
FP7-ICT-2013-C TWO!EARS Project 618075

Deliverable 3.1

Software Architecture

WP3 ∗

May 29, 2014

∗ The Two!Ears project (http://www.twoears.eu) has received funding from the European
Union’s Seventh Framework Programme for research, technological development and demon-
stration under grant agreement no 618075.

(http://www.twoears.eu)


Project acronym: Two!Ears
Project full title: Reading the world with Two!Ears

Work packages: WP3
Document number: D3.1
Document title: Software architecture
Version: 1

Delivery date: 29 May 2014
Actual publication date: 29 May 2014
Dissemination level: Restricted
Nature: Report

Editor: Guy Brown
Author(s): Guy Brown, Remi Decorsière, Dorothea Kolossa, Ning Ma,

Tobias May, Christopher Schymura, Ivo Trowitzsch
Reviewer(s): Jonas Braasch, Dorothea Kolossa, Bruno Gas, Klaus Ober-

mayer



Contents

1 Executive summary 1

2 Overview of the Two!Ears software architecture 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Overview of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Bottom-up auditory signal processing 7
3.1 Software design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Data organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Handling user requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Available processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Planned extensions to the software . . . . . . . . . . . . . . . . . . . . . . 19

4 Blackboard system 21
4.1 Software design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Blackboard components . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Knowledge Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Communication within the blackboard system . . . . . . . . . . . . . . . . 24
4.2.1 Event-based communication . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Interaction with the blackboard . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Feedback pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Role of graphical models in the blackboard . . . . . . . . . . . . . . . . . . 28
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Interaction of graphical models with the blackboard . . . . . . . . 29

4.4 Planned extensions to the software architecture . . . . . . . . . . . . . . . 30

iii



Contents

5 Proof of concept 31
5.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 WP2 signal and cue extraction . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Blackboard system for analysing a single-source scenario . . . . . . . . . . 33

5.3.1 The Blackboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2 Knowledge Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.3 Blackboard Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.1 Sound localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Sound identification . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Reference 43
6.1 WP2 reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 WP3 reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Acronyms 45

Bibliography 47

iv



1 Executive summary

The goal of the Two!Ears project is to develop an intelligent, active computational model
of auditory perception and experience in a multi-modal context. At the heart of the project
is a software architecture that optimally fuses prior knowledge with the currently available
sensor input, in order to find the best explanation of all available information. Top-down
feedback plays a crucial role in this process. The software architecture will be implemented
on a mobile robot endowed with a binaural head and stereo cameras, allowing for active
exploration and understanding of audiovisual scenes.

This deliverable sets out the design of the software architecture, with an emphasis on
communication between the components of the system. An object-oriented approach is used
throughout, giving benefits of reusability, encapsulation and extensibility.

The first stage of the system architecture concerns bottom-up auditory signal processing,
which transforms the signals arriving at the binaural head into auditory cues. Bottom-
up signal processing is implemented as a collection of processor modules, which are
instantiated and routed by a manager object. This affords great flexibility, and allows
real-time modification of bottom-up processing in response to feedback from higher levels of
the system. Processor modules are provided to compute cues such as rate maps, interaural
time and level differences, interaural coherence, onsets and offsets.

Bottom-up cues are provided as input to a blackboard system, which consists of a collection
of independent knowledge sources (KS) that communicate by reading and writing data
on a globally-accessible data structure (the blackboard). The blackboard is divided into
layers, which describe hypotheses at different levels of abstraction. Our blackboard system
uses an event-driven design for efficiency; when data is placed on the blackboard, an
event is broadcast which can be responded to by a KS with a matching precondition.
Graphical models play an important role in the blackboard. KS are able to access a
general graphical model maintained by the blackboard, and can perform inference on
certain nodes in order to generate new evidence. A KS can also contain its own graphical
model.

As a proof of concept, a specific instantiation of the software architecture is described which
localises and identifies a single sound source. It is shown that top-down feedback in the
system plays a crucial role when front/back confusions occur, prompting head movements
that allow the confusions to be resolved.
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1 Executive summary

It should be noted that the current document includes deliverable D2.1 in order to give a
complete overview of the Two!Ears software architecture. This document should therefore
be considered the most comprehensive account of the software architecture as of 31st May
2014.
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2 Overview of the Two!Ears software
architecture

This report documents the design of the Two!Ears software architecture and describes
the motivation for the approach taken. Our approach is to first describe the software
architecture in general terms. A specific example of applying the architecture to a
computational hearing problem is then given; specifically, the problem of localising and
identifying a single sound source under conditions in which front/back confusions must be
resolved.

2.1 Background

The goal of the Two!Ears project is to develop an intelligent, active computational model
of auditory perception and experience in a multi-modal context. In order to do so, the system
must be able to recognise acoustic sources and optical objects, and achieve the perceptual
organisation of sound in the same manner that human listeners do. Bregman (1990) has
referred to the latter phenomenon as auditory scene analysis (ASA), and to reproduce this
ability in a machine system a number of factors must be considered:

• ASA involves diverse sources of knowledge, including both primitive (innate) grouping
heuristics and schema-driven (learned) grouping principles;

• Solving the ASA problem requires the close interaction of top-down and bottom-up
processes through feedback loops;

• Auditory processing is flexible, adaptive, opportunistic and context-dependent.

The characteristics of ASA are well-matched to those of blackboard problem-solving ar-
chitectures. A blackboard system consists of a group of independent experts (‘knowledge
sources’) that communicate by reading and writing data on a globally-accessible data
structure (‘blackboard’). The blackboard is typically divided into layers, corresponding to
data, hypotheses and partial solutions at different levels of abstraction. Given the contents
of the blackboard, each knowledge source indicates the actions that it would like to perform;
these actions are then coordinated by a scheduler, which determines the order in which
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2 Overview of the Two!Ears software architecture

actions will be carried out.

Blackboard systems were introduced by Erman et al. (1980) as an architecture for speech
understanding, in their Hearsay-II system. In the 1990s, a number of authors described
blackboard-based systems for machine hearing (Cooke et al., 1993, Lesser et al., 1995, Ellis,
1996, Godsmark and Brown, 1999). All of these systems were in most respects ‘conventional’
blackboard architectures, in which the knowledge sources consisted of rule-based heuristics.
In contrast, the Two!Ears architecture aims to exploit recent developments in machine
learning, by combining the flexibility of a blackboard architecture with powerful learning
algorithms afforded by probabilistic graphical models.

2.2 Software architecture

The diagram of the general software architecture is shown in Figure 2.1. The acoustic input,
which consists of the left and the right-ear time domain signals captured by the robotic
platform, is processed by a peripheral processing module that simulates the effective signal
processing in the auditory system. The significance of this task lies in the extraction of
meaningful signals and cues that capture important aspects of the acoustic scene, which
will enable the higher processing stages of the architecture to interpret the acoustic scene.
Therefore, the two time domain signals are processed independently by a monaural pathway,
which consists of a middle ear and a cochlear module. In addition, a binaural processor
compares the two monaural signal streams in order to evaluate interaural differences between
the left and the right ear signal representations. Based on these monaural and binaural
signal representations, a number of monaural and binaural cues are extracted. These
cues describe and summarize relevant characteristics of the monaural and binaural signal
representations over short time frames. In contrast to purely signal-driven (bottom-up), and
therefore static approaches, the Two!Ears software architecture explicitly incorporates
task-dependent feedback.

In addition, video signals are captured by cameras on the robotic platform. The output
from the first stage of processing is then a multi-dimensional, audiovisual representa-
tion of the environment which provides the input to subsequent stages of the architec-
ture.

