
FP7-ICT-2013-C TWO!EARS Project 618075

Supplement to Deliverable 2.3
(Extension of the binaural model and integration of
monaural and binaural models in software package)

The auditory front-end framework
User manual

WP2 ∗

November 30, 2015

∗ The Two!Ears project (http://www.twoears.eu) has received funding from the European
Union’s Seventh Framework Programme for research, technological development and demon-
stration under grant agreement no 618075.

(http://www.twoears.eu)


Project acronym: Two!Ears
Project full title: Reading the world with Two!Ears

Work package: WP2
Document number: Supplement to D2.3 (Extension of the binaural model and

integration of monaural and binaural models in software
package)

Document title: The auditory front-end framework - User manual
Version: 1

Delivery date: 30th November 2015
Actual publication date: 30th November 2015
Dissemination level: Restricted
Nature: Demo

Editor(s)/lead beneficiary: Tobias May
Author(s): Tobias May, Remi Decorsière, Chungeun Kim, Armin

Kohlrausch
Reviewer(s): Bruno Gas



Contents

1 Executive summary 1

2 The auditory front-end framework 3
2.1 Framework functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Computation of an auditory representation . . . . . . . . . . . . . . . . . 5

2.3.1 Using default parameters . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Input/output signals dimensionality . . . . . . . . . . . . . . . . . 6
2.3.3 Changing parameters used for computation . . . . . . . . . . . . . 7
2.3.4 Compute multiple auditory representations . . . . . . . . . . . . . 10
2.3.5 How to plot the result . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Chunk-based processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Feedback inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Placing a new request . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Modifying a processor parameter . . . . . . . . . . . . . . . . . . . 17
2.5.3 Deleting a processor . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 List of commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Technical description 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Data handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Circular buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Signal objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Data objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Feedback handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Abstract and shared methods . . . . . . . . . . . . . . . . . . . . . 29
3.3.5 Potentially overridden methods . . . . . . . . . . . . . . . . . . . . 29
3.3.6 processChunk method and chunk-based compatibility . . . . . . . 30

3.4 Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Processors and signals instantiation . . . . . . . . . . . . . . . . . . 33

iii



Contents

3.4.2 Carrying out the processing . . . . . . . . . . . . . . . . . . . . . . 36

4 Available processors 37
4.1 Pre-processing (preProc.m) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 DC removal filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Pre-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3 RMS normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Level reference and scaling . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.5 Middle ear filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Auditory filterbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Gammatone (gammatoneProc.m) . . . . . . . . . . . . . . . . . . . 41
4.2.2 Dual-resonance non-linear filterbank (drnlProc.m) . . . . . . . . . 43

4.3 Inner hair-cell (ihcProc.m) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Adaptation (adaptationProc.m) . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Auto-correlation (autocorrelationProc.m) . . . . . . . . . . . . . . . . . 49
4.6 Ratemap (ratemapProc.m) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Spectral features (spectralFeaturesProc.m) . . . . . . . . . . . . . . . . 52
4.8 Onset strength (onsetProc.m) . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.9 Offset strength (offsetProc.m) . . . . . . . . . . . . . . . . . . . . . . . . 57
4.10 Binary onset and offset maps (transientMapProc.m) . . . . . . . . . . . . 57
4.11 Pitch (pitchProc.m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.12 Medial Olivo-Cochlear (MOC) feedback (mocProc.m) . . . . . . . . . . . . 61
4.13 Amplitude modulation spectrogram (modulationProc.m) . . . . . . . . . . 62
4.14 Spectro-temporal modulation spectrogram . . . . . . . . . . . . . . . . . . 65
4.15 Cross-correlation (crosscorrelationProc.m) . . . . . . . . . . . . . . . . 67
4.16 Interaural time differences (itdProc.m) . . . . . . . . . . . . . . . . . . . . 68
4.17 Interaural level differences (ildProc.m) . . . . . . . . . . . . . . . . . . . . 69
4.18 Interaural coherence (icProc.m) . . . . . . . . . . . . . . . . . . . . . . . 70
4.19 Precedence effect (precedenceProc.m) . . . . . . . . . . . . . . . . . . . . 71

5 Add your own processors 73
5.1 Check-list for adding a new processor . . . . . . . . . . . . . . . . . . . . . 73
5.2 Getting started and setting up processor properties . . . . . . . . . . . . . 74

5.2.1 External parameters controllable by the user . . . . . . . . . . . . 75
5.2.2 Internal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Implementing static methods . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 getDependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 getParameterInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 getProcessorInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Implementing parameters “getter” methods . . . . . . . . . . . . . . . . . 79
5.5 Implement the processor constructor . . . . . . . . . . . . . . . . . . . . . 80

iv



Contents

5.6 Preliminary testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.1 Default instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.2 Is it a valid processor? . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.3 Are parameters correctly described? . . . . . . . . . . . . . . . . . 84

5.7 Implementing the core processing method . . . . . . . . . . . . . . . . . . 84
5.7.1 Input and output arguments . . . . . . . . . . . . . . . . . . . . . . 84
5.7.2 Chunk-based and signal-based processing . . . . . . . . . . . . . . 86
5.7.3 Reset method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Override parent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.8.1 Initialisation methods . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8.2 Input/output routing methods . . . . . . . . . . . . . . . . . . . . 90
5.8.3 Processing method . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Allowing alternative processing options . . . . . . . . . . . . . . . . . . . . 92
5.10 Implement a new signal type . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.11 Recommendations for final testing . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions 95

A List of DEMO files 97

List of Acronyms 99

Bibliography 101

v





1 Executive summary

The goal of the Two!Ears project is to develop an intelligent, active computational
model of auditory perception and experience in a multi-modal context. The auditory
front-end (AFE) represents the first stage of the system architecture and concerns bottom-
up auditory signal processing, which transforms binaural signals into multi-dimensional
auditory representations. The output provided by this AFE consists of several transformed
versions of ear signals enriched by perception-based descriptors which form the input to
the higher model stages. Specific emphasis is given on the modularity of the software
framework, making this AFE more than just a collection of models documented in the
literature. Bottom-up signal processing is implemented as a collection of processor modules,
which are instantiated and routed by a manager object. A variety of processor modules is
provided to compute auditory cues such as ratemaps, interaural time and level differences,
interaural coherence, onsets and offsets. An object-oriented approach is used throughout,
giving benefits of reusability, encapsulation and extensibility. This affords great flexibility,
and allows modification of bottom-up processing in response to feedback from higher
levels of the system during run time. Such top-down feedback could, for instance, lead to
on-the-fly changes in parameter values of peripheral modules, like the filter bandwidths of
the basilar-membrane filters. In addition, the object-oriented AFE framework allows direct
switching between alternative peripheral filter modules, while keeping all other components
unchanged, allowing for a systematic comparison of alternative processors. Finally, the AFE
framework supports online processing of the two-channel ear signals.

