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1 Executive summary

The goal of the Two!Ears project is to develop an intelligent, active computational
model of auditory perception and experience in a multi-modal context. The auditory
front-end (AFE) represents the first stage of the system architecture and concerns bottom-
up auditory signal processing, which transforms binaural signals into multi-dimensional
auditory representations. The deliverable D2.4 documents the final steps performed in WP2
in the first half of year 3 of Two!Ears. These comprise the implementation, documentation
and initial evaluation of additional binaural processors which are needed in the analysis
of dynamic spatial sound fields. On the one hand, a preprocessing stage is now provided
within the AFE which mimics the precedence effect processing. Another processor derives
the spatial sound field parameter apparent source width (ASW). Next to this software
development and implementation a number of evaluations, focusing on AFE functionality,
are included in D2.4. Next to the evaluation of the two new processors, three additional
evaluations and analyses are described. First, we demonstrate that replacing the linear
peripheral preprocessing by the nonlinear basilar-membrane processor has considerable
consequences for the binaural parameters interaural level difference (ILD) and interaural
cross-correlation (IACC). Furthermore, in terms of binaural localization, the influence of
training, and the use of head movements and the applied strategy are investigated and are
shown to be in good agreement with perceptual data. Finally, the use of AFE features for
pre-segmentation is analyzed for their ability to enhance noisy speech and is compared
with other state-of-the-art algorithms.
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2 The auditory front-end framework

This chapter summarizes the newest extensions of the AFE front-end with respect to the
two previous deliverables (D2.1, D2.2 and D2.3).

2.1 Apparent source width processor

The functional ASW model consists of various processing stages, including Gammatone
filtering, inner hair-cell (IHC) transduction and absolute threshold of hearing (ATH).
Given the binaural signal, the model extracts interaural time differences (ITDs), ILDs and
interaural coherence (IC), in order to predict ASW. A schematic diagram of the model is
shown in Fig. 2.1.
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Figure 2.1: Schematic diagram of the binaural ASW model.

2.1.1 Front-end

The binaural signals were first analyzed by a Gammatone filterbank to represent the
frequency selectivity of the basilar membrane. The 35 filters were set to a bandwidth
of one equivalent rectangular bandwidth (ERB) in the frequency range between 80 to
11891Hz. In the second stage, the IHC transduction was simulated, i.e. the loss of
phase locking to the stimulus fine structure at high frequencies. The IHC processing was
performed according to Bernstein et al. (1999), suggesting a cut-off frequency of 425Hz
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2 The auditory front-end framework

and simulating basilar-membrane compression. In a following stage, the activity in each
frequency band was estimated. The signals had been calibrated to a root mean square
(RMS) value corresponding to the 70 dB sound pressure level (SPL) of the experimental
stimuli. Frequency bands with an SPL below the ATH as defined in Terhardt (1979)
were not considered further in the processing. In the last stage, ITDs, ILDs and IC were
calculated per time-frequency (T-F) units. The signals of both ears were analyzed in
short-time hanning windows of 20ms duration, with an overlap of 50%, which resulted in
a T-F representation of each ear signal.

2.1.2 Back-end

The ASW estimation was based on the statistical distribution of the binaural cues. The
width of this distribution was represented by percentiles and resembled the ASW. Hereby,
the left- and right-most boundary of the sound source corresponded to the lower and
upper percentile from the distribution’s median. The final prediction of the left and right
boundaries was then obtained by calculating the mean value across all frequency channels
of the lower and upper percentile, respectively.
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Figure 2.2: ITD-percentiles (left panels) and ILD-percentiles (right panels) as a function of
frequency for a pink noise source. Shown are the [30 70]% percentiles (left and right pointing
triangles, respectively) and the the [10 90]% percentiles (squares and circles, respectively) for a
narrow (gray) and a wide source (red).

Figure 2.2 shows an example of the percentiles [30 70]% (left and right pointing triangles,
respectively) per frequency channel for ITDs (left panel) and ILDs (third panel) for a noise
source. The percentiles increase from a narrow source (narrow distribution in gray) to
a wide source (wide distribution in red), especially for the ITDs. Choosing percentiles
that are further away from the median, here illustrated for percentiles [10 90]% (squares
and circles, respectively), the values of the ITDs (top right panel) and ILDs (bottom right
panel) increase, but their dynamic range, i.e. the difference between the narrow and the
wide source, is similar. For the following analysis, the [30 70]% percentiles were chosen to
obtain a higher outlier rejection.
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2.2 Reconstruction

2.2 Reconstruction

Given the output of the Gammatone filterbank, it is possible to reconstruct the original
input signal by compensating for the frequency-specific delay of the individual subband
signals. First, the peak in the envelope domain can be aligned across all subband channels
by introducing a frequency-specific time lead (Brown and Cooke, 1994). In addition, a
phase compensation factor is necessary to align the peak in the fine structure across chan-
nels (Brown and Cooke, 1994). The Gammatone processor in the AFE has been extended
to support this phase compensation strategy, which can be activated by the flag fb_bAlign.
Such a reconstruction stage is particularly relevant in order to evaluate pre-segmentation
strategies, as described in section 3.5 and Deliverable D3.2.
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Figure 2.3: Frequency-specific output of a Gammatone filterbank: without phase and delay
compensation (top left panel), with phase compensation (top right panel), with delay compensation
(bottom left panel) and with delay and phase compensation (bottom right panel).

The impact of these different strategies is visualized in Fig. 2.3 and Fig. 2.4, which have
been produced by the script Demo_Gammatone_Reconstruction.m. The four panels in
Fig. 2.3 show the frequency-specific output of a Gammatone filterbank consisting of 64
filters spaced between 50 and 22050Hz in response to an impulse located at 23.2ms. The
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2 The auditory front-end framework

top left panel shows the output without delay and phase compensation. The impact of
the phase compensation can be seen in the top right panel, which ensures that the fine
structure of the subband signals is aligned across channels. The additional effect of the
delay compensation can be seen in the bottom left and bottom right panels without and
with phase compensation.

Finally, the compensation of the time delay can be combined with a frequency-specific
gain factor to ensure a flat frequency response of the analysis-synthesis system (Hohmann,
2002). The impulse response and frequency response of three Gammatone-based analysis-
synthesis systems is presented in Fig. 2.4. The output refers to a delay-compensated
Gammatone filterbank without phase compensation, which produces the largest deviations
when comparing it to the response of the input signal. The addition of the phase compen-
sation allows for a reasonably flat frequency response, although the absolute magnitude
is shifted with respect to the original input. When combining all three stages, namely
the delay, phase and gain compensation, a flat frequency response close to 0 dB can be
achieved.
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Figure 2.4: Impulse response (left panel) and frequency response (right panel) of an impulse
(input signal) and three Gammatone-based analysis-synthesis systems.

2.3 Modification of the precedence effect processor

The precedence effect model in the AFE, integrated from a stand-alone version based on
the work of Braasch (2013), was initially described in Deliverable D2.3. In attempts to
enable the use of this model in conjunction with the localization Knowledge Sources of the
Blackboard system, the initial AFE precedence effect model has undergone a modification.
The following subsections describe the details of the modification.
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2.3 Modification of the precedence effect processor

2.3.1 Overview of initial version

The operation of the initial version of the processor was described in D2.3. Assuming that
the input to the AFE comprises a delayed repetition (lag) of the original signal, the input
to the precedence effect processor is a binaural T-F signal chunk from the Gammatone
filterbank. The processor detects and removes the lags from the individual input signals,
by means of an autocorrelation mechanism and deconvolution. Then the ITD is derived
at all frequency channels from the cross-correlation between the lag-removed pair, and
the ILD is also derived at all frequency channels. Afterwards a pair of single ITD and
ILD values is calculated as the output, by integrating the ITDs and ILDs across the
frequency channels according to the weighted-image model (Stern et al., 1988), and through
amplitude-weighted summation.