Later stages of the Two!Ears architecture are broadly based on the HEARSAY-II system
(Erman et al., 1980). A number of knowledge sources (KS) collaborate via the blackboard,
by triggering when relevant data is available and depositing new data. The architecture
is event-driven; a change in the state of the blackboard (such as the arrival of new data,
or the emergence of a new hypothesis) causes an event to be broadcast. A blackboard
monitor is responsible for monitoring and handling these events; it maintains an event
register that indicates which KS can respond to a certain event. The possible actions that
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Figure 2.1: System diagram of the general software architecture
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2 Overview of the Two!Ears software architecture

can be performed, given the current state of the blackboard, are listed in an agenda. A
scheduler is then responsible for ranking the possible actions and selecting one to perform.
When the action is performed, this will most likely result in a further change in the state
of the blackboard leading to the broadcast of further events.

Graphical models form a key part of the Two!Ears architecture, either as structures
on the blackboard or as the basis for knowledge sources. The architecture therefore has
the flexibility to combine rule-based and statistics-based information processing. The
blackboard is divided into layers of abstraction, such that an hypothesis at level n is
supported by evidence at level n− 1. At the highest level of the blackboard, the layers
constitute a ‘world model’ which describes the acoustic sources in the environment in terms
of their relationships, properties and meaning.

The Two!Ears architecture will be implemented on a robotic platform in due course,
allowing for active exploration of the environment. For example, hypotheses on the
blackboard about the location of a sound source of interest may trigger a path plan-
ning action, which results in the robot moving closer to the source’s predicted location.
Similarly, planning actions may dictate that it is necessary for the robot to rotate its
head in order to gather more information. An example of such an approach is given in
Section 5.

Similarly, the Two!Ears architecture allows for active listening. Properties of the
bottom-up processing, such as the tuning characteristics of cochlear filters, can be modified
by top-down feedback from higher stages of the blackboard. Such feedback may occur at
multiple levels, including the interaction of binaural hearing and mobility at the sensorimotor
level. Reflexive movements of the robot, which occur without hypothesis-driven feedback
from the blackboard, may also occur.

Matlab has been chosen as the implementation language for the software architecture,
because it is widely available within Two!Ears partner laboratories, it supports object-
oriented programming, and can be run directly on the robot platform.

2.3 Overview of the report

The remainder of the report is organised as follows. Section 3 describes the bottom-up
auditory signal processing techniques developed within work package two (WP2). Section 4
then explains the design of the blackboard system in detail, corresponding to the output of
work package three (WP3). Up to this point, the system is described in general terms. As
a proof of concept, a particular instantiation of the architecture is then described in Section
5, which solves the problem of localizing and identifying a single sound source. It is shown
that top-down and bottom-up interactions in the blackboard allow front/back confusions
to be resolved. Finally, Section 6 provides reference material that will be helpful in using
our Matlab implementation of the Two!Ears architecture.
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3 Bottom-up auditory signal processing

The task of WP2 is to transform the listener’s ear signals, that are supplied by work package
one (WP1), into a multi-dimensional signal and cue representation. In the following the
general software design is described in detail.

3.1 Software design

The processing stages of the WP2 software package, as well as the types of outputs it
provides, are essentially dependent on requests made by the software user. They are
subject to change not only between calls to the package (e.g., switching from scenario A to
scenario B), but also, and more importantly, during execution of the software (e.g., when
feedback from higher stages is received). Hence there is a strong incentive for the software
to be modular and able to adapt to potentially very different scenarios. This naturally
suggests an object-oriented approach in the implementation.

3.1.1 Processors

An object-oriented approach allows each processing stage (e.g., the computation of one cue
from a given signal) to be assigned to an independent “processor” object. The following two
fundamental properties of object-oriented programming can then benefit the modularity
of the implementation. Encapsulation allows these processors to be self-managed, and
most importantly independent of each other and of other existing objects. Inheritance
of individual processors from a parent processor class allows new processing stages to be
added and implemented with only a little new code writing (which is less likely to introduce
errors).

Parent and children processor classes

In practice, an abstract processor class is implemented, which will be the parent class
of all processors. It should therefore encapsulate all properties and methods that are
common to all processors. Figure 3.1 presents a class diagram for the Processor parent
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3 Bottom-up auditory signal processing

Figure 3.1: Class diagram of the processor parent and children classes.

class as well as two example child classes. Properties that are common to all processors
include:

• a label (Type) to identify the action of the processor

• the sampling frequencies of the input (FsIn) and output (FsOut) that the processor
manipulates.

The additional property Dependencies is not required for the functioning of the individ-
ual processor, but its use simplifies the management of several processors and will be
described in Section 3.2. All child processors should then implement the following abstract
methods:

• processChunk which, given an input, computes and returns the corresponding output

• reset which resets the processor to a clean state, e.g., for processing a new signal

Again, as for the Dependencies property, the method hasParameters is not necessary but
will simplify some processes described later.

The bottom-up signal processing of WP2 involves many processing stages. Each stage can
then be implemented as a child of the Processor class. Figure 3.1 shows two example
children that inherit the Processor class. Inheritance is indicated in the class diagram by
a closed-head arrow. Each child can have additional properties that are relevant to the
processing it performs. For example the gammatoneProc which is responsible for performing
filtering by a Gammatone filterbank, in addition to the Processor properties, has to keep
track of the center frequencies of its channels (in Centerfreqs). Its processing also involves
a number of filters (see subsection below), which are stored as a property (Filters).

8



3.1 Software design

Other child processors will involve different properties of their own (e.g., the inner hair-cell
envelope extractor innerhaircellProc has an additional name tag IHCMethod for the
method employed). A detailed list of currently available (child) processors is given later in
this document (section 3.3).

Additional methods for child processors are essentially specific constructors. Different
processors need different information to be created, hence each child has its own constructor
which takes specific inputs.

Filter objects and real-time compatibility

Among the processors that are implemented, many involve some filtering operations. For
example the gammatoneProc and innerhaircellProc pictured in Fig.3.1 both involve
filtering and have “filters” stored as properties. These filters are also implemented as
objects, i.e., in a similar fashion as the processors, with a parent filter class and specialized
child filter classes. This approach can benefit significantly from encapsulation by storing
a filter’s internal state as one of its properties. By restricting the access of this property
to the filter object only (i.e., have it being a private property), the filter can self-manage
its internal state without any risk of being “contaminated” by any outside event. This
means that successive calls for filtering will take into account the filter’s states relative
to the previous call. Note that this makes the approach fully compatible with real-time
processing (i.e., the ability to process an incoming signal in a sequence of short blocks),
without additional effort. The filter object also includes a reset() method that will clear
its internal states, e.g., to initialize the processing for a new signal. When filter objects are
instantiated in a processor object, the reset() method of the processor essentially calls
the reset() method of all the filter instances it contains.

3.1.2 Manager

A given configuration of the WP2 software will involve several processing stages, hence
multiple processors. The processors have to be instantiated, and their inputs/outputs
routed according to which processor needs or generates which signal (or cue). This
is not done manually by the user but is instead handled by a dedicated object, the
“manager”.

The manager class (see Fig.3.2) contains instances of the processors needed for the overall
processing as the property Processors (e.g., as an array of individual Processor objects).
To know where to fetch the inputs for each processors, InputAddress contains a list of
pointers to the inputs of each processor. Similarly, OutputAddress indicates where to place
the output of a given processor. Because some processors take as input the output of other

9



3 Bottom-up auditory signal processing

Figure 3.2: Manager class diagram.

processors, the processing has to be ordered (we will return to this dependency issue in
section 3.2). The order in which processors are called is stored in Map.