In the description of work (DOW) for the Two!Ears project, deliverable 2.3, documenting
the extended AFE software package, has the nature of a (public) demonstration. This
deliverable has been realized by making the updated AFE software package publicly
available at https://github.com/TWOEARS/auditory-front-end. This supplementary
document is an updated manual to describe the fundamentals of the current AFE framework
and to help others to make use of its range of capabilities. Chapter 2 gives an overview about
the framework functionality, including the newly incorporated features to realise feedbacks.
A more technical description of the framework is presented in chapter 3. Chapter 4 gives a
detailed overview about the auditory representations that are supported by the framework.
In addition, the update now includes in Chapter 5 detailed step-by-step instructions for the
users to develop his/her own AFE processors, followed by a closing overall conclusion in
Chapter 6. To support the concept of “reproducible research”, appendix A comprises a list
of all demo files used in the description of the individual modules in Chapter 4. These can

1

https://github.com/TWOEARS/auditory-front-end


1 Executive summary

be freely accessed and allow all users a replication of the examples in their own software
environment.

2



2 The auditory front-end framework

2.1 Framework functionality

The purpose of the Two!Ears auditory front-end (AFE) is to extract a subset of com-
mon auditory representations from a binaural recording or from a stream of binaural
audio data. These representations are to be used later by higher modeling or decision
stages. This short description of the role of the AFE highlights its three fundamental
properties:

• The framework operates on a request-based mechanism and extracts the subset of
all available representations which has been requested by the user. Most of the
available representations are computed from other representations, i.e., they depend
on other representations. Because different representations can have a common
dependency, the available representations are organized following a “dependency tree”.
The framework is built such as to respect this structure and limit redundancy. For
example, if a user requests A and B, both depending on a representation C, the
software will not compute C twice but will instead reuse it. As will be presented
later, to achieve this, the processing is shared among processors. Each processor is
responsible for one individual step in the extraction of a given representation. The
framework then instantiates only the necessary processors at a given time.

• It can operate on a stream of input data. In other words, the framework can operate
on consecutive chunks of input signal, each of arbitrary length, while returning the
same output(s) as if the whole signal (i.e., the concatenated chunks) was used as
input.

• The user request can be modified at run time, i.e., during the execution of the
framework. New representations can be requested, or the parameters of existing rep-
resentations can be changed in between two blocks of input signal. This mechanism
is particularly designed to allow higher stages of the whole Two!Ears framework to
provide feedback, requesting adjustments to the computation of auditory representa-
tions. In connection to the first point above, when the user requests such a change,
the framework will identify where in the dependency tree the requested change starts
affecting the processing and will only compute the steps affected.

3



2 The auditory front-end framework

2.2 Getting started

The Two!Ears AFE framework was developed entirely using Matlab version 8.3.0.532
(R2014a). It was tested for backward compatibility down to Matlab version 8.0.0.783
(R2012b). The source code, test and demo scripts are all available from the public repository
at https://github.com/TWOEARS/auditory-front-end.

The files for the AFE are divided in three folders, /doc, /src and /test containing
respectively the documentation of the framework, the source code, and various test scripts.
Once Matlab opened, the source code (and if needed the other folders) should be added
to the Matlab path. This can be done by executing the script startAuditoryFrontEnd
in the main folder:
>> startAuditoryFrontEnd

As will be seen in the following subsection, the framework is request-based: the user places
one or more requests, and then informs the framework that it should perform the processing.
Each request corresponds to a given auditory representation, which is associated with a
short nametag. The command requestList can be used to get a summary of all supported
auditory representations:
>> requestList

Request name Label Processor
------------ ----- -------------------
adaptation Adaptation loop output adaptationProc
amsFeatures Amplitude modulation spectrogram modulationProc
autocorrelation Autocorrelation computation autocorrelationProc
crosscorrelation Crosscorrelation computation crosscorrelationProc
filterbank DRNL output drnlProc
filterbank Gammatone filterbank output gammatoneProc
gabor Gabor features extraction gaborProc
ic Inter -aural coherence icProc
ild Inter -aural level difference ildProc
innerhaircell Inner hair -cell envelope ihcProc
itd Inter -aural time difference itdProc
moc Medial Olivo -Cochlear feedback mocProc
myNewRequest A description of my new request templateProc
offsetMap Offset map offsetMapProc
offsetStrength Offset strength offsetProc
onsetMap Onset map onsetMapProc
onsetStrength Onset strength onsetProc
pitch Pitch estimation pitchProc
precedence Precedence effect precedenceProc
ratemap Ratemap extraction ratemapProc
spectralFeatures Spectral features spectralFeaturesProc
time Time domain signal preProc

A detailed description of the individual processors used to obtain these auditory represen-
tations will be given in chapter 4.

The implementation of the AFE is object-oriented, and two objects are needed to extract
any representation:

• A data object, in which the input signal, the requested representation, and also the
dependent representations that were computed in the process are all stored.

4

https://github.com/TWOEARS/auditory-front-end


2.3 Computation of an auditory representation

• A manager object which takes care of creating the necessary processors as well as
managing the processing.

In the following sections, examples of increasing complexity are given to demonstrate how
to create these two objects, and which functionalities they offer.

2.3 Computation of an auditory representation

The following sections describe how the AFE framework can be used to compute an
auditory representation with default parameters of a given input signal. We will start
with a simple example, and gradually explain how the user can gain more control over the
respective parameters. It is assumed that the entire input signal - for which the auditory
representation should be computed - is available. Therefore, this operation is referred to
as batch processing. As stated before, the framework is also compatible with chunk-based
processing (i.e., when the input signal is acquired continuously over time, but the auditory
representation is computed for smaller signal chunks). The chunk-based processing will be
explained in Sec. 2.4.

2.3.1 Using default parameters

As an example, extracting the interaural level difference ’ild’ for a stereo signal sIn (e.g.,
obtained from a ’.wav’ file through Matlab’s wavread) sampled at a frequency fsHz (in
Hz) can be done in the following steps:

1 % Instantiation of data and manager objects
2 dataObj = dataObject(sIn ,fsHz);
3 managerObj = manager(dataObj);
4
5 % Request the computation of ILDs
6 sOut = managerObj.addProcessor('ild');
7
8 % Request the processing
9 managerObj.processSignal;

Line 2 and 3 show the instantiation of the two fundamental objects: the data object and
the manager. Note that the data object is always instantiated first, as the manager needs
a data object instance as input argument to be constructed. The manager instance in line
3 is however an “empty” instance of the manager class, in the sense that it will not perform
any processing. Hence a processing needs to be requested, as done in line 6. This particular
example will request the computation of the inter-aural level difference ’ild’. This step
is configuring the manager instance managerObj to perform that type of processing, but

5



2 The auditory front-end framework

the processing itself is performed at line 9 by calling the processSignal method of the
manager class.

The request of an auditory representation via the addProcessor method of the manager
class on line 6 returns as an output argument a handle to the requested signal, here named
sOut. In the AFE framework, signals are also objects. For example, for the output signal
just generated:

>> sOut1

ans =

TimeFrequencySignal with properties:

cfHz: [1x31 double]
Label: 'Interaural level difference '
Name: 'ild '

Dimensions: 'nSamples x nFilters '
FsHz: 100

Channel: 'mono '
Data: [267 x31 circVBufArrayInterface]

This shows the various properties of the signal object sOut. These properties will be
described in detail in chapter 3. To access the computed representation, e.g., for further
processing, one can create a copy of the data contained in the signal into a variable, say
myILDs:

>> myILDs = sOut1.Data (:);

Note

The use of the column operator (:). That is because the property .Data of signal
objects is not a conventional Matlab array and one needs this syntax to access all
the values it stores.

The nature of the .Data property is further described in Sec. 3.2.1.