2.3.2 Details of modification

However, the localization processes implemented within the blackboard system use either
ITD and ILD in T-F representation (Gaussian mixture model (GMM)-based localization,
see D3.2, section 5.1.1), or cross-correlation (CC) and ILD in T-F-lag and T-F represen-
tations (deep neural network (DNN)-based localization, see D6.1.2, section 4.2.1, and
D3.4, section 4.1.1). This prohibited the integration of the initial precedence effect pro-
cessor with the established localization models. Therefore, modifications were made such
that:

• the ITD and ILD outputs are now in T-F format, before the integration over frequency
channels

• a third parameter CC is added as an output, in the AFE-standardized format
(time-frequency-lag signal)

The rest, including the input signal configuration and parameters remain the same. Due
to the fact that the precedence effect processor has its own processing strategies to detect
and remove lags, the AFE-generic auto- and cross-correlation, ITD and ILD processors
could not directly be employed. Instead, as with the initial version, the processor supports
three binaural cues as the output, now in different formats.

Fig. 2.5 shows an example of deriving the binaural cues using the modified precedence effect
processor, from a binaural narrowband noise signal (800Hz wide around 500Hz center
frequency, applied ITD = 0.4ms, ILD = 0 dB, and 3ms inter-stimulus interval), whose
waveform is shown in Fig. 2.5a. Now the three output cues ITD, ILD and CC are in the
same format as those of the individual corresponding AFE-generic processors. Although
the output format such as in Fig. 2.5b is not supported any more, this can be easily derived
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2 The auditory front-end framework

from the CC, by finding the maxima over the lag values.
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2.3 Modification of the precedence effect processor
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Figure 2.5: Input and output of modified precedence effect processor demo: (a) input signal, (b)
ITD integrated over frequency channels over time frames, (c) ITD output as T-F representation, (d)
ILD output as T-F representation, (e) input signal for a single frame used for the CCF extraction
in (f).
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3 Evaluation

In this chapter the AFE is evaluated with respect to the two application scenarios, namely
dynamic auditory-scene analysis and quality of experience assessment.

3.1 Influence of level-dependent nonlinearity

Nonlinearity of the basilar membrane operation in response to changing input sound levels
is a well-known finding in peripheral auditory processing, as is reflected in the operation of
the dual-resonance non-linear (DRNL) filterbank in AFE. This motivates investigations
into potential consequences of the level-dependent nonlinearity in terms of variations in
binaural cues typically related to spatial perception. Therefore, simulations have been
conducted using the AFE software, to derive some binaural cues known to be dependent
upon the basilar membrane responses, with a view to revealing the effects of input level
caused by the nonlinear basilar membrane operation.

3.1.1 Simulation procedure

Three types of binaural stimuli were used for the simulation: 1-kHz tone, narrowband
diotic noise with 1-ERB bandwidth centered at 500 Hz, and the speech signal used for
the AFE processor examples in Deliverable D2.3. Various signal levels were applied by
means of controlling the presented ILD (referred to as "stimulus ILD" hereafter) around a
range of common reference level - 20 to 90 dB reference levels were introduced in 10 dB
steps, and for each reference level, 0 to 30 dB stimulus ILDs were applied in 3 dB steps.
The ILD was applied such that for example, reference level and ILD pair of (50 dB, 12 dB)
means that the left channel signal level is 56 dB and the right channel signal is 44 dB
RMS. As the output, ILD and IC were derived using the AFE framework, with the DRNL
filterbank model in place of the linear Gammatone filterbank model. These are the internal
representations, and therefore to be distinguished from those of the input signals. The
following subsections describe the results for the different input stimuli, examined in various
ways.
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3 Evaluation

3.1.2 Effect of nonlinearity: 1 kHz tone

Figure 3.1 shows an example of the input stimuli used (in the left panel), and the
result of the simulation for various reference levels and stimulus ILDs (in the right
panel).
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Figure 3.1: Binaural input signal for the simulation with 1 kHz tone (left panel), for the case
of 12 dB stimulus ILD applied at 50 dB RMS reference level, and the ILDs derived from the AFE
internal representaion for the tested stimulus ILDs and reference levels (right panel).

The effect of the compressive nonlinearity of the DRNL filterbank is seen, in that the
internal representation ILD becomes reduced, compared to the stimulus ILD, which would
not happen if the Gammatone filterbank is used. More specifically, when the reference level
is low at 20 dB, the compression of ILD from the stimulus to the internal representation is
rarely seen, indicating that both the left and right signal levels are not yet large enough to
reach the range where the basilar membrane is compressive. As the reference level increases
from 20 dB to about 50 dB, the internal representation ILD becomes more compressed
from the stimulus ILD, because both signal levels eventually reach the basilar membrane
compressive region. However, when the reference level increases further from 50 dB, a
release from the compression is observed. This is because depending on the applied ILD,
either or both signal levels increase outside the mid-level compressive nonlinear region.
Overall these findings imply that the ILDs actually perceived internally can be different
from the one presented at the ears, because of the nonlinear operation of the basilar
membrane.

3.1.3 Effect of nonlinearity: Bandpass noise

Figure 3.2 shows an example of the input stimuli used (in the left panel), and the result of
the simulation (in the right panel), in terms of the IC instead of the ILD as in the previous
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3.1 Influence of level-dependent nonlinearity

section which showed the same tendency. Here, the IC was initially derived over time for
the 500Hz frequency channel, and then averaged to display a single value per a (reference
level - stimulus ILD) pair for easy visual comparison.
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Figure 3.2: Binaural input signal for the simulation with the 500Hz centered 1-ERB wide
bandpass noise (left panel), for the case of 12 dB stimulus ILD applied at 50 dB RMS reference
level, and the IC derived from the AFE internal representation for the tested stimulus ILDs and
reference levels (right panel).

It can be seen that for low reference levels, increasing the stimulus ILD does not result in
any noticeable change in the IC. For reference levels above 30 dB, however, increase in
the stimulus ILD with a given reference level results in an overall decrease in the IC. At
the highest reference level, the overall IC values increase slightly from those for the 80 dB
reference level, implying the release from the basilar membrane compression at high signal
levels. It is known from a number of previous studies that the just noticeable differences
(JNDs) of interaural correlation can be as low as in the order of 0.01, although they vary
widely depending on the source type, frequency, level, and the starting reference value of
correlation for comparison (Kim et al., 2008). Therefore, the decrease in the IC, as a result of
simply varying the signal levels, may not be perceptually negligible.

3.1.4 Effect of nonlinearity: Speech

Finally, Fig. 3.3 shows an example of the speech input stimuli, which have been used for
the AFE processor example scripts in D2.3. Following the level convention (RMS value
of 1 in the signal corresponds to 100 dB SPL), the RMS levels of both channels are 51.3
and 55.4 dB for the left and right channels, respectively. For this simulation, the raw IC
is displayed in Fig. 3.4 rather than the time-averaged version, considering the irregular
fluctuation of the signal over time. In particular, the simulation output with the DRNL
filterbank in the left panel is drawn against the simulation output with the Gammatone
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3 Evaluation

filterbank in the right panel, for direct comparison of the two models in terms of the
internal IC.
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Figure 3.3: Binaural input signal for the simulation with the speech as used in the AFE examples
in D2.3. The signal levels are calculated following the level convention of the framework.
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Figure 3.4: The ICs derived from the AFE internal representaion for the tested speech stimulus
of Fig. 3.3, using the DRNL filterbank (left panel), and using the Gammatone filterbank (right
pannel) as the basilar membrane model.

