly higher with the deployment system.

• The segregated identification on the recorded scenes performs slightly better than
the full-stream fc2 variant, while with the development system and generated scenes,
it is the other way around.

The following table shows mean performance differences between robot positions (but for
each combination with the same models and same mixtures), averaged over mixtures and
different models. A positive value at row x, column y, indicates that performance with the
robot on position x was better than on position y. The effects are small, but we note two
consistent results: position three is worse than all others, and position five is better than
all others.

position 1 2 3 5 moving
1 0.006 0.068 −0.002 −0.014

2 −0.006 0.004 −0.016 0.018

3 −0.068 −0.004 −0.123 −0.118

5 0.002 0.016 0.123 0.014

moving 0.014 −0.018 0.118 −0.014
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Figure 4.37: Mean balanced accuracies of detection models built with different schemes and from
different scenes (averaged over all sound types), depending on number of sources. “dvl” curves are
constructed as running average over 20 scene configurations sorted by number of sources, “dpl”
curves show average over about 10 scenes with particular number of sources. Bottom panel shows
aggregate SNR depending on number of sources.
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4.8 Active exploration

4.8.1 Sound database

A collection of speech and non-speech sounds was obtained using the dataset provided
with the “sound event detection in synthetic audio” task of the detection and classification
of acoustic scenes and events (DCASE) challenge 20166. The database consists of isolated
recordings from 11 sound categories with 20 samples per category.

4.8.2 Experimental setup

BRIRs of four rooms, comprising reverberation times (T60) of 250 ms, 500 ms, 750 ms
and one anechoic room, were created using HRIRs from Algazi et al. (2001) and the
image-source method introduced by Allen and Berkley (1979). Supervised training of
the measurement model, Eqn. (3.15), was conducted using pre-rendered BRIRs on a grid
with 25 cm distance and 5◦ azimuth spacing. During evaluation, BRIRs were rendered
online at each time step. The source position was always placed at the center of the
room.

The experimental procedure is based on a 4-fold cross-validation approach, where BRIRs
of three rooms were used for training. The remaining BRIRs were used for evaluation, by
running 50 simulations with random initial robot poses and goal positions. Sound samples
were randomly selected from the database and the initial conditions were consistent over
all cross-validation folds. Each simulation was restricted to a maximum simulated duration
of 60 s. All experiments were repeated for different settings of the trade-off parameter
λ ∈ {0, 0.25, 0.5, 0.75, 1}. An additional experiment with a bearing-only measurement
model was also conducted.

The system performance was assessed by the root mean square (RMS) error of the estimated
Cartesian sound source position, averaged over the corresponding sets of simulations.
To better account for outliers that sporadically occur due to the stochastic nature of
the particle filter, the median of the achieved localization performance is reported in
Tab. 4.4.
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Table 4.4: Median localization errors (m) for all investigated acoustic conditions (T60, denoted in
the top row). Experiments using a measurement model based on azimuth and distance (AD) were
conducted. For comparison, a bearing-only measurement model (A) was evaluated with λ = 0.25.

Obs. λ Anec. 250ms 500ms 750ms Avg.

AD 0.00 0.58 0.72 1.63 2.82 1.44
AD 0.25 0.51 0.63 0.70 0.77 0.65
AD 0.50 0.63 0.67 1.05 1.29 0.91
AD 0.75 0.87 0.91 1.18 1.44 1.10
AD 1.00 1.09 1.08 1.36 1.37 1.23

A 0.25 0.82 0.84 0.87 0.89 0.86

Table 4.5: Time-to-goal (TTG) in (s) and percentage of goal positions reached (GPR) within the
available simulation time, averaged across all acoustic conditions for four investigated values of λ
(top row). As λ = 0 does not steer the robot towards the goal position, it is not explicitly shown
here.