2.3.2 Input/output signals dimensionality

The input signal sIn, for which a given auditory representation needs to be computed,
is a simple array. Its first dimension (lines) should span time. Its first column should
correspond to the left channel (or mono channel, if it is not a stereo signal) and the second
column to the right channel. This is typically the format returned by Matlab’s embedded
functions audioread and wavread.

6



2.3 Computation of an auditory representation

The input signal can be either mono or stereo/binaural. The framework can operate on
both. However, some representations, such as the interaural level difference (ILD) as
requested in the previous example, are based on a comparison between the left and the
right ear signals. If a mono signal was provided instead of a binaural signal, the request of
computing the ILD representation would produce the following warning and the request
would not be computed:

Warning: Cannot instantiate a binaural processor with a mono input signal!
> In manager >manager.addProcessor at 1127

The dimensions of the output signal from the addProcessor method will depend on the
representation requested. In the previous example, the ’ild’ request returns a single
output for a stereo input. However, when the request is based on a single channel and the
input is stereo, the processing will be performed for left and right channel, and both left
and right outputs are returned. In such cases, the output from the method addProcessor
will be a cell array of dimensions 1 x 2 containing output signals for the left channel (first
column) and right channel (second column). For example, the returned sOut could take
the form:

>> sOut

sOut =

[1x1 TimeFrequencySignal] [1x1 TimeFrequencySignal]

The left-channel output can be accessed using sOut{1}, and similarly, sOut{2} for the
right-channel output.

2.3.3 Changing parameters used for computation

For the requested representation

Each individual processor that is supported by the AFE can be controlled by a set of
parameters. Each parameter can be accessed by a unique nametag and has a default value.
A summary of all parameter names and default values for the individual processors can be
listed by the command parameterHelper:

>> parameterHelper

Parameter handling in the TWO!EARS Auditory Front -End
-------------------------------------------------
The extraction of various auditory representations performed by the TWO!

EARS Auditory Front -End software involves many parameters. Each
parameter is given a unique name and a default value. When placing a

7



2 The auditory front-end framework

request for TWO!EARS auditory front -end processing that uses one or
more non -default parameters , a specific structure of non -default
parameters needs to be provided as input. Such structure can be
generated from genParStruct , using pairs of parameter name and chosen
value as inputs.

Parameters names for each processor are listed below:
Amplitude modulation
Auto -correlation
Cross -correlation
DRNL filterbank
Gabor features extractor
Gammatone filterbank
IC Extractor
ILD Extractor
ITD Extractor
Medial Olivo -Cochlear feedback processor
Inner hair -cell envelope extraction
Neural adaptation model
Offset detection
Offset mapping
Onset detection
Onset mapping
Pitch
Pre -processing stage
Precedence effect
Ratemap
Spectral features
Plotting parameters

Each element in the list is a hyperlink, which will reveal the list of parameters for a given
element, e.g.,

Interaural Level Difference parameters:

Name Default Description
---- ------- -----------
ild_wname 'hann ' Window name
ild_wSizeSec 0.02 Window duration (s)
ild_hSizeSec 0.01 Window step size (s)

It can be seen that the ILD processor can be controlled by three parameters, namely
ild_wname, ild_wSizeSec and ild_hSizeSec. A particular parameter can be changed by
creating a parameter structure which contains the parameter name (nametags) and the
corresponding value. The function genParStruct can be used to create such a parameter
structure. For instance:

1 >> parameters = genParStruct('ild_wSizeSec ' ,0.04,'ild_hSizeSec ' ,0.02);
2

8



2.3 Computation of an auditory representation

3 parameters =
4 ild_wSizeSec: 0.0400
5 ild_hSizeSec: 0.0200

will generate a suitable parameter structure parameters to request the computation of
ILD with a window duration of 40ms and a step size of 20ms. This parameter structure
is then passed as a second input argument in the addProcessor method of a manager
object. The previous example can be rewritten considering the change in parameter values
as follows:

1 % Instantiation of data and manager objects
2 dataObj = dataObject(sIn ,fsHz);
3 managerObj = manager(dataObj);
4
5 % Non -default parameter values
6 parameters = genParStruct('ild_wSizeSec ' ,0.04,'ild_hSizeSec ' ,0.02);
7
8 % Place a request for the computation of ILDs
9 sOut = managerObj.addProcessor('ild',parameters);

10
11 % Perform processing
12 managerObj.processSignal;

For a dependency of the request

The previous example showed that the processor extracting ILDs was accepting three
parameters. However, the representation it returns, the ILDs, will depend on more than
these three parameters. For instance, it includes a certain number of frequency channels,
but there is no parameter to control these in the ILD processor. That is because such
parameters are from other processors that were used in intermediate steps to obtain the
ILD. Controlling these parameters therefore requires knowledge of the individual steps in
the processing.

Most auditory representations will depend on another representation, itself being de-
rived from yet another one. Thus, there is a chain of dependencies between different
representations, and multiple processing stages will be required to compute a particular
output. The list of dependencies for a given request can be visualized using the function
Processor.getDependencyList(’processorName’), e.g.,

>> Processor.getDependencyList('ildProc ')

ans =

'innerhaircell ' 'filterbank ' 'time '

9



2 The auditory front-end framework

shows that the ILD depends on the inner hair-cell representation (’innerhaircell’),
which itself is obtained from the output of a gammatone filterbank (’filterbank’). The
filterbank is derived from the time-domain signal, which itself has no further dependency
as it is directly derived from the input signal.

When placing a request to the manager, the user can also request a change in parameters
of any of the request’s dependencies. For example, the number of frequency channels
in the ILD representation is a property of the filterbank, controlled by the parameter
’fb_nChannels’ (which name can be found using parameterHelper.m). This parameter
can also be requested to have a non-default value, although it is not a parameter of the
processor in charge of computing the ILD. This is done in the same way as previously
shown:

5 % Non -default parameter values
6 parameters = genParStruct('fb_nChannels ' ,16);
7
8 % Place a request for the computation of ILDs
9 sOut = managerObj.addProcessor('ild',parameters);

10
11 % Perform processing
12 managerObj.processSignal;

The resulting ILD representation stored in sOut will be based on 16 channels, instead of
31.

2.3.4 Compute multiple auditory representations

Place multiple requests

Multiple requests are supported in the framework, and can be carried out by consecutive
calls to the addProcessor method of an instance of the manager with a single request
argument. It is also possible to have a single call to the addProcessor method with a cell
array of requests, e.g.:

8 % Place a request for the computation of ILDs AND autocorrelation
9 [sOut1 sOut2] = managerObj.addProcessor ({'ild','autocorrelation '})

This way, the manager set up in the previous example will extract ILD and an auto-
correlation representation, and provide handles to the three signals, in sOut1{1} for the
ILD (it is a mono representation), sOut2{1} and sOut2{2} for the autocorrelations of
respectively left and right channels.

To use non-default parameter values, three syntax are possible:

10



2.3 Computation of an auditory representation

• If there are several requests, but all use the same set of parameter values p:
managerObj.addProcessor ({'name1', .. ,'nameN'},p)

• If there is only one request (name), but with different sets of parameter values
(p1,...,pN), e.g., for investigating the influence of a given parameter:
managerObj.addProcessor('name',{p1, .. ,pN})

• If there are several requests and some, or all, of them use a different set of parameter
values, then it is necessary to have a set of parameter (p1,...,pN) for each request
(possibly by duplicating the common ones) and place them in a cell array as follows:
managerObj.addProcessor ({'name1', .. ,'nameN'},{p1, .. ,pN})

Note that in the two examples above, no output is specified for the addProcessor method,
but the representations will be computed nonetheless. The output of addProcessor is
there for convenience and the following subsection will explain how to get a hang on the
computed signals without an explicit handle from addProcessor.