Comparing the two plots of Fig. 3.4 shows that again the IC fluctuates to a wider extent
when the DRNL filterbank is used, in comparison to the Gammatone filterbank. The
reduction of the IC over time is irregular due to the fluctuation of input signal which may
or may not be compressed by the nonlinear basilar membrane operation. However, also in
this case the difference in the IC between the two cases can be perceptually noticeable,
considering the range of the JNDs.
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3.2 Sound source localization

3.1.5 Conclusions

As expected from the input-output characteristics of the DRNL filterbank, the ILDs derived
from the internal representation were in general smaller than the stimulus ILDs. The
amount of ILD reduction from the stimuli to the internal representation depended on the
reference level and the stimulus ILD, which finally determine the amount of compression
by the basilar membrane in either ear. It was also observed that the IC is affected by the
stimulus ILDs alone, which is not observed with linear peripheral models. The findings
suggest that the aspects of spatial perception which depend upon these binaural cues need
to incorporate this signal-level dependence, either in the scene analysis or in the quality
evaluation case. These simulation results motivate further perceptual investigations to
reveal how the human auditory system actually copes with these level-dependent variations
in binaural cues; whether these are perceived as such with potentially reduced resolution,
or compensated at another stage of auditory processing. One such example in the literature
is the level dependence of time-intensity trading ratios found with short pulses (Deatherage
and Hirsh, 1959). A similar experiment is currently under progress to investigate the
interaural time-intensity difference trading ratio in lateralization of auditory signals, at
varying overall presentation level, whose outcomes will be reported later in the final
deliverable under WP6.

3.2 Sound source localization

Sound source localization is achieved by learning a mapping between source direction and
the statistical distribution of binaural cues, namely ITDs and ILDs, that are extracted by
the AFE. To increase the robustness to room reverberation and competing sources, the
following multi-conditional training (MCT) procedure is applied (May et al., 2011, 2013,
2015b):

1. Mix an anechoic target signal located at a particular azimuth angle ϕk with diffuse
noise from all directions

2. Extract a binaural feature vector ~xt,f consisting of ITD and ILD at time frame t and
frequency channel f

3. Model binaural feature vector by a GMM λf,ϕk

The dynamic localization model is equipped with a hypothesis-driven feedback stage
which can trigger head movements in case when the sound source direction cannot be
unambiguously estimated (May et al., 2015b, Ma et al., 2015a,b). The head movement
strategy is illustrated in Fig. 3.5 and assumes that the number of active sound sources is
known a priori. Given an initial posterior distribution of the sound source azimuth (top

15



3 Evaluation

left panel), the number of local peaks across a pre-defined threshold are identified. If this
number of local peaks is larger than the a priori known number of active sound sources,
the azimuth information is assumed to be ambiguous, and consequently, a head movement
strategy is performed. The second posterior distribution after a 20 ◦ head rotation produces
again two prominent peaks at different azimuths (top right panel). Assuming stationary
sound source positions, the initial posterior distribution and the head rotation azimuth
can be used to predict the azimuth distribution after head movement. This is done by
aligning the two posterior distributions according to the head rotation angle. If a peak in
the initial posterior distribution corresponds to a true source positions, then it should have
moved towards the opposite direction of the head rotation and will appear in the second
posterior distribution. On the other hand, if a peak is due to a phantom source as a result
of front-back confusion, it will not appear at the same position in the second posterior
distribution. By exploiting this relationship, potential phantom peaks are eliminated from
both posterior distributions, as illustrated in the bottom left panel of Fig. 3.5. The final
localization is performed based on the average of both posterior distributions, as shown in
the bottom right panel.
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Figure 3.5: Illustration of the head movement strategy. Top left) posterior probability where two
candidate azimuths are identified above the threshold. Top right) posterior probability after head
rotation by 20 ◦. Bottom left) Align posterior distributions and remove phantom peaks. Bottom
right) Averaged posterior indicating true sound source location.
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3.2 Sound source localization

3.2.1 Influence of multi-conditional training

The localization accuracy is shown in Fig.3.6 for various sets of binaural room impulse
responses (BRIRs) when localizing one, two and three competing speakers. When the local-
ization model was trained with clean ITDs, the gross accuracy was only around 30%. The
joint evaluation of ITDs and ILDs improved performance considerably, in particular in ane-
choic conditions. When using the MCT approach, the system was substantially more robust
in multi-talker scenarios and in the presence of room reverberation.
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Figure 3.6: Gross accuracy in % for various sets of BRIRs when localizing one, two and three
competing speakers.

3.2.2 Influence of random head movements

To quantify the influence of random head movements, the percentage of quadrant errors is
presented in Fig. 3.7 for the three previously tested localization models. It is apparent that
the head movement strategy systematically reduced the amount of front-back confusions
for all models. This indicates that head rotations provide complementary cues that can be
effectively exploited by the localization model to disambiguate sources positioned in the
front and in the rear hemifield.
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Figure 3.7: Percentage of quadrant errors for the three localization models with and without
head movements averaged across rooms and the number of speakers.

3.2.3 Influence of head movement strategy

As opposed to random movements, listeners tend to move their head towards the position
of a sound source for improved localization (Perrett and Noble, 1997). Therefore, the
following strategies were evaluated: (1) no movement; (2) random movement; (3) rotate
exactly to the location of the most likely (ML) source.

The RMS-error is shown in Fig. 3.8 for these three strategies for two different signal
durations (0.5 and 2 s). It can be seen that the signal duration did not have a strong effect
for the “No movement” baseline. However, both head rotation systems benefited greatly
from having longer signals for localization. Clearly, the best performing strategy was to
rotate the head towards the most likely source direction.

3.2.4 Conclusions

The MCT of binaural cues was shown to allow for robust localization in the presence of
multiple competing sound sources. Furthermore, the approach generalizes to unseen head-
related transfer functions (HRTFs), unseen rooms and unseen number of target sources.
In addition, an effective head movement strategy was implemented which substantially
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Figure 3.8: RMS-error in degrees of three localization systems that exploit either no rotation, a
random rotation or a rotation towards the most likely (ML) source position by 60 ◦. Results are
shown for two different signal durations (0.5 s and 2 s).

reduced the amount of front-back confusions. Finally, it was shown that rotating the
head towards the most likely source position is most effective strategy and consistent with
perceptual studies.

3.3 Precedence effect

The performance of the modified precedence effect processor was tested further using other
types of input signals than described earlier in chapter 2.

3.3.1 Test with anechoic speech and synthesized lag

Firstly, the precedence effect processor was run with a speech signal with an artificially
created lag. More specifically, the anechoic speech signal in the AFE IC example of D2.3
was used as the direct sound. Then a lag was created by shifting the left and right signals,
suppressing and delaying them by 3 dB and by 4ms. This lag was added to the original
signal to create the input signal. Figure 3.9a shows the resultant input to AFE. The
plots of Fig. 3.9 are drawn in the same manner as Fig. 2.5. Although the ITD and ILD
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plots as T-F representation vary over time and frequency, making it difficult to observe a
clear tendency, Figs. 3.9b and 3.9f show that the processor detects the ITD to be around
0.3ms.

3.3.2 Test with reverberant speech

Secondly, the precedence effect processor was run with the reverberant speech signal in the
AFE IC example of D2.3. Figure 3.10a shows the input to AFE, and the rest of Fig. 3.10
are drawn in the same manner as Fig. 3.9. It is now seen that the ITD and ILD in T-F
representation fluctuate more. Nevertheless, Figs. 3.10b and 3.10f show that the the ITD
is around 0.3ms, similar to the results of Figs. 3.9b and 3.9f. Although this is based on
frame-based direct calculation, adequate low-pass filtering can be applied to remove the
fluctuations for better localization.