Processing and routing of inputs/outputs is then carried on through the method processSignal.
This method loops over the total number of processors, calling the processChunk of each
of them, but one at a time. Assuming the signals are contained in data, for a given index
i, this breaks down to one line of code (here split on 4 lines for readability):

j = Map(i)
in = Manager.InputAddress(j)
out = Manager.OutputAddress(j)
data(out) = Manager.Processors(j).ProcessChunk(data(in))

The last line shows how processing and routing of inputs/outputs are performed all at once.
This operation is repeated for all the processors (i.e., all the indexes i).

So far, we described how the manager performs the processing in a “steady-state” execution.
The critical task of the manager is then to take into consideration user requests at the
initialization of the program as well as while the program is running (i.e., in that case,
when feedback is provided). These tasks are at the core of the “managing” tasks of the
manager object, and are described in the following (section 3.2).

3.1.3 Data organization

The last building block in the WP2 software concerns actual data. An object oriented
approach is also used for storing all the signals and cues that were extracted in the various
processing stages. In a similar way as the processor class described in section 3.1.1, a
general parent “signal” class is implemented. All the signals and cues resulting from WP2

10



3.1 Software design

processing are then implemented as children of this class. All existing signals are then
grouped in a single “data” object.

Signal class

Many signals of different nature are generated by the processing performed by the WP2
software. Although different signals have different properties (e.g., different dimensions,
different scaling, different sampling frequency/time-frame,...), they share common properties.
These common properties, as well as methods that all signal objects should have, are
presented in Fig. 3.3. Signal objects allways contain:

• a Label, which formally describe a given instance of the object (e.g., “Left ear signal”
or “Interaural level difference”). It is this label which is used, for instance, as a plot
title when plotting the signal.

• a Name, which is a name tag associated to this signal type (e.g., “time”, “innerhaircell”,
or “ILD”)

• a description of its Dimensions (e.g., “m channels x n samples”) to prevent inconsis-
tencies

• a sampling frequency FsHz

• the actual Data, stored as an array

Two methods are then common to all signals:

Figure 3.3: Signal parent and children classes.
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3 Bottom-up auditory signal processing

• plot() which plots the signal. Because signals are of different dimensions, the method
is abstract at this point and needs to be implemented by each child class.

• appendChunk(data) which adds the new signal chunk data (e.g., a recently computed
output) to the already existing data.

Child signal classes inherit these properties and methods. They are implemented according
to their dimensionality. For example, Fig. 3.3 shows diagrams for the time domain signal
child class (e.g., used for a signal recorded at the ear) as well the time-frequency signal
child class (e.g., used for a gammatone filterbank output, a inner hair-cell envelope,...).
Specific child classes are then added for signals of a different nature.

Data object

Several signals of different nature are instantiated during the process of WP2. They are
all collected in a single instance of a dataObject. The manager class responsible for WP2
processing then interacts with this data object. Each property of the dataObject is a
Signal object. The name of the property is set by the signal property Signal.Name. For
example if an inner hair-cell representation is requested for a single signal, there will be
three properties in the dataObject:

• dataObject.time

• dataObject.gammatone

• dataObject.innerhaircell

If several signals with the same name exist they are collected in the same property, as an
array of objects. Apart from its constructor, the dataObject class only has one method,
addSignal(sig), which adds the signal object sig to its properties.

3.1.4 General overview

Figure 3.4 summarises the WP2 software design. A standard arrow denotes an interaction
(e.g., between the manager and the data object). An arrow ending with a filled diamond
shows a composite aggregation, i.e., the object touching the diamond embeds one or several
instances of the object at the other end of the arrow (e.g., the manager instantiates one or
more processors). The numbers by the arrows ends indicate the possible number of instances,
with ∗ being any integer (e.g., there can be one or more signal objects in the data object,
zero or more filters in a processor, but there is only one manager).

12



3.2 Handling user requests

Figure 3.4: Overall class diagram for WP2 software

3.2 Handling user requests

The manager class is responsible for instantiating processors, ordering the processing,
and routing inputs and outputs between processing stages. But it is not stand-alone, in
the sense that it will be prompted by a “user” to extract some internal representations.
In most scenarios, the “user” is of course not a physical person, but software from one
of the other work packages. Two prerequisites concerning the way a user can request a
given representation are crucial. First, the user should be allowed to request one single
representation without explicitly requesting the other representations necessary to compute
the original request. Second, requests are not only made at start-up, but should occur at
any time during processing. Practical solutions to these two problems are presented in the
following subsections.

3.2.1 Dependencies

As described above, a single processor object is responsible for only a single processing
stage. However a given signal will likely be derived from another signal, itself deriving
from yet another one. In other terms, there is a chain of dependencies between the existing
signals, and multiple processing stages are required to derive only a single signal. The
manager needs to know of these dependencies, and instantiate not only the processor
responsible of a requested signal, but also the processors needed for the signals it depends
on. It should also be aware of which order to call in the processors for generating an
output.

In practice, the instantiation of the processors occurs in the constructor of the manager
class. The constructor is called with a list of requested signals (manager(request,...) in
Fig. 3.2). This list does not explicitly state the dependent signals. Instead, the manager
calls an external function (getDependencies) that returns the full list of dependencies

13



3 Bottom-up auditory signal processing

for a given signal and instantiates the processors needed for each dependent signal. The
list returned by getDependencies can be ordered in decreasing order of dependency (i.e.,
increasing processing order), such that the mapping manager.Map can be initialized to
(1, 2, ..., nproc) where nproc is the total number of processors. As an example, say the
user requests the computation of level differences (ILDs). The ILDs depend on the inner
hair-cell envelope of the output of a Gammatone filterbank. The list of dependencies (as
returned by getDependencies) therefore looks like:

ild→ innerhaircell→ gammatone→ time

The processing order is given by the decreasing dependency order:

manager.Processors = {timeProc, gammatoneProc, innerhaircellProc, ildProc}

and the mapping Map is initialized to

manager.Map = {1, 2, 3, 4}

Additionally, when instantiating a processor, the manager will populate its processor.Dependencies
property with a pointer to the processor(s) that are one level below in terms of depen-
dency. For example, for the case above, innerhaircellProc.Dependencies will point to
gammatoneProc. This will help in dealing with feedback as is described in the following
subsection.

3.2.2 Feedback

A crucial point in the philosophy behind the Two!Ears framework is that the bottom-
up auditory processing should take into account decisions taken by higher-stage models.
The WP2 framework must therefore be designed to include such top-down feedback, and
evolve according to it. In practice, higher-stage feedback will be initiated by requesting a
change in parameters for one or more processing stages, or requesting a completely new
processing stage (e.g., extracting a new auditory feature). But this has to be done “on
the fly”, i.e., during execution of the processing and when the manager has already been
instantiated.

When a new processing stage is requested, the manager needs to assess whether or not
a processor corresponding to this request already exists. It should not only compare the
tasks of the processor, but also the particular parameters under which the processing is
carried. For instance, say the feedback is a request for an inner hair-cell representation
using the model ’dau’. If an inner hair-cell processor already exists but uses the method
’hilbert’, the manager has to be “aware” of this discrepancy and instantiate a new inner
hair-cell processor that would use the correct method.

14
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Figure 3.5: Flowchart picturing the operations performed when feedback is received in order to
create adequate new processors. The feedback consists in a request for a signal sig with a set of
parameters p.

Further, if a processor corresponding to the request already exists, then the manager needs
to investigate if its dependencies also use the adequate parameters and if not instantiate all
the “missing” processors. In practice, the process is illustrated in Fig. 3.5. Three recursive
loops are present in the diagram of Fig. 3.5 marked as A, B, and C. The “user” request
consists of a signal name (sig) that should be computed using a set of parameters p. The
list of parameters p contains all the parameters for all the processing stages needed to
obtain sig. The first loop A resembles the process described in section 3.2.1, where a
given processor and its dependencies are instantiated. However it will stop when one of
the dependent processors already exists and moves on to loop B. Loop B verifies that
the already existing processor proc returned by loop A has the suitable parameters p.
If not, it needs to find the first of its dependent processors that does have the correct
parameters while keeping track of future processors to instantiate in a toAdd list. Loop C
then instantiates all the necessary processors.