Metric 0.25 0.5 0.75 1.00

TTG 38.31 14.49 9.94 9.44
GPR 60.00 98.00 100.00 100.00

4.8.3 Results and discussion

The results depicted in Tab. 4.4 show that MCE improves localization performance
compared to a fixed trajectory towards the goal (λ = 1). The best localization accuracy
is achieved for λ = 0.25. However, this comes at the cost of an increased time to reach
the goal position, as depicted in Tab. 4.5. Therefore, λ must be chosen appropriately for
specific applications.

An interesting outcome of the conducted experiments is that localization performance is
significantly degraded for λ = 0. This can be explained by the fact that the robot is able
to move around freely, without being restricted to approach the goal position. The policy
obtained in this case tends to steer the robot very close to the assumed source position.
This disturbs the observed binaural cues due to the near-field effect of the HRIRs and
large jumps in azimuth between consecutive time steps. As this is not explicitly covered
by the measurement model, the particle filter is not able to appropriately predict these
effects.

6 http://www.cs.tut.fi/sgn/arg/dcase2016/
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The comparison of the proposed azimuth and distance-dependent measurement model with
the bearing-only approach shows, that modeling distance information using the IC helps
to further improve the localization capabilities of the system. The improvements are statis-
tically significant according to a t-test conducted with p < 0.01.

4.9 Selective attention

4.9.1 Evaluation of HTMKS

The Head Turning Modulation (HTM) model described in Deliverable D4.3 can be evaluated
by considering the two behaviours the robot exhibits when it is driven by this model. Even
though the HTM model is an online learning algorithm that is not supposed to ever stop
learning, the progressive change in the behaviour of the robot can be observed. This consists
mainly of those head movements that can be triggered by the two modules which constitute
the HTM model: the Dynamic Weighting (DW) module and the Multimodal Fusion and
Inference module (MFI), both described in Deliverable D4.3.

Simulation setup

The goal of the experiments is to validate whether the HTMKS is able to learn all the
categories present in the environment, without any a priori knowledge. To achieve that, the
HTMKS was provided with a larger amount of emulated audio and visual classifiers than
actually contained in the simulated scenes. Specifically, 30 audio and 15 visual experts were
emulated for a total of 40 possible combinations, labeled as correct audiovisual pairings.
However, this labelling is not taken into account in any HTMKS computations and is only
used to validate the model based on ground-truth data.

In all the following, one time step corresponds to a frame length (500ms). Thus, 1000 time
steps simulations would correspond in real experiments to 500 seconds of data processed
(≈ 8.3 minutes). On this basis, simulated environments were only populated with 4 to 10
different audiovisual categories, with respect to the number of audiovisual objects that
would be present in the scenarios used for the demonstrations. Thus, the HTMKS is still
provided with outputs from classifiers that should exhibit high probabilities. This enables
us to introduce some classification errors and some wrong audiovisual pairings in order to
test the correction abilities of the proposed model.

A rate of εa = εv = 35% of frame-based errors was used to mimic realistic audio and visual
classifiers. Since the HTMKS does use azimuth information about current objects present
in the environment but is not supposed to correct any output from the dedicated KS, the
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Table 4.6: Labels used in the simulation
Visual labels Audio labels Audiovisual categories C
male speech male speech
female coughing male coughing
baby crying male crying
bird eating male eating
dog piano male piano
cat violin male violin
door laughing male laughing
siren singing female coughing
train flute female crying
car screaming female eating
glass harp female singing
bed whistling female laughing
wind flying female flute
switch female screaming

female harp
baby crying
baby laughing
baby screaming
bird whistling
bird flying
dog barking
dog panting
cat meaowing
cat scratching
door knock
door closing
siren beeping
siren alert
train alert
train braking
train accelerating
car braking
car accelerating
car drifting
glass breaking
glass clinking
bed squeaking
wind blowing
rain falling
switch switched

emulated DnnLocationKS was designed as a perfect localizer in order not to interfere
with the primary goal of the HTMKS. Every source in the environment was linked to
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a given audiovisual object. This creates a realistic environment, where sources exhibit
temporally discontinuous behaviour (e.g., sources can stop emitting for a while then start
emitting again). The HTMKS should be able to understand the environment through this
notion of physical objects.