3.3.3 Conclusions

The modified precedence effect processor was tested with two versions of speech-based
input signals, in the same manner as in the example in chapter 2. In both cases, the
ITD based on the CCF summed over frequency channels seems to have been detected in
the right range, although with some errors. The T-F representations in general made it
less clear to conclude single ITD and ILD over time, due to the variation of the input
signal across time and frequency. The precedence effect processor seems to be reasonably
robust for these two cases, which can be considered possibly more realistic than the initial
example using bandpass noise. However, further validation is desirable with a variety of
more realistic signals - with larger ranges of number of reflections, lag arrival time, and
amplitudes for instance. Also, more tests in conjunction with the localization modules in
the blackboard system will reveal the usefulness of this modified precedence effect processor
in various scene configurations including room characteristics, number of sources, and tasks
to be performed.
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Figure 3.9: Input and output of modified precedence effect processor with an anechoic speech
signal and a synthesized lag: (a) input signal, (b) ITD integrated over frequency channels, (c) ITD
output as T-F representation, (d) ILD output as T-F representation, (e) input signal for a single
frame used for the CCF extraction in (f).
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Figure 3.10: Input and output of modified precedence effect processor with a reverberant speech
signal: (a) input signal, (b) ITD integrated over frequency channels, (c) ITD output as T-F
representation, (d) ILD output as T-F representation, (e) input signal for a single frame used for
the CCF extraction in (f).
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3.4 Prediction of apparent source width

3.4 Prediction of apparent source width

The perceived horizontal extent of sound sources is typically described by the apparent
source width (ASW). According to literature, three binaural cues are mainly contributing
to ASW: The ITDs and the ILDs which are also important for determining the loca-
tion of a sound source in the horizontal plane (see section 3.2), and the IC. Due to
reflections in rooms and from the head and torso of the listener, all three cues fluctu-
ate over time. With increasing amount of room reflections, the IC decreases and larger
variations in ITDs and ILDs occur, leading to an increased ASW. The psychophysical
relation between these three binaural cues and ASW can be exploited by binaural auditory
models.

Traditional models of ASW have been used to evaluate the quality of concert halls by
analyzing the IACC function (Ando, 2007). Based on the IACC, the IC is extracted as the
absolute maximum value normalized by the RMS value of the left- and right-ear signals.
Hereby, an inverse relation between IC and ASW exists. Okano and colleagues proposed
a frequency-specific weighting of the IC, termed IACCE3, that averages the IC in three
octave bands 0.5, 1 and 2 kHz (Okano et al., 1995).

Blauert and Lindemann suggested that both, ITD and ILD fluctuations, contribute to
ASW (Blauert and Lindemann, 1986). They combined the standard deviation of both cues
with equal weights and reported a higher correlation with perceptual data (r = 0.75) as
opposed to an IC-based model (r = 0.61). Later, Mason et al. (2005) developed an ASW
model that combined both ITDs and ILDs according to the duplex theory, by using ITDs
at low frequencies and ILDs at high frequencies (Mason et al., 2005).

The ability of the ASW processor described in section 2.1 to predict the perceived horizontal
extent of sound sources has been evaluated (Käsbach et al., 2016). Specifically, the
generalizability was assessed by comparing the model performance across two experimental
datasets that were obtained for band-limited and broadband noise, as well as speech and
music signals. In addition, it was investigated whether (i) correlation-based approaches, i.e.
using IC or ITDs are sufficient for the estimation of ASW, (ii) their suggested frequency
regions, i.e. three octave bands at 0.5, 1 and 2 kHz or below 2 kHz, are optimal in such
approaches or whether high-frequency IC or ITDs also contribute to ASW and (iii) a model
combining ITDs and ILDs (as suggested by Blauert and Lindemann (1986), Mason et al.
(2005)) is feasible.

3.4.1 Summary of the perceptual studies

Two previously conducted studies on ASW perception (Käsbach et al., 2014, 2015), in
the following referred to as Exp. A and B, were considered here to develop and evaluate
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models of ASW perception. Distinct sensations of ASW were generated by using stereo
loudspeaker setups. In such a setup, the listener perceives a phantom sound image in the
center of the two loudspeakers.

Figure 3.11: Sketch of the experimental set-up. The loudspeaker pairs generate a phantom source
at 0 ◦. Listeners were asked to indicate the ASW in degree, for both boundaries of the source
image. For further details, see Käsbach et al. (2014) and Käsbach et al. (2015).

The ASW was measured as a function of the physical source width (PSW) which was
controlled by two experiment-specific settings, the loudspeaker layout and applied signal
processing. In the measurement procedure, listeners indicated the perceived ASW on a
degree scale as illustrated in Fig. 3.11. In Exp. B, listeners could indicate the left and right
most boundary of the sound source separately, whereas in Exp A, the response had to be
given symmetrically. In the present study, only 3 source signals per experiment were used.
In Exp. A, the stereo setup at an angle of ±30 ◦ was used indicated by the red dashed
rectangles in Fig. 3.11. Five distinct PSW values, denoted by PSW #1 to PSW #5, were
generated by varying the coherence between the two loudspeaker channels accordingly to
ICLS = [1 0.8 0.6 0.3 0]. The source signal was either Gaussian white noise, band-pass
filtered with a bandwidth of 2 octaves at a center frequency of 0.25 kHz or high-pass (HP)
filtered at 8 kHz. The stimuli had a duration of 4 s and were presented at 70 dB SPL.
In Exp. B, the PSW was controlled by varying the angle between the stereo speakers.
In addition, a source widening algorithm was applied as described in Zotter and Frank
(2013). Specifically, a line-array of 3 stereo loudspeaker pairs (Type Dynaudio BM6) plus
an additional loudspeaker in the center of the array was used as indicated by the gray
rectangles in Fig. 3.11. In total, five distinct PSW values were generated. The source
signals were pink noise, male speech and a guitar sample. The stimuli had a duration of
6 s and were presented at 70 dB SPL.

In Fig. 3.12, the perceived ASW as a function of PSW averaged across listeners is shown
for Exp. A (left panel) and Exp. B (right panel). The error bars represent the standard
deviation across listeners. It can be seen that ASW increases with increasing PSW. In
Exp. A (left panel), the different signal types (represented by the different symbols and
line styles) show similar results with a tendency that the bandpass-filtered signal at 250Hz
and the white noise signal were perceived with larger ASW than the HP filtered signal at
8 kHz. In a statistical analysis with a linear mixed-effects model, the factor PSW showed a
similar effect size (F(4, 48) = 113.6, p < 0.001) compared to the factor source signal (F(4,
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42) = 97.2, p < 0.001) which was larger than the interaction of both (F(16, 2436) = 21, p
< 0.001). In Exp. B (right panel), it can be seen that ASW increases as well with PSW in
a similar manner as in Exp. A. Small differences can be seen between the source signals,
such that the noise source was generally perceived to have a larger ASW than the speech
and guitar signals. In a statistical analysis with a linear mixed-effects model, the factor
PSW showed a dominating effect size (F(4, 20) = 110, p < 0.001) compared to the factor
source signal (F(2, 719) = 31.8, p < 0.001) and the interaction of both (F(8, 718) = 9.5, p
< 0.001).
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Figure 3.12: Perceptual results of ASW for Exp. A (left panel) and Exp. B (right panel) in
degrees. ASW is shown as a function of the PSW, denoted by ASW #1 (narrow) to #5 (wide).
Plotted are the mean and standard deviation. The different symbols and line styles represent the
different source signals.