Requests can also be placed directly as optional arguments in the manager constructor,
e.g., to reproduce the previous script example:
% Instantiation of data and manager objects
dataObj = dataObject(sIn ,fsHz);
managerObj = manager(dataObj ,{'ild','autocorrelation '});

The three possibilities described above can also be used in this syntax form.

Computing the signals

This is done in the exact same way as for a single request, by calling the processSignal
method of the manager:
% Perform processing
managerObj.processSignal;

Access internal signals

The optional output of the addProcessor method is provided for convenience. It is actually
a pointer (or handle, in Matlabs terms) to the actual signal object which is hosted by
the data object on which the manager is based. Once the processing is carried out, the
properties of the data object can be inspected:

11



2 The auditory front-end framework

>> dataObj

dataObj =

dataObject with properties:

bufferSize_s: 10
isStereo: 1

gammatone: {[1x1 TimeFrequencySignal] [1x1 TimeFrequencySignal ]}
ratemap: {[1x1 TimeFrequencySignal] [1x1 TimeFrequencySignal ]}

autocorrelation: {[1x1 CorrelationSignal] [1x1 CorrelationSignal ]}
ild: {[1x1 TimeFrequencySignal ]}

input: {[1x1 TimeDomainSignal] [1x1 TimeDomainSignal ]}
time: {[1x1 TimeDomainSignal] [1x1 TimeDomainSignal ]}

innerhaircell: {[1x1 TimeFrequencySignal] [1x1 TimeFrequencySignal ]}

Apart from the properties bufferSize_s and isStereo which are inherent properties of
the data object (and discussed later in chapter 3), the remaining properties each correspond
to one of the representations computed to achieve the user’s request(s). They are each
arranged in cell arrays, with first column being the left, or mono channel, and the second
column the right channel. For instance, to get a handle sGammaR to the right channel of
the gammatone filterbank output, type:

>> sGammaR = dataObj.filterbank {2}

sGammaR =

TimeFrequencySignal with properties:

cfHz: [1x31 double]
Label: 'Gammatone filterbank output '
Name: 'filterbank '

Dimensions: 'nSamples x nFilters '
FsHz: 44100

Channel: 'right '
Data: [118299 x31 circVBufArrayInterface]

2.3.5 How to plot the result

Plotting auditory representations is made very easy in the AFE framework. As explained
before, each representation that was computed during a session is stored as a signal object,
which each are individual properties of the data object. Signal objects of each type have a
plot method. Called without any input arguments, signal.plot will adequately plot the
representation stored in signal in a new figure, and returns as output a handle to said
figure. The plotting method for all signals can accept at least one optional argument, which

12



2.3 Computation of an auditory representation

is a handle to an already existing figure or subplot in a figure. This way the representation
can be included in an existing plot. A second optional argument is a structure of non-default
plot parameters. The parameterHelper script also lists plotting options, and they can be
modified in the same way as processor parameters, via the script genParStruct. These
concepts can be summed up in the following example lines, that follows right after the
demo code from the previous subsection:

11 % Request the processing
12 managerObj.processSignal;
13
14 % Plot the ILDs in a separate figure
15 sOut {1}. plot;
16
17 % Create an empty figure with subplots
18 figure;
19 h1 = subplot (2,2,1);
20 h2 = subplot (2,2,2);
21 h3 = subplot (2,2,3);
22 h4 = subplot (2,2,4);
23
24 % Change plotting options to remove colorbar and reduce title size
25 p = genParStruct('bColorbar ',0,'fsize_title ' ,12);
26
27 % Plot additional representations
28 dataObj.innerhaircell {1}. plot(h1,p);
29 dataObj.innerhaircell {2}. plot(h2,p);
30 dataObj.filterbank {1}. plot(h3,p);
31 dataObj.filterbank {2}. plot(h4,p);

This script will produce the two figure windows displayed in Fig. 2.1. Line 22 of the script
creates the window “Figure 1”, while lines 35 to 38 populate the window “Figure 2” which
was created earlier (in lines 25 to 29).

13



2 The auditory front-end framework

Figure 2.1: The two example figures generated by the demo script.

2.4 Chunk-based processing

As mentioned in the previous section, the framework is designed to be compatible with
chunk-based processing. As opposed to “batch processing”, where the entire input signal is
known a priori, this means working with consecutive chunks of input signals of arbitrary
size. In practice the chunk size will often be the same from one chunk to another. However,
this is not a requirement here, and the framework can accept input chunks of varying
size.

The main constraint behind working with an input that is segmented into chunks is that
the returned output should be exactly the same as if the whole input signal (i.e., the
concatenated chunks) was used as input. In other terms, the transition from one chunk to
the next needs to be taken into account in the processing. For example, concatenating
the outputs obtained from a simple filter applied separately to two consecutive chunks will
not provide the same output as if the concatenated chunks were used as input. To obtain
the same output, one should for example use methods such as overlap-add or overlap-save.
This is not trivial, particularly in the context of the AFE where more complex operations
than simple filtering are involved. A general description of the method used to ensure
chunk-based processing is given in Sec. 3.3.6.

Handling segmented input in practice is done mostly the same way as for a whole input
signal. The available demo script DEMO_ChunkBased.m provides an example of chunk-based
processing by simulating a chunk-based acquisition of the input signal with variable chunk
size and computing the corresponding ILDs.

14



2.4 Chunk-based processing

In this script, one can note the two differences in using the AFE in a chunk-based scenario,
in comparison to a batch scenario:

18 % Instantiation of data and manager objects
19 dataObj = dataObject ([],fsHz ,10,2);
20 managerObj = manager(dataObj);

Because the signal is not known before the processing is carried out, the data object cannot
be initialized from the input signal. Hence, as is seen on line 19, one needs to instantiate
an empty data object, by leaving the first input argument blank. The sampling frequency
is still necessary however. The third argument (here set to 10) is a global signal buffer
size in seconds. Because in an online scenario, the framework could be operating over a
long period of time, internal representations cannot be stored over the whole duration and
are instead kept for the duration mentioned there. The last argument (2) indicates the
number of channel that the framework should expect from the input (a mono input would
have been indicated by 1). Again, it is necessary to know the number of channels in the
input signal, to instantiate the necessary objects in the data object and the manager.

40 % Request the processing of the chunk
41 managerObj.processChunk(sIn(chunkStart:chunkStop ,:) ,1);

The processing is carried out on line 40 by calling the processChunk method of the
manager. This method takes as input argument the new chunk of input signal. The
additional argument, 1, indicates that the results should be appended to the internal
representations already computed. This can be set to 0 in cases where keeping track of
the output for the previous chunks is unnecessary, for instance if the output of the current
chunk is used by a higher-level function. The difference with the processSignal method
is important. Although processSignal actually calls internally processChunk, it also
resets internal states of the framework (what ensures continuity between chunks) before
processing.