In practice the operations carried out in the three loops A, B and C from Fig. 3.5 are
facilitated by the manager class methods hasProcessor and addProcessor, as well as
the hasParameters method from the processor class. Along with the instantiation of the
processors, the input/output addresses stored in the manager are updated (though not
shown on Fig. 3.5). New signals in the data structure are created for every new processor
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3 Bottom-up auditory signal processing

that is instantiated, even if the new processor only computes an already existing signal,
only with a different parameter. This design limits confusion between processing stage and
signals in the data structure. However, as the framework develops and is used in more
complicated scenarios, solutions will have to be devised to avoid memory leaks by deleting
obsolete signals and processors.

3.3 Available processors

In the following a list of currently available processors is presented, together with their
corresponding Matlab function names. A distinction is made between the processors
that are used to extract signals and cues. The time, gammatone and inner hair cell (IHC)
signals are sample-based, whereas the correlation-based signals and all cues are computed
on the basis of short time frames. The frame size and the frame shift are general parameters
and can be controlled by the flags wSizeSec and hSizeSec, respectively. As discussed in
Sec. 3.2.1, the computation of a particular signal or cue will depend on the extraction of
other signals and cues. Therefore, an overview of the corresponding dependencies for all
supported signals and cues is given in Fig. 3.6.

Figure 3.6: Diagram showing the dependencies of individual signals and cues.

3.3.1 Signals

Time (timeProc.m)

The left and the right ear time domain signals can be pre-processed by resampling the
input to a new sampling frequency fsHz. In addition, the flag bRemoveDC can be used to
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activate a DC removal filter, which applies a 4th order Butterworth high-pass filter with a
cut-off frequency of 50Hz. Finally, the flag bNormRMS can be used to normalize the time
domain signal according to its root mean square (RMS) value. In case the input signal is
binaural, the larger RMS value will be used for normalization.

Gammatone (gammatoneProc.m)

The time domain signal is processed by a bank of gammatone filters that simulates the
frequency selective properties of the human basilar membrane (BM). The corresponding
Matlab function is adopted from the AMToolbox. An overview about the functional-
ity of the toolbox can be found in Søndergaard and Majdak (2013). The gammatone
filters cover a frequency range between flow and fhigh and are linearly spaced on the
equivalent rectangular bandwidth (ERB) scale (Glasberg and Moore, 1990). In addition,
the distance between adjacent filter center frequencies on the ERB scale can be specified
by nERBs, which effectively allows to control the frequency resolution of the gammatone
filterbank. The filter order, which determines the slope of the filter skirts, is set to n = 4
by default.

Inner hair cell (innerhaircellProc.m)

The IHC functionality is simulated by extracting the envelope of the output of indi-
vidual gammatone filters. The corresponding IHC function is adopted from the AM-
Toolbox. Typically, the envelope is extracted by combining half-wave rectification and
low-pass filtering. The cut-off frequency and the order of the corresponding low-pass
filter vary across methods and the following flags for ihcMethod are supported: Hilbert
transform ’hilbert’, half-wave rectification ’halfwave’, low-pass filtering ’dau’ (Dau
et al., 1996), and low-pass filtering, compression and expansion ’bernstein’ (Bernstein
et al., 1999).

Auto-correlation (autocorrelationProc.m)

Autocorrelation is an important computational concept that has been extensively studied
in the context of predicting human pitch perception (Licklider, 1951, Meddis and Hewitt,
1991). To measure the amount of periodicity that is present in individual frequency
channels, the normalized auto-correlation function (ACF) is computed based on the IHC
representation of the left and the right-ear signals.

For the purpose of pitch estimation, it has been suggested to modify the signal prior to
correlation analysis in order to reduce the influence of the formant structure on the resulting
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3 Bottom-up auditory signal processing

ACF (Rabiner, 1977). This pre-processing can be activated by the flag bCenterClip and
the following nonlinear operations can be selected for ccMethod: center clip and compress
’clc’, center clip ’cc’, and combined center and peak clip ’sgn’. The percentage of
center clipping is controlled by the flag ccAlpha, which sets the clipping level to a fixed
percentage of the frame-based maximum signal level.

Cross-correlation (crosscorrelationProc.m)

The IHC representations of the left and the right ear signals are used to compute the
normalized cross-correlation function (CCF) for short time frames. The normalized CCF
is evaluated for time lags within maxDelaySec (e.g., [−1ms, 1ms]) and is thus a three-
dimensional function of lag time, time frame and frequency channel.

3.3.2 Cues

Interaural level difference (ildProc.m)

The interaural level difference (ILD) is estimated for individual frequency channels by
comparing the frame-based energy of the left and the right-ear IHC representations. The
ILD is expressed in dB and negative values indicate a sound source positioned at the
left-hand side, whereas a positive ILD reflects a source lateralized to the right-hand
side.

Interaural time difference (itdProc.m)

The interaural time difference (ITD) between the left and the right ear signal is estimated
by locating the time lag that corresponds to the most prominent peak in the normalized
CCF. This estimation is further refined by a parabolic interpolation stage (Jacovitti and
Scarano, 1993, May et al., 2011).

Interaural coherence (icProc.m)

The interaural coherence (IC) is estimated by determining the maximum value of the
normalized CCF. It has been suggested that the IC can be used to select time and frequency
instances where the binaural cues (ITDs and ILDs) are dominated by the direct sound of an
individual sound source, and thus, the corresponding binaural cues are likely to reflect the
true location of one of the active sources (Faller and Merimaa, 2004).
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Ratemap (ratemapProc.m)

The ratemap represents a map of auditory nerve firing rate (Brown and Cooke, 1994) and
is frequently employed in computational auditory scene analysis (CASA) systems as a
spectral feature. The ratemap is computed for individual frequency channels by smoothing
the IHC signal representation with a leaky integrator that has a time constant of decaySec.
Then, the energy is integrated across time frames and thus the ratemap can be interpreted
as an auditory spectrogram.

Onset (onsetProc.m)

According to Bregman (1990), common onsets and offsets are important grouping principles
that are utilized by the human auditory system to organize and integrate sounds originating
from the same source across frequency. Onset are detected by measuring the frame-based
increase in energy. This detection is performed based on the logarithmically-scaled energy,
as suggested by Klapuri (1999).

Offset (offsetProc.m)

Similarly to onsets, offsets are detected by measuring the frame-based decrease in logarithmically-
scaled energy.

3.4 Planned extensions to the software

The flexibility offered by the object oriented approach allows the WP2 framework to be
easily extended. The main extensions will likely consist of adding new types of signals or
cues that are requested by other work packages. New processor, signal, and possibly filter
child classes will be added accordingly. Encapsulation then ensures that the addition of
new components will not affect existing content.

In addition to updates based on the requests from other work packages, the following
extensions are planned:

• As the number of available processors increases and the number of processing stages
multiplies, there is an increasing risk of memory leaks (particularly when using the
software in a scenario that includes feedback). As a precaution, a “garbage collector”
should be implemented for the manager, that finds and removes processors and
signals that are no longer in use.
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3 Bottom-up auditory signal processing

• Similarly, having more processor types implies more parameters. Extensions to
facilitate parameter handling (both for the software users and developers) will be
designed.