3.4.2 Model configurations

A variety of different configurations of the back-end (see section 2.1.2) was considered.
The first back-end, termed DUPLEX, combined the percentiles of the ITDs and ILDs
according to the duplex theory (Macpherson and Middlebrooks, 2002) which was motivated
by Blauert and Lindemann (1986) and Mason et al. (2005). The combination of both
binaural cues required the normalization of each cue. ITDs were normalized by 1.1ms
and ILDs by 12 dB SPL, which corresponded to the observed maxima, respectively, in
the percentiles across stimuli. According to the duplex theory, ITDs contribute up to
1.5 kHz and ILDs contribute above this frequency value. The final prediction of the left
and right boundaries was then obtained by calculating the mean value across all frequency
channels of the lower and upper percentile, respectively. In a second back-end, termed
ITDlow, only the ITD-percentiles were analyzed with an upper frequency limit of 2 kHz
according to van Dorp Schuitman et al. (2013). The third back-end used the IC for the
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ASW prediction, termed ICE3, resembling a short-term analysis of the IACCE3. In total,
16 Gammatone filters of the front-end were selected corresponding to the frequency range
between 0.35 to 2.83 kHz, defined by the octave-wide filters in IACCE3 at 0.5, 1 and 2 kHz.
The frame-based values of IC were averaged with equal weights across all frames and
frequency channels. The IACCE3 according to Okano et al. (1995) served as a reference.
A calibration stage was required to map the output of each model to ASW in degrees.
Using a linear fitting approach, the calibrated model output was ycal = ay+ b, where a is a
sensitivity parameter, b an offset and y the uncalibrated model output. For the calibration
two data points were used, PSW #1 and PSW #5 of the white noise stimulus in Exp.
A.

3.4.3 Modeling results

The individual model performance was accessed by calculating Pearson’s correlation
coefficient r2 and the RMS-error between the calibrated model outputs and all experimental
data (left and right boundaries), i.e. for Exps. A and B including all source signals. The
corresponding values are displayed in Tab. 3.1. In general, all four models provided a high
correlation with the perceptual data (ranging from r2 = 0.92 to r2 = 0.97). This is due
to the fact that PSW is the dominating factor compared to the source stimulus which is
captured correctly by all models.

#
P

S
W

1

2

3

4

5

1-IACC
E3

0.25 kHz

white

8 kHz

#
P

S
W

1

2

3

4

5

1-IC
E3

#
P

S
W

1

2

3

4

5

1-IACC
E3

noise
speech
guitar

#
P

S
W

1

2

3

4

5

1-IC
E3

#
P

S
W

1

2

3

4

5

ASW [degree]

-60 -40 -20 0 20 40 60

ITD
low

#
P

S
W

1

2

3

4

5

ASW [degree]

-60 -40 -20 0 20 40 60

DUPLEX

#
P

S
W

1

2

3

4

5

ASW [degree]

-60 -40 -20 0 20 40 60

ITD
low

#
P

S
W

1

2

3

4

5

ASW [degree]

-60 -40 -20 0 20 40 60

DUPLEX

Figure 3.13: Modeling results of ASW for Exp A (left panels) and Exp B (right panels) in degrees.
From top to bottom: 1− IACCE3, 1− ICE3, ITDlow and DUPLEX. ASW is shown as a function
of the PSW, denoted by ASW #1 (narrow) to #5 (wide). The different symbols and line styles
represent the different source signals.

In Fig. 3.13, the outputs of the four tested models, IACCE3, ICE3, ITDlow and DUPLEX
are presented for Experiment A (left panels) and for Exp B (right panels). Note that the
first two models are inversely proportional to ASW and are therefore shown as 1− IACCE3
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and 1− ICE3, respectively. Further, both models produced a single output value and are
therefore shown with a symmetric ASW. It can be seen that all models are able to predict
the general trend in the data, i.e. that the perceived ASW increases with PSW. Differences
occur with respect to the slopes of the predicted boundaries of the ASW and between source
signals. The IACCE3 model achieves the highest correlation of the considered models with
r2 = 0.97 (r = 0.98 which corresponds to the findings in Zotter and Frank (2013)) due to
the fact that it captures the dynamic range in ASW correctly, i.e. the difference between
smallest and largest ASW, for both experiments. However, the model does not capture the
increase in ASW for PSW #5 in Exp. B and does only reveal minor differences between
the source signals. Considering the model denoted by ICE3, the performance decreases
to r2 = 0.92. This indicates that a short-term analysis of the IC (including the IHC and
ATH model stages) and a higher frequency resolution (16 Gammatone filters as opposed
to 3 octave-wide filters in IACCE3) are not required to account for the perceptual data.
The ICE3 predictor has a reduced sensitivity, i.e. a more shallow slope of the boundaries.
However, it partially captures source signal differences in Exp. A, e.g. larger ASW for low
frequencies (blue circles) compared to high frequencies (green diamonds), but contradicts
the data for the noise source (black rectangles). The ITDlow model’s performance is with
r2 = 0.94 between the ICE3 and IACCE3 models. Since both the IC-based models and
ITDlow are extracted from the IACC, this result is plausible. Its output shows a dynamic
range similar to that in the data and is also more asymmetric due to the fact that the
boundaries are estimated separately by the corresponding percentiles, such that a potentially
asymmetric head and torso simulator (HATS) positioning becomes more crucial. Hence,
prediction errors are caused by the asymmetric output and an overestimation in case of the
speech and guitar source signals in Exp B. In Tab. 3.1, the performance of the IACCE3,
ICE3 and ITDlow models is also shown for the case when including the entire bandwidth
for the analysis (denoted with the subscript ’broad’). The corresponding performance is
decreased compared to their low frequency estimates. Interestingly, the IACCbroad and
ICbroad result both in r2 = 0.88, indicating that it becomes irrelevant whether a long- or

Table 3.1: Model performances in terms of correlation coefficient r2, r, RMS-error and AIC.
Model r2 r RMS-error [◦] AIC (dof = 13)

IACCE3 0.97 0.98 4.3 159
IACCbroad 0.88 0.94 8.7 -
ICE3 0.92 0.95 10.5 128
ICbroad 0.88 0.94 14.7 -
ITDlow 0.94 0.96 6.4 136
ITDbroad 0.91 0.95 7.9 -
DUPLEX 0.92 0.95 7.9 137
DUPLEXshort 0.87 0.93 13.1 -
ILD 0,77 0.88 12.7 -
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short-term analysis is performed in this case. The ITDbroad model results in r2 = 0.91.
This suggests that high-frequency components in IACC-based measures do not provide
useful information for ASW. The DUPLEX model provides a similar output as the ITDlow

model, but performance decreases to r2 = 0.92. Therefore, adding ILDs in the analysis
does not provide a further benefit.

The presented ASW models, IACCE3, ICE3, ITDlow and DUPLEX were compared in a
statistical analysis. A 3-way analysis of variance (ANOVA) was performed using the model
type, PSW and source signal as factors. In contrast to the correlation coefficient r2, this
allowed for a more detailed model analysis across both factors PSW and source signal.
The evaluation was based on the AIC (using 13 degrees of freedom, dof = 13) which is
a relative criterion, whereby a lower AIC indicates a better model performance. In such
an analysis, listed in Tab. 3.1, the ICE3 model performed best (AIC = 128), the ITDlow

and the DUPLEX provided similar performance (AIC = 136 and 137, respectively) and
the IACCE3 (AIC = 159) model performed less well. However, in a post-hoc analysis with
Bonferroni correction (correction factor of 4), no significant differences (pposthoc < 0.05)
between the models could be revealed.

3.4.4 Conclusions

In this study, two experiments were presented where the ASW was measured as a function
of the PSW. The stimuli were analyzed by four binaural functional models to predict ASW.
A model that combines ITDs and ILDs according to the duplex theory (DUPLEX) was
compared to other existing approaches in the literature, i.e. IACCE3, ICE3, and ITDlow.
Models based on the interaural cross-correlation function (either extracting IC or ITD)
produced similar results for the estimation of ASW. The best performance was obtained by
a long-term analysis of the binaural signals using the IACCE3. Apparently, the signals were
stationary enough such that a long-term analysis was sufficient. The previously suggested
frequency regions for the analysis with cross-correlation based models seems optimal,
i.e. averaging across three octave bands at 0.5, 1 and 2 kHz for the IACCE3 and ICE3

models and considering frequencies only below 2 kHz for the ITDlow model. Adding higher
frequency components deteriorated the ASW estimation in all models. The DUPLEX
model that also included ILDs could not provide any further benefit in the ASW estimation,
possibly due to the stationary character of the chosen stimuli.
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3.5 Pre-segmentation based on amplitude modulation
features

The pre-segmentation stage based on amplitude modulation spectrogram (AMS) features,
as described in Deliverable D3.2 (see section 4.1.2), has been evaluated with respect to
its ability to enhance noisy speech in challenging acoustic conditions (May et al., 2015a,
Bentsen et al., submitted).