Fig. 4.38 shows an illustration of the simulated environment together with some of the
results of the computations made by the HTMKS. The simulated audio and visual labels
are presented in Table 4.6.

incorrect AV fusion

correct AV fusion

AV source

HTMKS robot focus

naive robot focus

Mean Good Classification / frame

HTMKS 
Naive robot w. HM 
Naive robot w/o HM

Focus Computation

Head Movements

HTMKS 
Naive robot

Simulated Environment

Robot Emitting Source

up: HTMKS AV fusion 
middle: emulated data (incl. errors) 
bottom: ground truth data

gray-scaled bars indicate some 
MFImod computations results

Figure 4.38: Illustration of the simulated environment together with some of the results of the
HTMKS computations.

Evaluation of the audiovisual fusion

The first evaluation is concerned with the ability of the HTMKS to correct wrong audiovisual
pairings exhibited by potentially erroneous audiovisual classification experts.

Fig. 4.39 shows how the fusion of audio and visual classifiers computed by the HTMKS
outperform a naive fusion based only on the output of these experts, and without any
a priori knowledge about the environment. Fig. 4.40 is the average results of 15 runs
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Figure 4.39: Average results of classifier fusion on five runs for an environment populated with 5
sources and only three different audiovisual objects: pairs n1,9,17 (see Table 4.6).
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Figure 4.40: Average results of classifier fusion on five runs for three different environments (a
total of 15 runs).
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Table 4.7: Correction performances over 1000 random vectors
Category C αv αa

C1 =(speech,male) 44.52 % 73.15 %
C2 =(coughing,female) 96.05 % 45.80 %
C3 =(barking,dog) 92.89 % 27.17 %
C4 =(knock,door) 73.96 % 25.38 %
C5 =(beeping,siren) 83.15 % 75.96 %
C6 =(breaking,glass) 64.90 % 77.42 %
C7 =(blowing,wind) 85.45 % 57.24 %

on 3 different environments populated with respectively 5 or 8 sources, and simulating
different combinations of audiovisual objects. Once again, even when dealing with more
complex environments, the HTMKS outputs hypotheses about the audiovisual objects in
the environment with ≈ 97% accuracy. One has also to take into account the fact that
these results include the process of progressive inhibition of head movements (see next
section) computed by both the MFI and the DW modules.

The MFI module can estimate the category of an audio-visual frame, even in the presence
of audio or visual classifiers errors. This has been assessed by introducing errors in the
input vectors ((Pa)T , (Pv)T )T and by looking at the consecutive audiovisual category Ĉ
computed by the HTMKS. More precisely, for a fixed audio (visual) vector Pa (Pv resp.),
1000 artificially designed audio-visual frames P are tested to evaluate the correction rate
αv (αa resp.) brought by the audio-visual fusion for 7 categories C.

Table 4.7 shows very good correction rates for certain categories (up to 96.05% for C2),
but also poorer rates for some others (25.38% for C4). This can be explained by the
number of observed occurrences of each category during the exploration. Indeed, 20% of
the simulated objects belongs to the category C2, while only 9% are from C4. But note that
statistically speaking, the random nature of the audio or visual component in P for this
evaluation corresponds to a mean correct categorization rate of 14%. The MFI module
thus outperforms by 2 to 7 times a random choice among the 7 considered audio or visual
categories.

Evaluation of the progressive inhibition of the number of head movements

Here, the resulting behaviour of a robot driven by the HTMKS is compared to the behaviour
of a naive robot that turns its head toward the direction of every sound source appearing
in the environment. This comparison is of interest since the goal of the HTMKS is to
enable the robot to learn how to inhibit irrelevant head turns.
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The MFI module is active whenever the system (and namely the M-SOM, see D4.3) gauge
that it is unable to process correctly the audio-visual categories detected. Progressively,
the system will be able to trust the results of its computations resulting in the inhibition
previously required head movements.