• Extensions in which motor commands and/or proprioception are directly integrated
with signal processing functions, in order to model reflexive processing.
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4 Blackboard system

Within the Two!Ears architecture, the blackboard system provides the substrate for
modelling acoustic and audiovisual scenes, using prior knowledge in conjunction with
current observations to build and maintain a belief state that should be as representative
of the current environment as the state of information allows.

For this purpose, deterministic (or rule-based) knowledge can be integrated with statistical
knowledge sources and with sensory information.

In the following, we will describe the software architecture, starting from design considera-
tions and overall architecture in Section 4.1, moving on to the communication architecture in
Section 4.2, more specific questions on the implementation of core computations in Section
4.3, and finally, we will describe planned extensions in Section 4.4.

4.1 Software design

The basic framework of the Blackboard System is implemented in Matlab. As in
WP2, in order to provide a modular structure at an appropriate level of abstraction, the
implementation is based on an object-oriented approach. Each blackboard component
is encapsulated in a separate class. An overview of the main classes of the blackboard
software architecture is shown in Fig. 4.1. This section will provide a basic explanation
of the main classes that can be used to design a blackboard system using the current
framework. A more detailed description of a specific instantiation of the blackboard will
be given in Chapter 5.

4.1.1 Blackboard components

Blackboard base class (Blackboard.m)

The Blackboard class provides the core capabilities to manage communication with different
knowledge sources (KSs) and keeps track of hypotheses that are generated during runtime.
Initially, an instance of the Blackboard class has to be provided with a list of KSs, that
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Blackboard

kss: Cell

hypothesis: Hypothesis

addKS()

numKSs

addHypothesis()

AbstractKS

{abstract}

KnowledgeSource

canExecute()

execute()

BlackboardEventData

data()

Scheduler

iterate()

BlackboardMonitor

agenda: KSInstantiation

eventRegister: Char

blackboard: Blackboard

rankKS()

registerEvent()

addKSI()

handleEvent()

KSInstatiation

ks: KnowledgeSource

rank: Double

setRank()

Figure 4.1: Class diagram, showing the main classes in the general software architecture.

will be internally stored within a Matlab cell array. To add KSs to the blackboard, the
method addKS can be used with an instance of a KnowledgeSource object as argument.
In a similar way, hypotheses, that were generated by certain KSs, can also be added to the
blackboard using the addHypothesis method during runtime. The blackboard stores and
manages hypotheses internally and makes them accessible to the KSs. Furthermore, the
blackboard is based on an event-driven approach, which allows the attachment of events to
the generation of certain hypotheses. A detailed description of this approach will be given
later Section 4.2.

Managing events (BlackboardMonitor.m, BlackboardEventData.m)

The event-based approach that is used here makes it necessary to manage and keep track of
events that are generated on the blackboard. In the current system, this is realized within
the BlackboardMonitor class, which contains a register of possible events and maintains
an agenda that serves as a basis for decision regarding the scheduling of actions within the
Blackboard System. Additionally, the BlackboardEventData class allows the attachment
of data to a certain event. Section 4.2.1 gives a more detailed overview of the event-based
processing and the role of this class.
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Scheduling actions (Scheduler.m)

The role of the scheduler is to decide which knowledge source (KS) should be activated at
a certain time. The Scheduler class provides functions to take this decision based on the
agenda that is provided by the Blackboard Monitor. Currently, a simple ranking algorithm
is implemented, where a specific weight is attached to each KS, so that the scheduler picks
the KS with the highest weight from the current agenda. Future developments will focus
on more advanced scheduling techniques that incorporate additional information from the
blackboard state into the scheduling process.

4.1.2 Knowledge Sources

Base classes (AbstractKS.m, KnowledgeSource.m)

KSs have two basic properties: a precondition and a description of the actions that
can be performed by a specific KS if the precondition is met. The AbstractKS class
provides an abstract instantiation of those preconditions, that are described by the methods
canExecute and execute. For the instantiation of a specific KnowledgeSource object,
the corresponding class inherits the properties and methods of the AbstractKS class.
The KnowledgeSource class serves as a flexible template for the construction of KSs.
Preconditions have to be defined within the canExecute method, whereas the actions that
are performed by the KS are described within the execute method. Currently, possible
actions are

• acquisition of data from the Blackboard, the auditory preprocessing or the (simulated)
robotic platform,

• the generation of new hypotheses on the blackboard and

• triggering feedback by sending specific commands and data to lower processing stages.

Some examples of possible KS actions are illustrated in Fig. 4.2.

Ranking (KSInstantiation.m)

As mentioned previously, the current scheduling algorithm is based on a simple ranking
algorithm. The method setRank of the KSInstantiation.m class attaches a rank to a
specific KS which is currently modeled as an integer in the range [0, 100], where a higher
number corresponds to higher importance in the scheduling process.
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Knowledge Sources

Knowledge

Source

Knowledge

Source
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Knowledge

Source

Graphical model based dynamic blackboard

Layer 1

Layer 2
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...
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Path planning

and movement

Invoke feedback

......

Data from peripheral processing

Figure 4.2: Examples of possible actions of KSs with other system components: data acquisition,
hypothesis generation and feedback.

4.2 Communication within the blackboard system

Communication within the blackboard system is based on an event-driven architecture.
Events are notices that the blackboard broadcasts in response to something that happens
within the blackboard system, such as a knowledge source placing some new data on the
blackboard space, or a feedback from a top-level knowledge source.

Fig. 4.3 shows the communication architecture. Events are monitored and handled by
the Blackboard Monitor. Each knowledge source registers itself with the blackboard
monitor as a responder to one or more events. When an event is triggered, the blackboard
monitor identifies knowledge sources that have registered to respond to the event and
whose preconditions are met. A scheduling agenda is then updated with all potential
actions by the blackboard monitor, which are ranked and selected by the scheduler for
execution.
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Figure 4.3: Event-driven architecture for communication with the blackboard system.

This event-driven architecture is designed to allow efficient interaction between different
components within the blackboard system. Communication is only necessary when an
event is triggered. Therefore, the blackboard system can focus its resources to the knowl-
edge sources that subscribe to the triggered event, instead of constantly checking the
preconditions of all the knowledge sources. More importantly, the event-driven mechanism
provides an effective way for incorporating topdown feedback. This will be discussed in
more detail in Section 4.2.3.

There are broadly two types of communications within the blackboard system:

• Interaction between a knowledge source and the blackboard (Section 4.2.2) involves
mainly how hypotheses are placed on the blackboard and obtained from it. Placing
hypotheses on the blackboard triggers an event so that other relevant knowledge
sources can choose to respond.

• Topdown feedback (Section 4.2.3) is typically initiated by a top-level knowledge
source by triggering a feedback-requesting event. Such an event invokes the relevant
knowledge sources which have subscribed to it and the responding knowledge sources
then perform relevant actions to complete the feedback pathway. Any feedback
data (e.g., a new parameter for tuning characteristics of cochlear filters) can be sent
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together with the event.

4.2.1 Event-based communication

This section defines the standards for event-based communication. An event registration
and notification system is used, which is a common design pattern in object-oriented
systems (for example, see Gamma et al., 1994).

Event Register

The blackboard monitor maintains internally an event register mapping each event to a list
of knowledge sources that have chosen to respond to the event. It provides a method for a
knowledge source to subscribe to one or more events as a responder.

BlackboardMonitor.registerEvent(eventName, KS-1, KS-2, ...)

where eventName defines the name of the triggering event and KS-1, KS-2, ... are a list
of knowledge sources that want to subscribe to the event. A knowledge source can choose
to respond to more than one event.

Event Notification

When a knowledge source makes changes to the blackboard space, or needs to invoke a
feedback, an event is triggered and the blackboard is notified. This is typically done by a
knowledge source using one of the two methods:

• Use notify(blackboard, eventName) to trigger an event specified by eventName.