Despite substantial research efforts that focused on the development of noise reduction
algorithms over the past decades, the improvement of speech intelligibility in noisy condi-
tions remains a challenging task (Hu and Loizou, 2007, Hilkhuysen et al., 2012). Assuming
a priori knowledge about the target speech and the interfering noise, it is possible to
construct an ideal binary mask (IBM) which separates the T-F representation of noisy
speech into target-dominated and masker-dominated T-F units. The IBM has been shown
to significantly improve speech perception in noisy conditions (Anzalone et al., 2006, Wang
et al., 2008, Kjems et al., 2009). The IBM produces intelligible speech when a resolution of
about 12 - 16 frequency channels is used (Wang et al., 2008, Li and Loizou, 2008). At the
same time, the manipulation of individual T-F units should be performed with a temporal
resolution of at least 15ms, in order to produce significant speech reception threshold
(SRT) improvements (Anzalone et al., 2006).

Unfortunately, the IBM is not available in practice and, hence, needs to be estimated
based on the noisy speech. In that context, the aforementioned requirements regarding the
spectral and temporal resolution determine the bandwidth and the window size with which
an estimated binary mask (EBM) should be obtained. In contrast to IBM processing,
where the T-F manipulation can be performed at an arbitrarily high temporal resolution
(e.g. on a sample-by-sample basis (Anzalone et al., 2006)), algorithms which try to derive
an EBM typically operate on window durations between 20ms Han and Wang (2011) and
90ms Gonzalez and Brookes (2014).

Several previous studies have employed the extraction of AMS features with linearly-scaled
modulation filters (Han and Wang, 2011, Kim et al., 2009, May and Dau, 2013, May
and Gerkmann, 2014). Recently, it has been shown that a speech segregation system
based on logarithmically-scaled AMS features, inspired by auditory processing principles,
is superior to the linear AMS feature representation and can estimate the IBM with high
accuracy (May and Dau, 2014a). One critical parameter is the window duration in the AMS
feature representation. Modulation-based processing commonly involves longer analysis
windows to fully resolve a period of low-frequency modulations within a single analysis
window (e.g. 250ms to analyze one period of 4Hz modulations). This seems important for
the ability to estimate speech-dominated T-F units, since it is known that low-frequency
modulations are important for speech perception in the presence of stationary background
noise (Drullman et al., 1994). In addition, a longer analysis window may also improve

29



3 Evaluation

the accuracy of the EBM, since more information can be extracted from the noisy speech.
However, a longer analysis window will introduce temporal smearing, which, in turn, may
limit the effectiveness of manipulating individual T-F units.

Despite high levels of interfering noise, speech-dominated T-F units tend to cluster in
spectro-temporal regions, forming so-called glimpses, and the size of these glimpses has
been shown to correlate well with speech intelligibility scores from normal-hearing lis-
teners (Cooke, 2006). Consequently, many computational segregation systems exploit
contextual information, either implicitly through the use of delta features (Han and Wang,
2011, Kim et al., 2009), or explicitly, by incorporating a spectro-temporal integration
stage (May and Dau, 2013, 2014a, Healy et al., 2013). However, the interaction between
the window duration and the spectro-temporal integration stage and its impact on speech
segregation performance has not yet been clarified.

The goal of the present study is, therefore, to investigate the influence of the window
duration on computational speech segregation based on auditory-inspired modulation
features. Specifically, the interaction between window duration, estimation accuracy
of the EBM and predicted speech intelligibility is analyzed. Moreover, the influence
of a spectro-temporal integration stage is examined. The estimation accuracy of the
EBM is measured using a technical classification measure (the hit rate minus false alarm
rate) (Kim et al., 2009). In addition, the predicted intelligibility of the reconstructed target
speech is evaluated using the short-time objective intelligibility (STOI) metric (Taal et al.,
2011).

3.5.1 Computational speech segregation

The segregation system consisted of a Gammatone-based analysis and synthesis stage. In
the analysis stage, the noisy speech was sampled at a rate of 16 kHz and decomposed into
31 frequency channels using a Gammatone filterbank. The center frequencies were equally
spaced on the ERB scale between 80 and 7642Hz. The envelope in each frequency channel
was extracted by half-wave rectification and further smoothed by a second-order low-pass
filter with a cutoff frequency of 1 kHz to roughly simulate the loss of phase-locking in
the auditory system towards higher frequencies. Based on this auditory spectrogram-like
representation, a set of AMS features was extracted. A two-layer segregation stage was
trained to discriminate between speech-dominated and noise-dominated T-F units by
exploiting a priori knowledge about the AMS feature distribution corresponding to speech
and noise activity (May and Dau, 2014a). This segregation stage produced an EBM that
was applied to the individual subbands of the noisy speech in the synthesis stage in order
to attenuate noise-dominated T-F units.
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AMS feature extraction

Prior to the AMS feature extraction, each subband envelope was normalized by its median
computed over the entire sentence. This normalization stage was shown to be crucial in order
to deal with effects of room reverberation, spectral distortions and unseen signal-to-noise
ratios (SNRs) (May and Gerkmann, 2014, May and Dau, 2014a).

Each normalized subband was then analyzed by a modulation filterbank, consisting of a
first-order low-pass filter and second-order band-pass filters whose center frequencies were
logarithmically spaced up to 1024Hz (May and Dau, 2014a). The bandpass filters were
assumed to have a constant Q-factor of 1, inspired by findings in auditory modeling (Ewert
and Dau, 2000). The cutoff frequency of the modulation low-pass filter fLP was set to the
inverse of the window duration Tw, to ensure that at least one period of the modulation
frequency was included in the analysis window. The modulation power was measured for
each frequency channel by computing the RMS value within each time window at the
output of each modulation filter.

Segregation stage

In order to discriminate between speech-dominated and noise-dominated T-F units, a
two-layer segregation stage was employed, which consisted of a GMM classifier combined
with a spectro-temporal integration stage based on a support vector machine (SVM)
classifier (May and Dau, 2014a). First, a GMM classifier was trained for each individual
frequency channel f to model the AMS feature distribution of speech-dominated and
noise-dominated T-F units, denoted by λ1,f and λ0,f . Given the AMS feature vector
X (t, f) for a particular time frame t and frequency channel f , the a posteriori probability
of speech and noise presence was computed by

P (λ1,f |X (t, f)) =
P(λ1,f)P(X(t,f)|λ1,f)

P (X(t,f)) , (3.1)

P (λ0,f |X (t, f)) =
P(λ0,f)P(X(t,f)|λ0,f)

P (X(t,f)) , (3.2)

where the two a priori probabilities P (λ0,f ) and P (λ1,f ) were computed by counting the
number of feature vectors during training. The EBM without spectro-temporal integration
was estimated by comparing the two a posteriori probabilities of speech and noise presence
for each individual T-F unit

M (t, f) =

{
1 if P (λ1,f |X (t, f)) > P (λ0,f |X (t, f))
0 otherwise.

(3.3)

In the second layer, the a posteriori probability of speech presence P (λ1,f ) was considered
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as a new feature spanning across a spectro-temporal integration window, and subsequently
learned by a SVM classifier (May and Dau, 2014a). The output of this second classification
layer represented the EBM with spectro-temporal integration.