The DW module is active only when the performance of category inference is above the
Khead threshold defined beforehand with respect to the scenario (D4.3). Whenever this per-
formance is not high enough, the MFImod triggers the head movements. On the other hand,
once the performance for a given audiovisual category is high enough, the congruence of this
category given the environment currently explored can be computed.

This evaluation has been computed for an environment populated with 7 sources and only
2 different audiovisual objects. The number of different audiovisual objects has been set to
be that low on purpose, so that the impact of the MFImod and of DWmod computations
can be observed easily.

In addition, we chose this scenario to highlight the main and important difference between
the Dynamic Weighting module and other systems of attention modulation based on
saliency. Indeed, the simulated environment used here is populated with two kinds of
audiovisual objects: (male speech) and (baby crying), with less speaking males that crying
babies. The goal of the DWmod is to explore and understand unknown environments
without any a priori knowledge about it. Thus, if the robot is in a nursery, babies
crying would not be of importance (in the scope of low-level head-movement-related
attention), given the high probability of this event to occur. The goal of this simulation
is to measure how the MFImod and DWmod have been able to inhibit irrelevant head
movements while still exhibiting good audiovisual fusion results. Results are shown in
Fig. 4.41.

Evaluation of the effect of the Khead criterion

This evaluation is computed on a simplified scenario in order to assess the impact of changes
in the Khead criterion (see Deliverable D4.3). The environment consists of 8 sources, with
a maximum of 5 simultaneous sound sources, during a 1000 discrete time steps simulation,
that is 40 audiovisual events occurring. Three values of Khead were tested: [0, 0.5, 1]. This
criterion only concerns MFImod computations. Thus, in order to assess the role of this
criterion in the global behavior of the MFImod, the following set up exclude the results of
the DWmod computations.

Fig. 4.42 shows the two impacts theKhead criterion has on the robot’s behavior:

(i) the results of mean correct audiovisual fusion: the lower the Khead criterion, the
more wrong hypotheses are made about audiovisual labels of the objects populating

132



4.9 Selective attention

(I) (II)
(a)

(b)

(c)

(III)
(a)
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Figure 4.41: Impact of the Multimodal Fusion & Inference module together with the Dynamic
Weighting module in head movements inhibition. This simplified simulated scenario has been set
up in order to observe the results of MFImod and DWmod computations more easily. Subfigures
(II.a)&(III.a) shows the results of the audiovisual fusion performed by the MFImod. Subfigure (II.b)
shows how the DWmod becomes quickly responsible for every head movements while the MFImod
stops triggering head movements. Subfigures (II.c)&(III.c) shows how many head movements have
been inhibited compared to a naive robot.

Figure 4.42: Impact of different Khead criterion values ([0, 0.5, 1]) on (left) mean good audiovisual
fusion, and (right) on the number of head movements triggered, compared to a naive robot.
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the environment. On the other hand, with a high criterion, fusion and inference are
better.

(ii) the number of head movements: the lower Khead, the fewer movements are made,
while the closest to Khead to 1, the less head movements inhibitions are made.

Fig 4.43 shows another representation of the results shown in Figure 4.42 emphasizing
which object has been focused on by the robot. Similarly to what has been stated above,
for a high Khead every object is systematically focused while for a lower value of Khead, a
more audiovisual events are not, or only for a short period of time, taken into consideration
by the robot.