• Use notify(blackboard, eventName, BlackboardEventData(data)) to also at-
tach some information to the event for its responders.

Registered events will be monitored by the blackboard monitor.

Event Data

Events provide information to the responding knowledge sources by attaching an event
data argument to the event. The BlackboardEventData class contains only one public
property data. An BlackboardEventData object can be constructed at the time when an
event is being triggered.
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4.2.2 Interaction with the blackboard

The Blackboard class provides various methods for accessing the different layers on
the blackboard space. A knowledge source places hypotheses on a layer of the black-
board by calling the corresponding addHypotheses() method. An event is then triggered
to notify the blackboard that new hypotheses are added to a particular layer. The
knowledge sources that have subscribed to the event will be identified and eventually
executed.

In response to an event indicating that some hypotheses have been placed on the blackboard,
a knowledge source obtains the hypotheses by accessing the modified layer. The indices
of the new hypotheses can be provided in the event data attached to the event for more
efficient access.

4.2.3 Feedback pathways

An important aspect of the Two!Ears framework is the use of top-down feedback path-
ways that allow high-level decisions to influence bottom-up processing. For example,
a high-level model could request a change in parameters used for low-level periphery
processing, or plan a head rotation in order to solve front/back confusion in source
localisation.

A feedback pathway is typically initiated by a high-level knowledge source by triggering
an event that indicates a top-down request. Extra information regarding the request
can be attached to the event as event data, e.g., a new set of periphery processing
parameters or the planned head rotation azimuth. The feedback pathway is completed
by a low-level knowledge source that invokes the feedback and responds to the event.
Fig. 4.4 illustrates a typical feedback pathway based on the event-driven communication
architecture.
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Figure 4.4: Illustration of feedback pathways based on the event-driven communication architec-
ture.

4.3 Role of graphical models in the blackboard

To initialize and maintain the belief state of the system, graphical models have been selected
due to their capability for fusing structural and statistical knowledge.

4.3.1 Motivation

Graphical models have recently attracted great interest within the fields of machine learning
and cognitive systems. They describe relationships between statistical variables in the
form of simple graph structures. In these graphs, each node corresponds to a variable, and
each edge indicates a dependency relationship between variables.

In this way, graphical models can be used to describe the dependencies between all variables
that are of interest, effectively providing a world model, which is not only mathematically
useful but also interpretable.

Graphical models come in many different specific forms, like Hidden Markov Models, Markov
Random Fields, or dynamic state space models, which are suitable for creating precise
descriptions of the constituent components of acoustic or audiovisual scenes. Efficient
algorithms have been developed, which allow to find the optimal fit between the model
parameters and the observations taken from all sensors of a system.

In effect, this means that, based on a graphical model of the audiovisual objects in an
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environment, the Two!Ears-system will be able to find the best explanation of all available
information, optimally fusing prior knowledge (e.g., linguistic or acoustic knowledge) with
the currently available sensor input.

Taking graphical models as building blocks furthermore allows us to

• consecutively build models of the audiovisual environment from smaller, well-understood
models of environmental objects (including state-of-the art statistical models of audi-
tory objects)

• understand sensory data as a composition of these source models and a model of the
system’s own “perception” (describing sensory characteristics of the robot and its
internal sensory processing)

• and to understand the system’s interpretation of the audiovisual environment, by
virtue of the interpretability of each component and of their connections.

Since the model is statistical in nature, the resulting interpretation of the environment will
not only denote the type, number, location and — if applicable — the possible intention of all
objects of interest, but also contain estimates of the variances (or probability distributions)
of all of these quantities. This will endow the system with the ability to judge the reliability
of its own interpretation, and can ultimately be used to design active listening and active
exploration, so as to ensure that the most relevant variables are determined with sufficient
reliability.

4.3.2 Interaction of graphical models with the blackboard

In practice the blackboard system maintains a general graphical model (GM) that rep-
resents interpretations of the environment. The KSs are able to access the general GM
and can perform inference on certain nodes to cause new evidence to be placed on the
blackboard.

Certain nodes within the GM can be switched on/off by knowledge sources before per-
forming inference. The sequence and timing of inference with the general GM is controlled
by the scheduler. This approach provides a flexible framework for handling data flow
towards and within the blackboard. Since inference becomes computationally more de-
manding with growing model size, the scheduler provides an efficient means of specifying a
computational agenda that performs inference only if a sufficient amount of new data is
gathered.

A knowledge source can also have its own graphical model. A KS graphical model is
entirely owned by the KS and cannot be accessed by other knowledge sources. Therefore
its structure and information are the ‘knowledge’ of the knowledge source itself. However,
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KS graphical models can still interact with the general GM by providing new evidence or
hypotheses to the blackboard. The evidence can be used as observation of certain nodes of
the general GM.

4.4 Planned extensions to the software architecture

The current implementation of the blackboard architecture is embedded in a simulation
environment (Wierstorf et al., 2011), that generates ear signals via convolution of sound
sources with head-related impulse response (HRIR)s. Though changes in the orientation
of the head are already included, the simulation is restricted to limited sets of HRIRs. To
overcome this limitation, it is planned to replace the current simulator with the SoundScape
Renderer (SSR) (Geier et al., 2008) that is provided and maintained by WP1. The SSR
will allow the acoustic simulation of more complex scenes, including

• dynamic sound sources that move along prespecified trajectories,

• the simulation of room acoustics,

• a more realistic modeling of the robot kinematics, especially head movements, move-
ment of the robot in space and

• the simulation of noise that is caused by the robot’s actuators during movement.

In addition to that, the upcoming work on the software architecture will also focus on
the integration of visual information into the simulation environment. It is planned to
establish a link between the acoustic simulation and the Bochum Experimental Feedback
Testbed (BEFT) (Walther and Cohen-L’hyver, 2014) that has been recently developed by
work package four (WP4). The BEFT provides a visual simulation of the robotic platform
and its surrounding environment, allowing the generation of artificially degraded visual cues,
which can then be used as additional inputs to the blackboard system.

Finally, we note that the blackboard system will be ported on a robot, on top of a low-level
real-time functional architecture (which will implement not only a C/C++ implementation
of the functions developed in WP2, but also functions associated with robot locomotion,
motion planning, localisation, execution of planned motions with reactive obstacle avoidance
etc.). It will therefore be extended in order to handle messages (warnings, errors, failures)
that arise from low-level robot processing.
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Here we present an example of the generic architecture – a system that localises and identifies
a single source, solving front/back confusions in the process. Strictly this goes beyond the
remit of the deliverable, but we anticipate that it will be helpful in communicating to the
reader how the architecture will work in practice.

5.1 Scenario

The implementation of the specific Blackboard System that is described within this chapter
is targeted towards a sound source localisation and identification scenario. The basic setup
is illustrated in Fig. 5.1. It is assumed that the listener in this scenario is static, but changes
in head orientation ψ ∈ [0, 360] are possible. The head orientation corresponds to a world-
coordinate system, where ψ = 0 denotes that the listener is facing towards north along the
y-axis in Fig. 5.1. The orientation angle increases in a clock-wise direction. Additionally,
a static sound source is placed at an arbitrary angle φ ∈ [0, 360) in the horizontal plane
relative to the head orientation of the listener, which will be referred to as the relative
target source position. In this scenario it is assumed that the listener and the sound source
are located in an environment with free-field conditions. The simulation of the scenario
is generated using HRIRs (Wierstorf et al., 2011) acquired from a Kemar dummy-head,
recorded at a distance of 3m between the head and the source.