Waveform synthesis

Before the EBM was applied to the noisy speech, a lower limit β was incorporated. This
flooring limited the amount of noise attenuation, but reduced the impact of distortions
(musical noise) caused by the binary processing (Anzalone et al., 2006). A flooring value of
β = 0.1, corresponding to 20 dB attenuation, was considered appropriate. This frame-based
EBM was then interpolated to a sample-based EBM. Transitions in the EBM from speech-
dominated to noise-dominated units or noise-dominated to speech-dominated units were
smoothed by a raised-cosine window (Wang and Brown, 2006). Then, the sample-based
EBM was applied to the subband signals of the noisy speech. To remove across-frequency
phase differences, the weighted subband signals were time-reversed, passed through the
corresponding Gammatone filter, and time reversed again (Wang and Brown, 2006, Brown
and Cooke, 1994). Finally, the target signal was reconstructed by summing up the weighted
and phase-aligned subband signals across all frequency channels.

3.5.2 Evaluation

Stimuli

Noisy speech was created by corrupting randomly selected male and female sentences
from the TIMIT corpus with one of four different noise signals, from which a random
segment was selected for each sentence. The noise was switched on 250ms before the speech
onset and was switched off 250ms after the speech offset. The following noise types were
used: two types of speech-shaped noise (SSN) (stationary ICRA1-noise and non-stationary,
speech-modulated ICRA5-noise; (Dreschler et al., 2001)), 8-Hz amplitude-modulated pink
noise and a recording of a cracking oak tree with wind noise1. The noise signals were split
in two halves of equal size to prevent any overlap between the signals used during training
and testing, which would result in an overly optimistic segregation performance (May and
Dau, 2014b).

1 Recording taken from www.freesound.org/people/klankbeeld/sounds/211776/
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Model training

The GMM classifier described in section 3.5.1 was trained with randomly selected sentences
from the training set of the TIMIT corpus (Garofolo et al., 1993) that were corrupted with
one of the four background noises at −5, 0 and 5 dB SNR. As explained in section 3.5.2,
the number of sentences involved in the training depends on the AMS feature configuration
(see Tab. 3.2). A local criterion (LC) of −5 dB was applied to the a priori SNR in order to
separate the AMS feature distribution into speech-dominated and noise-dominated T-F
units. The SVM-based spectro-temporal integration stage consisted of a causal, plus-shaped
integration window spanning across 9 adjacent frequency channels and 3 time frames (May
and Dau, 2014a). A linear SVM classifier (Chang and Lin, 2001) was trained with 10
sentences mixed at −5, 0 and 5 dB SNR. Afterwards, new SVM decision thresholds were
obtained that maximized the hit minus false alarm (HIT-FA) rate (Han and Wang, 2011)
on a validation set of 10 sentences mixed at −5, 0 and 5 dB SNR. A separate GMM and
SVM classifier was trained for each noise type.

Model evaluation

The segregation system was evaluated with 60 randomly selected sentences from the testing
set of the TIMIT corpus mixed with the four different background noises at −5, 0 and 5 dB
SNR. The segregation performance was assessed by comparing the EBM with the IBM.
Specifically, the hit rate (HIT; percentage of correctly identified speech-dominated T-F
units) minus the false alarm rate (FA; percentage of erroneously classified noise-dominated
T-F units) was reported. In addition, the predicted intelligibility of the reconstructed
speech signal was compared to the clean speech signal using the STOI metric (Taal et al.,
2011), which has been shown to correlate with subjectively-measured speech intelligibility
scores. For the STOI evaluation, the 250ms noise-only segments at the beginning and the
end of each sentence were discarded.

Moreover, the segregation system was compared to an short-time discrete Fourier transform
(STFT)-based speech enhancement algorithm. Specifically, the log-minimum mean square
error (MMSE) noise reduction algorithm2 (Ephraim and Malah, 1985) combined with
the MMSE-based noise power estimation algorithm (Gerkmann and Hendriks, 2012) was
used. The complete 250ms noise-only segments before speech onset were used to properly
initialize the noise power estimation.

2 Matlab implementations were taken from the Voicebox toolbox provided by M. Brookes: www.ee.ic.
ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Table 3.2: AMS feature settings.
Tw Ts fLP # dim. # sentences

256ms 64ms 4Hz 9 960
128ms 32ms 8Hz 8 480
64ms 16ms 16Hz 7 240
32ms 8ms 32Hz 6 120
16ms 4ms 64Hz 5 120
8ms 2ms 128Hz 4 120
4ms 1ms 256Hz 3 120

Experimental setup

The segregation system was trained with AMS features based on 7 different window
durations Tw, as shown in Tab. 3.2. Accordingly, the cutoff frequency of the modulation
low-pass filter fLP varied between 4Hz (9 AMS features) and 256Hz (3 AMS features).
The frame shift was always set to Ts = Tw/4. As a result, the number of feature vectors
available during training was higher for the AMS features with shorter window durations
compared to longer window durations. To compensate for this, the number of TIMIT
sentences used to train the GMM classifier was adjusted for window durations above 32ms
according to Tab. 3.2. To investigate the influence of exploiting contextual information,
two different segregation systems were trained: a single-layer GMM-based segregation
system and a two-layer GMM-SVM segregation system including the spectro-temporal
integration stage.

3.5.3 Experimental results

Effect of the window duration

The performance of the AMS-based segregation system is shown in Fig. 3.14 as a function
of the window duration for the four different background noises. The top panel in each of
the four subplots shows the STOI improvement relative to the unprocessed noisy speech for
the IBM as well as the EBM with and without the SVM-based spectro-temporal integration
stage. In addition, the corresponding HIT-FA rates of the two EBM systems are shown in
the bottom panel.

It can be seen that the IBM produced the highest STOI improvements due to the availability
of a priori information and the performance increased monotonically with increasing
temporal resolution. Despite the fact that the HIT-FA rates of both EBM systems
almost continuously increased with increasing window durations for all the noise types,
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Figure 3.14: STOI improvements for the IBM and two EBM systems along with their corre-
sponding HIT-FA rates averaged across all sentences and SNRs. The results are shown separately
for each of the four noise types.

the STOI improvement showed a plateau for window durations between 32 − 64ms,
and the performance was lower for shorter and longer window durations. Considering
the ICRA-5 noise, there was a considerable improvement in the HIT-FA rates when
increasing the window duration from 16ms to 32ms, which also led to a larger STOI
improvement.

Overall, the EBM system with the SVM-based spectro-temporal integration stage produced
substantially higher HIT-FA rates, which was also reflected in larger STOI improvements.
In addition, the SVM-based integration of contextual information seemed to reduce the
required window size. This was most noticeable for the PSAM 8-Hz noise, for which
the EBM-GMM system with a window duration of 128ms, required to resolve a full
period of 8Hz, produced the largest STOI improvements. The same performance was
obtained with the EBM with the spectro-temporal integration stage using a window size
of 32ms.
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3.5.4 Comparison with noise reduction algorithm

Inspired by the analysis presented in Gonzalez and Brookes (2014), Fig. 3.15 shows
the sentence-based STOI predictions for the unprocessed noisy speech in relation to the
measured STOI improvement for the following three systems: a) the EBM with the spectro-
temporal integration stage, b) the log-MMSE noise reduction algorithm and c) the IBM.
In addition, a least-squares fit is shown for each noise type. Based on the analysis in the
previous section, all algorithms operated on a window size of 32ms.

As expected, the IBM-based system produced the largest STOI improvements across all
noise types. Also the EBM system improved the predicted speech intelligibility, in particular
for conditions where the STOI values of the noisy speech were below 0.7. Whereas the
STOI improvements were moderate for the IRCA-1 noise and the PSAM 8-Hz, a larger
benefit was observed for the ICRA-5 noise and the tree noise.