The script DEMO_ChunkBased.m will also compute the offline result and will plot the
difference in output for the two computations. This plot is shown in Fig. 2.2. Note the
magnitude on the order of 10−15, which is in the range of Matlab numerical precision,
suggesting that the representations computed online or offline are the same up to some
round-off errors.

15



2 The auditory front-end framework

# frames

#
 c

h
a
n
n
e
ls

 

 

50 100 150 200 250

5

10

15

20

25

30

−5

0

5

x 10
−15

Figure 2.2: Difference in ILD obtained in online and offline processing

2.5 Feedback inclusion

A key concept of the AFE is its ability to respond to feedback from the user or from
external, higher stage models. Conceptually, feedback at the stage of auditory feature
extraction is realised by allowing changes in parameters and/or changes in which features
are extracted at run time, i.e., in between two chunks of input signal in a chunk-based
processing scenario ( 2.4).

In practice, three types of feedback can be identified: - A new request is placed - One or
more parameters of an existing request is changed - A processor has become obsolete and
is deleted.

2.5.1 Placing a new request

Placing a new request at run time, i.e., online, is done exactly as it is done offline ( 2.3), by
calling the addProcessor method of an existing manager instance.

16



2.5 Feedback inclusion

2.5.2 Modifying a processor parameter

Warning

Some parameters are blacklisted for modifications as they would imply a change in
dimension in the output signal of the processor. If you need to perform this change
anyway, consider placing a new request instead of modifying an existing one.

Modifying a processor parameter can be done by calling the modifyParameter method of
that processor in between two calls to the processChunk of the manager instance.

Figure 2.3: Sharpening the frequency selectivity of the ear by means of feedback

Figure 2.3 illustrates feedback capability of the AFE. This is a rate-map representation of
a speech signal that is extracted online. The bandwidth of auditory filters, controlled by

17



2 The auditory front-end framework

the parameter fb_bwERBs in the original request was set to 3 ERBs, an abnormally large
value in comparison to a normal-hearing frequency selectivity. Throughout the processing,
the bandwidth is reduced to 1.5 ERBs by calling:

mObj.Processors {2}. modifyParameter('fb_bwERBs ',1.5);

in between two calls to the “processChunk“ method of the manager “mObj“, at around 0.9s.
Here, mObj.Processors{2} points to the auditory filterbank processor, an instance of a
gammatone processor. The bandwidth is later (at 1.75s) reduced even further (to about
0.25). Figure 2.3 illustrates how the narrower auditory filters will reveal the harmonic
structure of speech.

Note

If a processor is modified in response to feedback, subsequent processors need to
reset themselves, in order not to carry on incorrect internal states. This is done
automatically inside the framework. For example, in the figure above, internal filters
of the inner hair-cell envelope extraction and the ratemap computation are reset
accordingly when the bandwidth parameter is changed

2.5.3 Deleting a processor

Deleting a processor is simply done by calling its remove method. As for parameter
modifications, this affects subsequent processors, as they will also become obsolete. Hence
they will also be automatically deleted.

Deleting processors will leave empty entries in the manager.Processors cell array. To clean
up the list of processor, call the cleanup()method of your manager instance.

2.6 List of commands

This section sums up the commands that could be relevant to a standard user of the AFE
framework. It does not describe each action extensively, nor does it give a full list of
corresponding parameters. A more detailed description can be obtained through calling
the help script of a given method from Matlab’s command window. Note that one can
get help on a specific method of a given class. For example

>> help manager.processChunk

18



2.6 List of commands

will return help related to the processChunk method of the manager class. The following
aims at being concise, hence optional inputs are marked as “...” and can be reviewed
from the specific method help.

Signal objects sObj

sObj.Data(:) Returns all the data in the signal
sObj.Data(n1:n2) Returns the data in the time interval [n1,n2] (samples)
sObj.findProcessor(mObj) Finds processor that computed the signal
sObj.getParameters(mObj) Parameter summary for that signal
sObj.getSignalBlock(T,...) Returns last T seconds of the signal
sObj.play Plays back the signal (time-domain signals only)
sObj.plot(...) Plots the signal

Data objects dObj

dataObject(s,fs,bufSize,nChannels) Constructor
dObj.addSignal(sObj) Adds a signal object
dObj.clearData Clears all signals in dObj
dObj.getParameterSummary(mObj) Lists parameter used for each signal
dObj.play Plays back the containing audio signal

Processors pObj

pObj.LowerDependencies List of processors pObj depends on
pObj.UpperDependencies List of processors depending on pObj
pObj.getCurrentParameters Parameter summary for that processor
pObj.getDependentParameter(parName) Value of a parameter from pObj or its dependencies
pObj.hasParameters(parStruct) True if pObj used the exact values in parStruct
pObj.Input Handle to input signal object
pObj.Output Handle to output signal object
pObj.modifyParameter Change a parameter value
pObj.remove Removes a processor (and its subsequent processors)

19



2 The auditory front-end framework

Manager mObj

manager(dObj) Constructor
manager(dObj,name,param) Constructor with initial request
mObj.addProcessor(name,param) Adds a processor (including eventual dependencies)
mObj.Data Handle to the associated data object
mObj.processChunk(input,...) Process a new chunk
mObj.Processors Lists instantiated processors
mObj.processSignal Process a signal offline
mObj.reset Resets all processors
mObj.cleanup Cleans up the list of processors

2.7 Acknowledgment

The AFE framework includes the following contributions from publicly available MATLAB
toolboxes or classes:

• AMToolbox

• LTFAT

• Voicebox

• circVBuf

20

http://amtoolbox.sourceforge.net/
http://ltfat.sourceforge.net/
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.mathworks.com/matlabcentral/fileexchange/47025-circvbuf


3 Technical description

3.1 Overview

Many different auditory models are available that can transform an input signal into an
auditory representation. The actual design challenges behind the AFE framework arise
from the multiplicity of supported representations, the requirement to process continuous
signal in a chunk-based manner, and the ability to change what is being computed at
run-time, which will allow the incorporation of feedback from higher processing stages. In
addition to these three constraints, the framework will be subject to frequent updates in
the future of the Two!Ears project (e.g., adding new processors), so the expandability and
maintainability of its implementation should be optimal. For these reasons, the framework
is implemented using a modular object-oriented approach.

This chapter exposes the architecture and interactions of all the objects involved in the
AFE and how the main constraints were tackled conceptually. In an effort to respect
encapsulation and the hierarchical organization of the objects, the sections are arranged
in a “bottom-up” way: from the most fundamental objects to the more global process-
ing.

All classes involved in the AFE implementation are inheriting the Matlab handle master
class. This allows every created object to be of the handle type, and simulates a “call-
by-reference” when manipulating the objects. Given an object obj inheriting the handle
class, doing obj2 = obj will not copy the object, but only obtain a pointer to it. If obj
is modified, then so is obj2. This avoids unnecessary copies of objects, limiting memory
use, as well as providing user friendly handles to objects included under many levels of
class hierarchy. The user can manipulate a simple short-named handle instead of tediously
accessing the object.

21



3 Technical description

3.2 Data handling

3.2.1 Circular buffer

Memory pre-allocation of large arrays in Matlab is well known to be a critical operation
for optimizing computation time. The AFE, particularly in an online scenario, will be
confronted with this problem. For each new chunk of the input signal, chunks of output
are computed for each internal representation and are appended to the already existing
output. Computation time will be strongly affected if the arrays containing the data are
not initialized appropriately (i.e., the memory it occupies is pre-allocated) to fit the input
signal duration.