The scenario involves the completion of two tasks: determination of the relative target
source position and identification of presented sounds. The latter will be based on a variety
of speech and non-speech sounds that can be presented within the scene. A core aim of the
scenario is the reduction of localisation estimation errors caused by front/back ambiguities.
Therefore, feedback, for instance by carrying out head movements for disambiguation, is
necessary.
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Sound Source

Figure 5.1: Illustration of the source localisation and identification task, showing the correspon-
dence between the head orientation ψ and the relative target source position φ.

5.2 WP2 signal and cue extraction

To localize and identify a target source as described in Section 5.1, the WP2 software
package is used to extract a set of monaural and binaural cues. Specifically, ITDs and
ILDs are estimated for 20ms time frames for the localization task, and the ratemap is
extracted for the identification task. The configuration of the WP2 framework is specified
as follows:

1 % Input signal parameters
2 SET.fsHz = 44.1E3; % Sampling frequency
3 SET.bRemoveDC = false; % Flag for DC removal
4 SET.bNormRMS = false; % Flag for RMS normalization
5

6 % Auditory periphery
7 SET.nErbs = 1; % ERB spacing of gammatone filters
8 SET.fLowHz = 80; % Lowest center frequency in Hertz
9 SET.fHighHz = 8E3; % Highest center frequency in Hertz

10 SET.ihcMethod = 'halfwave'; % Hair-cell processing
11

12 % Binaural cross-correlation processor
13 SET.maxDelaySec = 1.1E-3;
14
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15 % Framing parameters
16 SET.winSizeSec = 20E-3; % Window size in seconds
17 SET.hopSizeSec = 10E-3; % Window step size in seconds
18 SET.winType = 'hann'; % Window type
19

20 % Specify cues that should be extracted
21 strCues = {'ratemap_power' 'ild' 'itd_xcorr' 'ic_xcorr'};
22

23 % Initialize all WP2-related parameters
24 STATES = init_WP2(strCues,SET);

Given the ear signals earSignals and the corresponding sampling frequency fsHz, the
actual processing is performed by the following function call:

1 % Perform WP2 computation
2 [SIGNALS,CUES,STATES] = process_WP2(earSignals,fsHz,STATES);

The returned structures SIGNALS and CUES contain all involved signal representations,
as well as the requested monaural and binaural cues, that are further processed by the
subsequent processing stages.

5.3 Blackboard system for analysing a single-source scenario

5.3.1 The Blackboard

Fig. 5.2 shows a graphical representation of the blackboard architecture that is implemented
for this demonstration scenario. The following sections give detailed descriptions about
individual components. The blackboard workspace is arranged into a hierarchy of five
layers:

• Layer 1: Signal is the lowest layer of the blackboard and provides raw signals that
the blackboard system analyses. It is divided into two sublayers: a) a signal layer
that provides waveform signal blocks; b) a periphery layer that provides signals from
an auditory periphery model.

• Layer 2: Acoustic Cues provide cues extracted from the periphery signals. Currently
spatial cues including ITDs, ILDs and interaural coherence (IC), and ratemap cues
are used by the blackboard.

• Layer 3: Location + Identity hypotheses is the layer for probability distributions
about possible source locations and possible identifications of certain sound classes.

• Layer 4: Confusion hypotheses are groups of locations where there could be a
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confusion.
• Layer 5: Perceptual hypotheses are perceived source locations after confusions

are resolved.

5.3.2 Knowledge Sources

The blackboard system includes eight KSs, each of which operates on different layers of
the blackboard. From bottom to top, they include:

Signal KS

The Signal KS is the most primitive of the knowledge sources. It is used to create “bottom-
up” waveform signal blocks for the blackboard when there are no “top-down” actions that
can be taken.

Precondition: This KS checks a flag on the blackboard which indicates that no further
actions can be taken and the system is ready for the next block. The precondition is
satisfied if this flag is set and there are unprocessed incoming signals.

Action: The KS creates a new waveform block and places it on the blackboard. The size
of a block can be specified by events that trigger this KS. The default block size is 500 ms.
The KS causes the blackboard to generate a NewSignalBlock event.

Periphery KS

The Periphery KS includes the bottom-up auditory processing provided by the WP2
framework. It consists of the gammatone filterbank and inner hair cell processing stages and
computes the corresponding auditory periphery signals for both ears and the normalized
interaural cross-correlation. The outputs from this stage form a new periphery signal
block.

Precondition: This KS is triggered by the NewSignalBlock event and checks if there are
unprocessed signal blocks on the blackboard.

Action: The KS creates periphery signal blocks and places them on the blackboard. The
KS causes the blackboard to generate a NewPeripherySignal event.
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5.3 Blackboard system for analysing a single-source scenario

AcousticCue KS

The AcousticCue KS extracts various acoustic cues, namely ITD, ILD, IC and ratemaps,
by using the corresponding processing functions that are provided byWP2.

Precondition: This KS is triggered by the NewPeripherySignal event and checks if there
are unprocessed periphery signal blocks on the blackboard.

Action: The computed ITD and ILD cues are placed on the blackboard as new evidence
for the localisation GM, along with the IC (currently not used, but will be incorporated in
future versions of the blackboard system) and ratemap cues which are the main input for
source identification.

Identity KS

An Identity KS has knowledge of acoustical cues for a certain sound class. Many Identity
KSs can be used concurrently, for instance one for each sound class to be identified. In this
demonstration, identification is done by a linear model trained with a SVM on separate
data.

Precondition: This KS is triggered by the NewAcousticCues event. The precondition
is met when new acoustical cues are placed on the blackboard which have not been
processed.

Action: The KS predicts, based on the incorporated model, whether the current sound
block is a member of the sound class this KS represents. An identity hypothesis is placed on
the blackboard and a blackboard event NewIdentityHypothesis is generated.

Location KS

The Location KS has knowledge of how spatial cues should appear at each azimuth location.
Here, it adopts a static GM which consists of an observed continuous random variable
that represents spatial features, and a hidden discrete random variable that represents all
possible location azimuths. An angular resolution of 5 degrees is used so that the cardinality
of the location variable is 72. The probability distribution for the features conditional upon
each location is modelled with Gaussian distributions. The GM parameters are estimated
from training data generated using the same simulation.

Precondition: This KS is triggered by the NewAcousticCues. The precondition is met
when new spatial cues are placed on the blackboard and have not been processed.
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5 Proof of concept

Action: The KS performs inference on the graphical model to compute posterior proba-
bilities of all the locations given the spatial cue observation (ITD and ILD). A location
hypothesis containing the probability distribution is then placed on the blackboard and a
blackboard event NewLocationHypothesis is generated.

Confusion KS

The Confusion KS checks location hypotheses from the same frame and decides whether
there is a confusion.

Precondition: This KS checks if new location hypotheses are put on the blackboard. The
precondition is satisfied if the new location hypotheses have not been processed.

Action: Location hypotheses from the same frame are examined for potential confusion. In
this demonstration scenario a confusion is identified if there are multiple location hypotheses
in one frame. When a confusion is identified, a confusion hypothesis is created which
includes all the competing locations and the blackboard event NewConfusionHypothesis is
triggered. When a confusion is not found, a perceived source hypothesis is created and the
NewPerceivedLocation event is triggered.

HeadRotation KS

The HeadRotation KS has knowledge on how to move the robotic head in order to solve
confusions in source localisation.

Precondition: This KS checks if there is already a scheduled head rotation. The
precondition is satisfied if there is a confusion and no head rotation has been sched-
uled.

Action: The KS stops the listening process and rotates the head by 10 degrees. After the
rotation is completed, it raises the blackboard flag indicating that the system is ready for
the next frame and generates an event ReadyForNextBlock.

ConfusionSolving KS

The ConfusionSolving KS solves localisation confusions by predicting the location prob-
ability distribution after head rotation, and comparing it with new location hypotheses
received after head rotation. If an hypothesised azimuth location reflects a true source
location, then the predicted location distribution and the observed distribution after head
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5.3 Blackboard system for analysing a single-source scenario

rotation should overlap at the location. Otherwise the hypothesised location is considered
a ‘ghost’.