The log-MMSE-based noise reduction system showed minor improvement for the ICRA-
1 noise, presumably because the stationary background noise could be reasonably well
estimated. However, in case of the other non-stationary noises, it appeared that the rapid
fluctuations could not be predicted by the noise estimation algorithm. As a consequence,
the predicted intelligibility improvements were around zero or even negative, which is in
line with previous studies (Hu and Loizou, 2007, Hilkhuysen et al., 2012, Gonzalez and
Brookes, 2014)

3.5.5 Conclusions

The choice of a window duration in modulation-based speech segregation constitutes
a trade-off between the ability to resolve low-frequency modulations and the temporal
resolution with which the segregation system can manipulate individual T-F units. This
choice is only moderately affected by the modulation content of the interfering noise. In
general, a window size of 32ms seems to represent a good compromise. It is conceivable that
the modulation analysis could be performed at multiple time constants, as implemented in
Jørgensen et al. (2013), and that the decision about speech and noise activity is combined
across various decision streams based on different time constants.

The spectro-temporal integration stage effectively improves the ability of the segregation
system to analyze low-frequency modulations by combining contextual knowledge about
the speech presence probability across neighboring T-F units, thereby reducing the required
window duration. However, a high performance in terms of the frequently-used performance
metric, the HIT-FA rate, does not necessarily lead to improvements in predicted speech
intelligibility, if the T-F manipulation is not performed with a sufficiently high temporal
resolution. Finally, the segregation system has been evaluated using a technical performance
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Figure 3.15: STOI predictions for the EBM including the spectro-temporal integration stage
(top panel), log-MMSE noise reduction (middle panel) and IBM processing (bottom panel).

measure and model predictions. The next step is to confirm these findings with behavioral
listening tests.
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4.1 Summary

This document summarizes the final extensions of the AFE framework which makes this
preprocessing stage, and thus the whole Two!Ears model, more flexible in the evaluation
of dynamic binaural scenes. For this purpose some additional processors have been
developed and integrated in the software framework. The structure, content and user
manual of this framework have been the focus of the earlier WP2 deliverables D2.1, D2.2
and D2.3. With these activities the bottom-up peripheral signal-processing part of the
Two!Ears project has been finalized, as far as the development of new processors is being
concerned.

Furthermore, we have evaluated the framework for a number of scenarios and binaural
conditions for which specific properties of the AFE are critical. It has to be noted that
the evaluation of the AFE in general is only possible in the framework of the whole
Two!Ears processing system which is at the time of writing this deliverable (M30) still
under development. Furthermore, for benchmarking of the Two!Ears system, perceptual
data are being derived as part of the activities within WP6. The corresponding evaluation
and comparison between experiment and model prediction will be in the focus of the
project activities in the final months and will be incorporated in deliverables due at the
project end (e.g., D4.3, D5.3, D6.1.3, D6.2.3).

The two additional processors are needed for evaluating dynamic spatial sound fields. The
precedence effect processor is based on earlier work of the Two!Ears partner RPI, and its
integration into the software structure of Two!Ears required major software engineering
effort. As a result, the framework is now capable of a direct comparison of spatial listening
performance with and without inclusion of such a module, which does not only allow the
evaluations reported in section 3.3 and the study of, e.g., the combined effect of precedence
processing module and active head movement, but enables a highly comprehensible spatial
analysis tool for the international research community.

The ASW model connects a number of AFE processing stages to derive distributions of
spatial parameters from the spatial sound field. ASW can then be estimated by choosing a
certain percentile value of these distributions, and by including or excluding individual
parameters and specific spectral subbands. In the comparison with a set of experimental
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data derived at partner DTU for stationary sound fields, a clear difference in agreement
for the various combinations of binaural parameters distributions could be demonstrated.
Again, this sections shows the applicability of the framework to perceptual data in spatial
sound field analysis.

One of the options of the AFE framework is to switch between linear and nonlinear
basilar-membrane processing. While it is obvious that the level-nonlinear input-output
function must influence binaural parameters which are mathematically dependent on the
monaural excitation, our analysis shows which parameters and to which extent are affected
by this nonlinearity. This includes ILDs, but also the IACC which will, for coherent signals
with an interaural level difference, decrease from 1 as soon as the overall level of the
stimulus lies in the range of about 40 to 80 dB. How strong these nonlinearities affect
human localization behavior is currently unclear, because the literature provides conflicting
results.

One of the top-down processing capabilities of the Two!Ears framework is the control of
head movements, and the multi-conditional training (MCT). These have been evaluated
in the context of the localization of a sound source both with and without reverberation,
and in the presence of up to 3 competing sound sources. It could be shown that in such
conditions a strategy to move the head towards the most likely sound source was the best
to reduce front-back confusions and the localization error.

In the context of this WP2 evaluation, we focused on active head movements to improve
source localization by reducing ambiguities. When evaluating head movements using the
full model functionality, we will need to consider also other causes for moving the head,
being it reflexive interactions like the “turn to” reflex, or intentional explorative movements
such as turning the head towards interesting sources. The resulting need to prioritize such
actions all asking for head movements will be addressed in the final evaluations to be
reported in the M36 deliverables.

A final evaluation focused at the intersection between the processing in WP2 and WP3,
where pre-segmentation of signals for, e.g., the purpose of noise reduction is realized.
Here, the use of perception-inspired modulation features to steer signal segmentation was
evaluated and compared to noise reduction algorithms from the literature. This analysis
again demonstrated the flexibility of the Two!Ears software architecture and showed that
the use of perceptually inspired features, here for pre-segmentation, forms an alternative
for more signal-processing driven approaches.
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4.2 Conclusion

Concluding the work on the AFE framework as first finalized part of the Two!Ears project
allows to look back. The philosophy of this framework, both from a psychoacoustics and
a software engineering perspective, has been formulated in one of the earlier deliverables
D2.2: “The auditory front-end (AFE) represents the first stage of the system architecture
and concerns bottom-up auditory signal processing, which transforms binaural signals into
multi-dimensional auditory representations. The output provided by this AFE consists
of several transformed versions of ear signals enriched by perception-based descriptors
which form the input to the higher model stages. Specific emphasis is given on the
modularity of the software framework, making this AFE more than just a collection of
models documented in the literature. Bottom-up signal processing is implemented as a
collection of processor modules, which are instantiated and routed by a manager object.
A variety of processor modules is provided to compute auditory cues such as rate-maps,
interaural time and level differences, interaural coherence, onsets and offsets. An object-
oriented approach is used throughout, giving benefits of reusability, encapsulation and
extensibility.”

In fact, a considerable part of the work has been focused on the architecture and the
software implementation, because basically, no new peripheral model stages had to be
developed, but rather, a great variety of existing modules had to be redesigned to fit into
the object-oriented structure. The gain of this software-engineering effort is only for a
certain part visible in the evaluations which are done within the consortium. Through
the public visibility and availability of the project and its software resources, we foresee
a major step forward also in the future, when new projects initiated by the consortium
members, but more importantly, the worldwide community of auditory, room acoustic and
audio signal processing experts are using these modules.
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List of Acronyms

Acronyms

AFE auditory front-end

AMS amplitude modulation spectrogram

ANOVA analysis of variance

ASW apparent source width

ATH absolute threshold of hearing

BRIR binaural room impulse response

CC cross-correlation

DNN deep neural network

DRNL dual-resonance non-linear

EBM estimated binary mask

ERB equivalent rectangular bandwidth

GMM Gaussian mixture model

HATS head and torso simulator

HIT-FA hit minus false alarm

HP high-pass

HRTF head-related transfer function

IACC interaural cross-correlation

IBM ideal binary mask
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List of Acronyms

IC interaural coherence

IHC inner hair-cell

ILD interaural level difference

ITD interaural time difference

JND just noticeable difference

LC local criterion

MCT multi-conditional training

MMSE minimum mean square error

PSW physical source width

RMS root mean square

SNR signal-to-noise ratio

SPL sound pressure level

SRT speech reception threshold

SSN speech-shaped noise

STFT short-time discrete Fourier transform

STOI short-time objective intelligibility

SVM support vector machine

T-F time-frequency
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