Hence, this criterion has to be adjusted according to the primary goal of the robot: if
it is in a S&R scenario, the priority is to move rapidly towards a victim rather than
fully explore the environment; on the other hand, in a pure exploration scenario, the
accurate understanding of the environment being the priority, the criterion can be set
to its maximum thus allowing the robot to get the most information possible about the
environment.

mean of good AV fusion 
w. HTMKS

source id  
faced by the robot

mean of good AV fusion 
w. head movements
mean of good AV fusion 
wo. head movements

K    = 0head

K    = 0.5head

K    = 1head

Figure 4.43: Other visualization of results shown on Figure 4.42 exhibiting a more detailed
representation of focused objects.
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4.10 Audio-visual integration

Audiovisual integration is evaluated for two purposes, namely audiovisual keyword recog-
nition and audiovisual speech enhancement. Ultimately, as expected, this leads to an
enhanced intelligibility, reflected in improved machine recognition accuracies as well as in
better intelligibility of enhanced speech for human listeners.

4.10.1 Audio-visual keyword recognition

The turbo-principle and the coupled HMM were compared for the task of keyword recog-
nition in noisy scenarios, where we have newly incorporated the use of observation un-
certainties to deal with the time-varying reliability of the available acoustic informa-
tion.

Experimental setup

Audio data from the first CHiME challenge (Barker et al., 2013) in combination with
matching video data from the GRiD corpus (Cooke et al., 2006b) was used for our
experimental evaluation.

The recordings consist of 1000 sentences spoken by 33 talkers each. All utterances include
the annunciation of a letter (A. . .Z, excluding W) and a digit (0. . .9). Audio and video
files are not start/endpoint-aligned between the CHiME and the GRiD corpus. We
therefore performed a start/end-point matching via the word alignment files provided on
http://spandh.dcs.shef.ac.uk/gridcorpus/.

Results for GMM-based recognition

The entire set of training data was used in the initial model training. Subsequently,
development data of the first five speakers was used to adjust all free parameters, i.e. the
audio stream weights for the CHMM and the TD decoder. Table 1 shows the corresponding
values that we obtained for the four different types of decoders. We set λP = 0.1 for all
TD experiments and D′ = 37 for GDN.

We have measured the success of each of the considered recognition setups in terms of the
keyword accuracy, corresponding to the percentage of correctly identified letters and digits.
Table 4.8 shows the results that were achieved.

As can be seen, each of the acoustic recognizers was run in four different modes of
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Method -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg.
Video 69.98 69.98 69.98 69.98 69.98 69.98 69.98
Audio Full 65.09 75.04 80.83 86.73 90.34 92.54 81.76
Audio Diag 71.90 79.05 82.56 87.75 91.64 91.60 84.08
Audio UD 72.99 77.57 81.60 88.73 91.49 91.74 84.02
Audio NALDA 74.00 78.94 85.19 90.93 92.40 93.30 85.79
CHMM Full 76.67 82.56 87.30 89.74 92.37 93.88 87.09
CHMM Diag 84.72 85.81 88.68 90.47 91.22 92.09 88.83
CHMM UD 83.63 84.59 87.77 88.97 91.18 90.64 87.80
CHMM NALDA 84.13 87.59 90.28 92.40 93.36 93.43 90.20
Turbo Full 81.79 86.41 90.11 91.53 93.98 95.32 89.86
Turbo Diag 85.75 88.58 90.45 92.16 93.68 93.52 90.69
Turbo UD 84.34 87.57 89.67 91.48 93.60 92.71 89.89
Turbo NALDA 87.21 89.48 92.08 93.09 95.26 95.12 92.04

Table 4.8: Results of acoustic-only, visual-only, and audio-visual keyword recognition.

operation:

• using diagonal-covariance Gaussian probability density functions (diag)

• full-covariance Gaussian probability density functions (full)

• uncertainty decoding according to Deng et al. (2005) (UD)

• or noise-adaptive linear discriminant analysis introduced in Kolossa et al. (2013)
(NALDA)