Precondition: This KS searches the blackboard for an unprocessed confusion hypothesis.
The precondition is satisfied when new location hypotheses are placed on the blackboard
and the head orientation is changed from the value it had when the unprocessed confusion
hypothesis was created.

Action: The KS makes predictions of source locations after head rotation, based on the
confusing location hypotheses. The predicted locations are then checked with the new
location hypotheses after head rotation. A source location is selected when there is a
match and a source hypothesis is created and put on the blackboard. It is discarded if
a match does not exist. The KS also checks whether the discarded location hypothesis
is a ‘ghost’ from a front/back confusion, and the score of a ghost is added to the source
hypothesis.

5.3.3 Blackboard Monitor

The blackboard monitor maintains a register for blackboard events and an agenda. When
a blackboard event is triggered, the monitor identifies knowledge sources that have sub-
scribed to the event and their preconditions are checked. The knowledge sources ready
to respond to the event are added as actions to the agenda which are then ranked and
selected by the scheduler for execution. Table 5.1 shows all the events and corresponding
actions.

Table 5.1: Blackboard events and corresponding actions used in the agenda-based blackboard
system for scenario 1

Event Responding Knowledge Sources

ReadyForNextBlock Signal KS
NewSignalBlock Periphery KS
NewPeripherySignal AcousticCue KS
NewAcousticCues Location KS, Identity KS
NewIdentityHypothesis None
NewLocationHypothesis Confusion KS, ConfusionSolving KS
NewConfusionHypothesis HeadRotation KS
NewPerceivedLocation None
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Figure 5.2: The agenda-based blackboard architecture adopted for the demonstration scenario.
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5.4 Results

5.4.1 Sound localisation

Fig. 5.3 shows typical output from different layers of the blackboard system while localising
a single sound source. The bottom panels show binaural waveform signals received from the
left and right ears. Here the sound source is a speech signal located at 60◦ azimuth to the
right, and it is clear that the amplitude of the right ear channel is significantly higher than
that of the left ear channel. On top of the waveforms are the inner hair cell (IHC) signals
generated by the auditory periphery model, which divides the signals into a number of
frequency channels as shown along the Y-axis. These periphery signals form the basis from
which the monaural and binaural cues are extracted. The corresponding binaural cues,
namely the ITDs, ILDs and the IC are shown above as a function of the gammatone channel
index and the frame index, along with the monaural cue ratemaps.
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Figure 5.3: Typical output from the blackboard system at different layers while localising a single
sound source.

The upper left panel shows a location hypothesis – a probability distribution for different

39
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azimuth locations – produced by the Location KS based using just the ITD and ILD
cues. The 60◦ azimuth is clearly the most probable source position with a probabil-
ity close to 1. It is confirmed by the Confusion KS that there is no ambiguity here,
and 60◦ azimuth is output as the relative source position as shown in the upper right
panel.

Front/back confusion

Fig. 5.4 gives an example where the blackboard system has to solve front/back confusion.
Here a speech source is located at 30◦ azimuth. In the upper panel, the location hypothesis
produced by the Location KS exhibits a high location probability at both 30◦ and 150◦

azimuth, as a result of the front/back confusion. The confusion is identified by the
Confusion KS which triggers a confusion event and initiates a feedback pathway for a
head rotation request.
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Figure 5.4: Illustration of front/back confusion solving in the demonstration scenario. The upper
panel shows probability distribution for different positions for a source located at 30◦ azimuth,
and there clearly exists a ‘ghost’ at 150◦ azimuth. The lower panel shows the predicted location
distribution in dotted lines and the actual distribution after head rotation by 10◦. The two
distributions overlap at 30◦ azimuth which suggests a true source position.

The HeadRotate KS invokes head rotation and completes the feedback pathway. After
the head is rotated and new signals are received, the Location KS places a new location
hypothesis on the blackboard, as shown in the lower panel of Fig. 5.4. In order to solve
the front/back confusion, the ConfusionSolving KS makes a prediction of the new
distribution based on the location hypotheses before head rotation and this is shown as
dashed lines in the lower panel of Fig. 5.4. The two distributions overlap at the 30◦ azimuth
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and this azimuth is selected as the most likely source position. Since the 150◦ azimuth
before head rotation no longer exhibits a high probability in the new distribution it is
considered as a ‘ghost’.

5.4.2 Sound identification

Concerning the identification task, the blackboard system (in particular the Identity KSs),
produces hypotheses about sound event identities. Each Identity KS is responsible for
detecting one particular event class. In this demonstration, two Identity KSs are employed
with models to detect keys put on a table and knocking on a door, respectively. Figure
5.5 shows output of the blackboard system after having simulated a scene which included
various different sound events, displaying the hypotheses of the system (red) versus the
true labelings (green).
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Figure 5.5: Typical output from the blackboard sound event identification system. The red line
shows the times at which active identity hypotheses were put on the blackboard and their classes,
while the green line indicates the true label of the sounds at these times in the scene.
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6 Reference

6.1 WP2 reference

Processor Parameters (type) Options
timeProc.m fsHz(int)

bRemoveDC(boolean)
bNormRMS(boolean)

gammatoneProc.m fsHz(int)
flow(double)
fhigh(double)
nERBs(double)
n(double)

innerhaircellProc.m fsHz(int)
ihcMethod(char) ’hilbert’, ’halfwave’,

’bernstein’ or ’dau’
autocorrelationProc.m fsHz(int)

bBandpass(boolean)
bCenterClip(boolean)
ccMethod(char) ’clc’, ’cc’ or ’sgn’
ccAlpha(double)

crosscorrelationProc.m fsHz(int)
maxDelaySec(double)

Table 6.1: List of available signal processors. A detailed description of the individual processors
can be found in Section 3.3.
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6.2 WP3 reference

Class Parameters (type) Description
Blackboard.m scene(Scene) scene object describing the

simulated scene
SignalBlockKS.m bb(Blackboard) blackboard object

simParams(struct) struct containing the simula-
tion parameters

PeripheryKS.m bb(Blackboard) blackboard object
simParams(struct) struct containing the simula-

tion parameters
wp2States(struct) auditory frontend parameters

AcousticCuesKS.m bb(Blackboard) blackboard object
wp2States(struct) auditory frontend parameters

IdentityKS.m bb(Blackboard) blackboard object
modelname(char) name of the linear SVM

model to be used
LocationKS.m bb(Blackboard) blackboard object

gmName(char) name of the graphical model
to be used

dimFeatures(int) dimensionality of the feature
vectors

angles(int) vector of possible angular po-
sitions

ConfusionKS.m bb(Blackboard) blackboard object
ConfusionSolvingKS.m bb(Blackboard) blackboard object
RotationKS.m bb(Blackboard) blackboard object

simParams(struct) struct containing the simula-
tion parameters

BlackboardMonitor.m bb(Blackboard) blackboard object
Scheduler.m bm(BlackboardMonitor) BlackboardMonitor object

Table 6.2: List of available blackboard classes in the Matlab framework.
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Acronyms

ACF auto-correlation function

ASA auditory scene analysis

BEFT Bochum Experimental Feedback Testbed

BM basilar membrane

CCF cross-correlation function

CASA computational auditory scene analysis

ERB equivalent rectangular bandwidth

GM graphical model

HRIR head-related impulse response

ILD interaural level difference

ITD interaural time difference

IC interaural coherence

IHC inner hair cell

KS knowledge source

RMS root mean square

SSR SoundScape Renderer

WP1 work package one

WP2 work package two

WP3 work package three

WP4 work package four
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