The issue in a real-time scenario is that the signal duration is unknown. To overcome
this problem, data for each signal is stored in a buffer of fixed duration which is itself
pre-allocated. Buffers are updated following a first in, first out (FIFO) rule: once the
buffer is full, the oldest samples in the buffer are overwritten by the new signal sam-
ples.

The circVBuf class

A conceptual way of implementing a FIFO rule is to use circular (or ring) buffers. The
inconvenience of a traditional, linear buffer is that once it is full and new input overwrites
old samples (i.e., it is in its “steady-state”), reading the data from it implies reaching the
end of the buffer and continuing reading from its beginning. The data read will be in
two fragments, because of the linear buffer having a physical beginning and end which do
not match to the oldest and newest data samples. This is eliminated in circular buffers
which do not have a beginning or end, and a contiguous segment is always obtained
upon reading. Circular buffers were implemented for the AFE framework based on the
third-party class provided by Göbbert (2014), which has been slightly modified to account
for multi-dimensional data (instead of vector-only).

Circular buffer interface

The circVBuf class provides a buffer that is conceptually circular, in the sense that
it allows continuous reading of the data. However in practice it still stores data in a
linear array in Matlab (the size of which is, however, twice the size of the actual data).
Accessing stored data requires knowledge about this class and can be tedious to a naive
user. To eliminate confusion and make the buffer transparent to the user, the interface
circVBuffArrayInterface was implemented, with the aim of allowing the buffer to use

22



3.2 Data handling

most basic array operations.

Given a circular buffer circBuffer, the interface is obtained by

buffer = circVBufArrayInterface(circBuffer)

It will allow the following operations:

• buffer(n1:n2) returns stored data between positions n1 and n2, where position 1 is
the oldest sample in the buffer (but not necessarily the first one in the actual array
storing data, due to circularity). For multiple dimensions, these indices always refer
to the first dimension. To return stored data up to the most recent sample, use
buffer(n1:end).

• buffer(:) returns all data stored in the buffer (ignoring “empty” sections of the
buffer, if said buffer was never filled).

• buffer(’new’) returns the latest chunk of data that was added to the buffer.

• length(buffer) returns the effective (i.e., ignoring empty sections) buffer length
across its first dimension.

• size(buffer) returns the effective size of the buffer (including other dimensions).

• numel(buffer) returns the total number of elements stored (calculated as product
of the effective dimensions).

• isempty(buffer) returns true when no data is stored, false otherwise.

This provides an array behavior to the buffers, simplifying greatly their use.

Note

Note that the only limitation is the need of the column operator : to access
all data, as in buffer(:). Without it, buffer will return a handle to the
circVBufArrayInterface object.

3.2.2 Signal objects

Signals are implemented as objects in the AFE. To avoid code repetition and make
better use of object-oriented concepts, signals are grouped according to their dimen-
sionality, as they then share the same properties. The following classes are imple-
mented:

23



3 Technical description

• TimeDomainSignal for one-dimensional (time) signals.

• TimeFrequencySignal which stores two-dimensional signals where the first dimension
relates to time (but can be, e.g., a frame index) and the second to the frequency
channel. These signals include as an additional property a vector of channel center
frequencies cfHz. Signals of such form are obtained from requesting, for example,
’filterbank’, ’innerhaircell’,’ild’,...

• CorrelationSignal for three-dimensional signals where the third dimension is a lag
position. These include also the cfHz property as well as a vector of lags (lags).

• ModulationSignal for three-dimensional signals where the third dimension is a
modulation frequency. These include cfHz and modCfHz (vector of center modulation
frequencies) as properties.

• FeatureSignal used to store a collection of time-domain signals, each associated
to a specific name. Each feature is a single vector, and all of them are arranged as
columns of a same matrix. Hence they include an ordered list of features names
fList that labels each column.

All these classes inherit the parent Signal class. Hence they all share the following common
“read-only” properties:

• Label, which is a “formal” description of the signal, e.g., ’Inner hair-cell envelope’,
used for example when plotting the signal.

• Name, which is a nametag unique to each signal type, e.g., ’innerhaircell’. This
name corresponds to the name used for a request to the manager.

• Dimensions, which describes in a short string how dimensions are arranged in the
signal, e.g., ’nSamples x nFilters’

• FsHz, the sampling frequency of this specific signal. If the signal is framed or
downsampled (e.g., like a ratemap or an ILD) this value will be different from the
input signal’s sampling frequency.

• Channel, which states ’left’, ’right’ or ’mono’, depending on which channel from
the input signal this signal was derived.

• Data, an interface object (circVBufArrayInterface described earlier) to the circular
buffer containing all data. The actual buffer, Buf is a circVBuf object and a protected
property of the signal (not visible to the user).

The Signal class defines the following methods that are then shared among children
objects:

24



3.2 Data handling

• A super constructor, which sets up the internal buffer according to the signal dimen-
sions. Each children signal class is calling this super constructor before populating
its other properties.

• An appendChunk method used to fill the internal buffer.

• A setData method used for initializing the internal buffer given some data.

• A clearData method for re-initialization.

• The getSignalBlock method returning a segment of data of chosen duration, starting
from the newest elements.

• The findProcessor method which, given a handle to a manager object, will retrieve
which processor has computed this specific signal (by comparing it with the Output
property of each processor, described in Sec. 3.3.1).

• A getParameters method which, given a handle to a manager object, will retrieve
the list of parameters used in the processing to obtain that signal.

In addition, the Signal class defines an abstract plot method, which each children should
implement. This cannot be defined in the parent class as the plotting routines will be
drastically different depending on children signal dimensionality. Children classes therefore
only implement their own constructor (which still calls the super-constructor) and their
respective plotting routines.

3.2.3 Data objects

Description

Many signal objects are instantiated by the AFE (one per representation involved and per
channel). To organize and keep track of them, they are collected in a dataObject class.
This class inherits the dynamicprops Matlab class (itself inheriting the handle) class.
This allows to dynamically define properties of the class.

This way, each signal involved in a given session of the AFE framework will be grouped
according to its class in a distinct property of the dataObject, with name given by the signal
signal.Name unique nametag. Extra properties of the data object include:

• bufferSize_s which is the common duration of all circVBuf objects in the signals.

• A flag isStereo, which if true will indicate to the data object that all signals come
as pairs of left/right channels.

25



3 Technical description

Data objects are constructed by providing an input signal (which can be empty in online
scenarios), a mandatory sampling frequency in Hz, a global buffer size (10s by default),
and the number of channels of the input (1 or 2). This number of channel is not necessary
if an input signal is used as argument in the constructor but needs to be provided
otherwise.

The dataObject definition includes the following, self-explanatory methods:

• addSignal(signalToAdd)

• clearData

• getParameterSummary returning a list of all parameters used for the computation of
all included signal (given a handle to the corresponding manager).

• play, provided for user convenience.