Results for DNN-based recognition

For the neural-network based system, Kaldi was employed as the recognition engine and its
own training scripts were applied, cf. Meutzner et al. (2017). However, the Kaldi feature
extraction was replaced by Two!Ears gammatone filterbank features. Results in Table
4.9 show the clear superiority of the use of stream weighting (SW) as compared to the
additional use of observation uncertainties within a DNN training.
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Method -6 dB -3 dB 0 dB 3dB 6dB 9dB Avg.
Audio 71.64 76.55 84.83 88.45 92.07 93.28 84.47
Video 72.50 72.50 72.50 72.50 72.50 72.50 72.50
AV 86.21 87.24 90.00 91.12 91.12 91.21 89.48
AV + Unc. 85.09 86.12 88.79 91.12 91.21 92.07 89.07
AV + SW 86.72 88.88 91.90 93.19 94.40 95.78 91.81

Table 4.9: Keyword accuracies (%) using the ratemap acoustic features. In addition to acoustic,
visual and audiovisual recognition, we compare the use of observation uncertainties (Unc.) with
the use of explicit, frame-wise dynamic stream weight adaptation.

4.10.2 Audio-visual speech enhancement

Since the turbo-principle was hence clearly more successful in the recognition of keywords,
it was employed for model-based speech enhancement within the same task. As a measure
of success, we now measured human recognition accuracy on the enhanced data, by carrying
out crowdsourcing experiments. Each test participant was asked to transcribe 14 audio
signals, covering two settings of our enhancement strategy, using best-path synthesis (AVSE
BP) and all-path synthesis (AVSE AP) in addition to log-MMSE signal enhancement and
noisy speech. We created test sets of 4 different SNRs (-9 dB, -6 dB, -3 dB, and 0 dB) and
used crowd-sourcing tests at CrowdFlower to collect all results. Table 4.10 shows the
achieved accuracies of the test participants.

Signal -9 dB -6 dB -3 dB 0 dB Avg.
Noisy 48.65 60.23 70.47 77.24 64.15
log-MMSE 41.53 53.88 61.41 71.08 56.97
AVSE AP 73.43 77.28 81.58 82.65 78.74
AVSE BP 74.82 79.35 81.43 84.64 80.06

Table 4.10: Listening test results. Each score is based on averaging about 260 unique utterances.

As expected, log-MMSE speech enhancement was not successful in improving the intelligi-
bility of the noisy speech. In clear contrast, both the AP and the BP setting of audio-visual
speech enhancement yielded significant improvements, with a slight (and unexpected) gain
for best-path in contrast to all-path synthesis. Hence, it is apparently of greater value
to re-synthesize in accordance with the best state sequence rather than averaging over
multiple sequences. As this setting is also computationally more efficient, it is the clear best
choice for this task of audiovisual model-based speech enhancement.
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4.11 Meaning assignment

One specific example of meaning assignment is evaluated here, which relates closely to a
technology developed in WP3. Further examples of meaning assignment by the Two!Ears
system are given in Deliverable D4.3, since those involve top-down feedback (the topic of
WP4).

4.11.1 Genre recognition

Training and evaluation of the genre classifier was performed using the GTZAN genre
collection7 dataset, which contains music signals from 10 different genres, namely “blues”,
“classical”, “country”, “disco”, “hiphop”, “jazz”, “metal”, “pop”, “reggae” and “rock”. The
classifier’s performance was evaluated using 5-fold cross-validation on the dataset. Cepstral
modulation ratio regression (CMRARE) and mel-frequency cepstral coefficients (MFCCs)
(Martin and Nagathil, 2009) parameters – both are features which are commonly used in
the context of musical genre recognition – were chosen for performance comparison. As
all classes are balanced within the dataset, classification error was used as a performance
metric.

log-RM MFCC CMRARE
16.25 22.40 47.33

Table 4.11: Averaged classification errors achieved on the GTZAN genre collection dataset.