Signal organization

As mentioned before, data objects store signal objects. Each class of signal occupies a
property in the data object named after the signal .Name property. Multiple signals of
the same class will be stored as a cell array in that property. In the cell array, the first
column is always for the left channel (or mono signal), and the second column for the
right channel. If multiple signals of the same type are present (e.g., if the user requested
the same representation twice but with a change of parameters), then the corresponding
signals are stored in different lines of the array. For instance, for a session where the user
requested the inner hair-cell envelope twice, with the second request changing only the way
of extracting the envelope (i.e., the parameter ’ihc_method’), the following data object is
created:

>> dataObj

dataObj =

dataObject with properties:

bufferSize_s: 10
isStereo: 1

time: {[1x1 TimeDomainSignal] [1x1 TimeDomainSignal ]}
input: {[1x1 TimeDomainSignal] [1x1 TimeDomainSignal ]}

gammatone: {[1x1 TimeFrequencySignal] [1x1 TimeFrequencySignal ]}
innerhaircell: {2x2 cell}

Each signal-related field except innerhaircell is a cell array of a single line (one signal),
and two columns (for left and right channel). Because the second request from the user

26



3.3 Processors

included only a change in parameter for the inner hair-cell computation, the same initial
gammatone signal is used for both, but there are two output innerhaircell signals (hence
a cell array of two lines) for each channel (hence two columns).

In that case, to distinguish between the two signals and know which one was computed
with which set of parameter, one can call the signal’s getParameters method. Given a
handle to the manager object, it will return a list of all parameters used to obtain that
signal (including parameters used in intermediate processing steps).

3.3 Processors

Processors are at the core of the AFE. Each processor is responsible for an individual
step in the processing, i.e., going from representation A to representation B. They are
adapted from existing models documented in the literature such as to allow for block-based
(online) processing. This is made possible by keeping track of the information necessary
to transition adequately between two chunks of input. The nature of this “information”
varies depending on the processor, and we use in the following the term “internal state” of
the processor to refer to it. Internal states and online processing compatibility are then
assessed in Sec. 3.3.6.

A detailed overview of all processors, with a list of all parameters they accept, is given
in chapter 4. Hence this section will focus on the properties and methods shared among
every processors, as well as the techniques employed to make processing compatible with
chunk-based inputs.

3.3.1 General considerations

As for signal objects, processors make use of inheritance, with a parent Processor class. The
parent class defines shared properties of the processor, abstract classes that each children
must implement, and a couple of methods shared among children.

The motivation behind the implementation of these methods is probably not clear at this
stage, but should appear in the following sections. Many of these methods are used in the
manager object described later for organising and routing the processing such as to always
perform as few operations as needed.

3.3.2 Properties

Each processor shares the properties:

27



3 Technical description

• Type - describes formaly the processing performed

• Input - handle to input signal object

• Output - handle to output signal object

• isBinaural - Flag indicating the need of left and right channel as input

• FsHzIn - Input signal sampling frequency

• FsHzOut - Output signal sampling frequency

• UpperDependencies - List of processors that directly depend on this processor

• LowerDependencies - List of processors this processor directly depends on

• Channel - Audio channel this processor operates on

• parameters - Parameter object instance that contains parameter values for this
processor

In addition, three private properties are implemented:

• bHidden - A flag indicating that the processor should be hidden from the framework.
This is used for example for "sub-processors" such as downSamplerProc

• listenToModify - An event listener for modifications in any lower dependent proces-
sor

• listenToDelete - An event listener for deletion of any lower dependent processor

3.3.3 Feedback handling

To these two listeners mentioned above correspond two events, hasChanged and isDeleted.
These events are used in connection to feedback as a mean to communicate between
processors. When parameters of a processor are modified, it will broadcast a message
that will be picked up by its upper dependencies which will then "know" they have
to react accordingly (usually by resetting). Connecting events and listeners is done
automatically when instantiating a "processing tree". Modifying a parameter is done
via the modifyParameter method which will broadcast the hasChanged message to upper
dependencies.

28



3.3 Processors

3.3.4 Abstract and shared methods

The parent Processor class defines the following abstract methods. Because these
methods are children dependent, each processor sub-class pObj should then implement
them:

• out = pObj.processChunk(in), the core processing method. Returns an output out
given the input in. It will, if necessary, use the internal states of the processor (derived
from previous chunk(s) of input) to calculate the output. These internal states should
be accordingly updated in this method after the processing was performed. Next
sub-section provides more details regarding these internal states.

• pObj.reset, that clears the internal states of the processor. To be used e.g., in an
offline scenario in between two different input signals.

Some methods are then identical across all processors and are therefore implemented in
the parent Processor class:

• getDependentParameter and getDependentProperty recursively recovers the value
of a specific parameter (or property) used by pObj or by one of its dependencies

• hasParameters checks that the processor uses a specific set of parameter values

• getCurrentParameters returns a structure of the parameter values currently used
by the processor.

3.3.5 Potentially overridden methods

Most processors behave in similar ways with regard to how many inputs and outputs they
have, as well as how they connect with their dependencies. However, there can always
be exceptions. To provide sufficient code modularity to easily handle these exceptions
without changing existing code, heavy use of methods overriding was made. This means
that general behaviour for a given method is implemented in the Processor super-class,
and any children which needs to handle things differently will override this specific method.
These methods susceptible to being overridden are the following, in order in which they
are called:

• prepareForProcessing: Finalise processor initialisation or re-initialise after receiving
feedback

• addInput: Populate the Input property

29



3 Technical description

• addOutput: Populate the Output property

• instantiateOutput: Instantiate an output signal and add it to the data object

• initiateProcessing: Calls the processing method, appropriately routing inputs
and output signals to the input and output arguments of the processChunk method.

Any of these method are then overridden in children that do not behave "normally" (e.g.,
processors with multiple input or outputs)

3.3.6 processChunk method and chunk-based compatibility

General approach

As briefly exposed above, exact computation performed by each processors are taken from
published models, and are described individually in chapter 4. However, most of the
available implementations are for batch processing, i.e., using one whole input signal at
once. To be included in the AFE, these implementations need to be adapted to account for
chunk-based processing, i.e., when the input signal is fed to the system in non-overlapping
contiguous blocks, or chunks.

Some processors rely on the input only at time t to generate the output at time t. These
processors are then compatible as such with chunk-based processing. This is the case
for instance for the itdProc which given cross-correlation deduces the interaural time
differences (ITDs). That is because the processor, at time t, is provided a cross-correlation
value as input (which is a function of frequency and lag), and only locates for each frequency
the lag value for which the cross-correlation is maximal. There is no influence of past (or
future) inputs to provide the output at time t. This is unfortunately not the case for most
processors, which output at a given time will be influenced, to different extent, by older
input. However, so far, all the processing involved in the AFE is causal, i.e., might depend
on past input, but will not depend on future input.

Adapting offline implementations to online is of course case-dependent, and how it was
done for each individual processors will not be described here. However the same concept
is used for each, and can be related to the overlap-save method traditionally used for
filtering long signals (or a stream of input signal) with a finite impulse response (FIR)
filter. This concept revolves around using an internal buffer to store the input samples of a
given chunk that will influence the processing of the next chunk. Because of the causality,
these samples will always be at the end of the present chunk. Considering a processor
which is in “steady-state” (i.e., has a populated internal buffer) and a new incoming chunk
of input signal, the following steps are performed:

30



3.3 Processors

1. The buffer is appended in the beginning of the new input chunk. Conceptually, this
provides also a chunk of the input signal, but a longer one that starts at an earlier
point in time.

2. The input extended in this way is processed following the computations described in
literature. If the input is required to have specific dimensions in time (e.g., when
windowing is performed), then it is virtually truncated to these dimensions (i.e.,
input samples falling outside the required dimensions are discarded). The goal is for
the output to be as long as possible while still being “valid”, i.e., not being influenced
by the boundary with the next input chunks. If additional output was generated due
to the appended buffer, it is discarded.