Results of the performance comparison are depicted in Table 4.11. The log-ratemap features
derived from the Two!Ears auditory front-end outperform both MFCC and CMRARE
features. The performance increase is statistically significant according to a t-test conducted
with p < 0.01. The confusion matrices depicted in Fig. 4.44 show, that all musical genres
are predicted with sufficient accuracy for log-ratemap and MFCC features. In contrast,
CMRARE parameters yield an overall higher classification error and show difficulties
in correctly classifying the musical genres “disco”, “hiphop” and “rock”. The reason for
this most likely stems from the block-based processing scheme which is adopted here, as
CMRARE features normally rely on longer signal segments to gain optimal predictive
performance. However, the Two!Ears framework requires the capabilities to analyse an
incoming stream of audio signals online, hence the block-based processing is required for
this task.

7 http://marsyasweb.appspot.com/download/data_sets/
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Figure 4.44: Confusion matrices for (from left to right) log-RM, MFCC and CMRARE features,
derived from averaging classification results over all cross-validation folds.
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5 Summary and discussion

This report has described the key achievements of WP3, with a strong emphasis on the
work done in the second and third years of the Two!Ears project. The project has made
substantial progress against its ambitious goal: we have described a software framework,
embedded in a mobile robot, that is able to reason about acoustic scenes. In complex
multi-source environments, the system is able to determine the type of sound sources that
are present, localize them and track them. Additionally, the characteristics of sounds
sources can be determined, such as the genre of a piece of music, or the identity of a
speaker. The localization and attentional systems are able to direct the head of the robot
in order to resolve ambiguities. In some cases, such as when determining the azimuth of a
target voice in a mixture of four other voices, the performance of the system approaches
human performance.

In many of these cases, top-down feedback in the system has been shown to be vital.
For example, the performance of source localization can be significantly improved if top-
down feedback is used about the spectral characteristics of the sound sources that are
present. Similarly, top-down information gleaned about the number of sources in the
environment, which can be done from acoustic models, can provide important cues to
lower-level processing such as stream segmentation.

An notable aspect of the system is the way in which it leverages statistical machine learning
within a blackboard architecture. Various aspects of the Two!Ears system make use of
graphical models and deep neural networks, which provide powerful tools for exploiting the
acoustic data available. Multi-condition training across a wide range of acoustic conditions
has been shown to improve the performance of the system in a number of respects, including
source localization and classification of sound type.

Whilst much progress has been made within the project, there are of course many challenges
still remaining. The focus of Two!Ears has primarily been on acoustic scenes; while
audio-visual integration has been addressed to some extent, for example in our work on
audiovisual speech recognition, many facets of audiovisual integration in humans have yet
to be explored. For example, our system might be tested with stimuli designed to show the
McGurk effect. Similarly, there are many exciting prospects for using the tools that we have
developed and made available to the research community. The ability to replace a human
listener with a robotic system in listening experiments opens up many possibilities. For
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5 Summary and discussion

example, head tracking could be used to record the movement of a subject’s head during a
localization experiment, allowing their head movements to be ‘played back’ on the robot
system. A novel analysis of the head movement strategies used by listeners could therefore
be conducted, and compared against various machine algorithms.
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Acronyms

AFE auditory front-end

AMS amplitude modulation spectrogram

AP all-path

ASR automatic speech recognition

BP best-path

BRIR binaural room impulse response

CHMM coupled hidden Markov model

DNN deep neural network

EBM estimated binary mask

ERB equivalent rectangular bandwidth

FBA forward-backward algorithm

GMM Gaussian mixture model

HATS head and torso simulator

H-FA hit rate minus false alarm rate

IBM ideal binary mask

IC interaural coherence

CI confidence interval

KS knowledge source

LC local criterion

CLUE conversational language understanding evaluation

143



5 Summary and discussion

LTAS long term average spectrum

NH normal hearing

HINT hearing in noise test

PDLA probabilistic linear discriminant analysis

RMS root mean square

SLAM simultaneous localisation and mapping

SNR signal-to-noise ratio

STOI short term objective intelligibility

ESTOI extended short term objective intelligibility

SVM support vector machine

T-F time-frequency

WRS word recognition score

WP3 work package three
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