3. The buffer is updated to prepare for the next input chunk. This step can vary
between processors but the idea is to store in the buffer the end of the current chunk
which did not generate output, or which will influence the output of next chunk.

An example: ratemap

A practical example to better illustrate the concepts described above is given in the following.
The ratemap is conceptually a “framed” version of an inner hair-cell (IHC) multichannel
envelope. The IHC envelope is a two-dimensional representation (time versus frequency),
and the ratemap extraction is the same procedure repeated for every frequency channel.
Hence the following is described for a single channel. To extract the ratemap, the envelope
is windowed by a set of overlapping windows, and its magnitude averaged in each window.
This process is adapted to online processing as illustrated in Fig. 3.1

The three above-mentioned steps are followed:

1. The internal buffer (which can be empty, e.g., if first chunk) is appended to the input
chunk.

2. This “extended” input is then processed. In that case, it is windowed and the average
is taken in each window.

3. The “valid” outputs form the output chunk. Note that the right-most window (dashed
line) is not fully covering the signal. Hence the output it would provide is not “valid”,
since it would also partly depend on the content of the next input chunk. Therefore
the section of the signal corresponding to this incomplete window forms the new
buffer.

Note that the output chunk could in theory be empty. If the duration of the “extended”
input in step 1 is shorter than the duration of the window, then no valid output is produced
for this chunk, and the whole extended input will be transferred to the internal buffer.

31



3 Technical description

buffer Inputfchunk

"Extended"
input

Processing:
Windowingf

&f
averaging

1

2

3

Output
&f

updatedfbuffer

bufferOutputfchunk

Figure 3.1: Three steps for simple online windowing, given a chunk of input and an internal
buffer.

This is unlikely to happen in practice however.

Particular case for filters

The processing performed by the AFE often involves filtering (e.g., in auditory filterbank
processing, inner haircell envelope detection, or amplitude modulation detection). While
filtering by FIR filters could in principle be made compatible with chunk-based processing us-
ing the principle described above, it will be impractical for filters with long impulse response,
and in theory impossible for infinite impulse response (IIR) filters.

For this reason, chunk-based compatibility is managed differently for filtering. In Matlab’s
filter function, the user can specify initial conditions and can get as optional output the
final conditions of the filter delays. These take the form of a vector, of dimension equal to
the filter order.

In the AFE, filters are implemented as objects, and encapsulate a private states property.

32



3.4 Manager

This property simply contains the final conditions of the filter delays, i.e., its internal
states after the last processing it performed. If applied to a new input chunk, these states
are used as initial condition and are updated after the processing. This will provide a
continuous output given a fragmented input.

3.4 Manager

The manager class is fundamental in the AFE framework. It is responsible for, from a user
request, instantiating the correct processors and signal objects, and linking these signals as
inputs/outputs of each processor. In a standard session of the AFE, only a single instance
of this class is created. It is with this object that the user interacts.

3.4.1 Processors and signals instantiation

Single request

A standard call to the manager constructor, i.e., with no other argument than a handle to an
already created data object dataObj will produce an “empty” manager:

>> mObj = manager(dataObj)

mObj =

manager with properties:

Processors: []
InputList: []

OutputList: []
Map: []

Data: [1x1 dataObject]

Empty properties include a list of processors, of input signals, output signals, and a
mapping vector that provides a processing order. The Data property is simply a handle to
the dataObj object provided for convenience.

Populating these properties is made via the addProcessor method already described in
Sec. 2.3. From a given request and an empty manager, instantiating the adequate processors
and signals is done following these steps:

1. Get the list of signals needed to compute the user request, using the getDependencies
function.

33



3 Technical description

2. Flip this list around such as to have the list starting with ’time’, and ending up
with the requested signal. The list then provides the needed signals in the order they
should be computed.

3. Loop over the elements of the list. For each signal on the list:

a) Instantiate a corresponding processor (two if stereo signal)

b) Instantiate the signal that will contain the output of the processor (two if stereo)

c) Add the signal(s) to dataObj

d) A handle to the output signal of the previous processor on the list is stored as
the current processor’s input (in mObj.InputList as well as in the processor’s
Input property). If it is the first element of the list, this will link to the original
time domain signal.

e) A handle to the newly instantiated signal is stored similarly as output. This
handle is stored further for the next element in the loop.

f) A handle to the previously instantiated processor is stored in the current
processor’s Dependencies property (possibly empty if first element of the list).

4. Generate a linear mapping (vector of indexes of the processors ordered in increasing
processing order).

5. Return a handle to the requested signal to the user.

Once addProcessor is called, the properties of the manager will have been populated,
e.g.:

>> mObj

mObj =

manager with properties:

Processors: {3x2 cell}
InputList: {3x2 cell}

OutputList: {3x2 cell}
Map: [1 2 3]

Data: [1x1 dataObject]

Processors are arranged with the same convention as for signals in a data objects: they are
stored in a cell array, where the first column is for left (or mono) channel, and second column
for right channel. Different lines are for different processors, e.g.:

>> mObj.Processors

34



3.4 Manager

ans =

[1x1 preProc ] [1x1 preProc ]
[1x1 gammatoneProc] [1x1 gammatoneProc]
[1x1 ihcProc ] [1x1 ihcProc ]

InputList and OutputList are cell arrays of handles to signal objects. An element in one
of them will correspond to the input/output of the processor at the same position in the
cell array.

Handling of multiple requests

The above-described process gets more complicated when a request is placed in a non-empty
manager (i.e., when multiple requests have been placed). The same steps could be used,
and would result in a functioning result. However, this would likely be sub-optimal in
terms of computations. If the new request has common elements with representations that
are already computed, one need not recompute them.

If correctly implemented, a manager should be able to “branch” the processing, such that
only new representations, or representations where a parameter has been changed, are
recomputed. Achieving this relies on the findInitProc method of the manager, which is
described in more details in the next subsection. This method is passed the same arguments
as the addProcessor method, i.e., a request name and a structure of parameters. It will
return a handle to an already existing processor in the manager that is exactly computing
one of the steps needed for that request. It will return the “highest” already existing step.
In other terms, it finds the point in the already existing ordered list of processors where
the processing should “branch out” to obtain the newly requested feature. Knowing the
processor to start from and updating accordingly the list of signals/processors that need
to be instantiated, the same procedure as before can then be used in the addProcessor
method.

The findInitProc method

To find an initial processor suitable in a request, this method calls the hasProcessor
method of the manager and the hasParameters method of each processor. From a given
request, it can obtain a list of necessary processing steps from getDependencies and
run the list backwards. For each element of the list, findInitProc “asks” the manager
if it has such a processor via its hasProcessor method. If yes, it calls this processor
hasParameters method to verify that what the processor computes corresponds to the

35



3 Technical description

request. If yes, then it found a suitable initial step. If no, it moves on to the next element
in the list and repeats.

3.4.2 Carrying out the processing

As of the current AFE implementation, the processing is linear and the processChunk
methods of each individual processor are called one after the other when asking the
manager to start processing (via its initiateProcessing method). The order in which the
processors are called is important, as some will take as input what was other’s output. This
order is stored in the property Map of the manager. Map is a vector of indexes corresponding
to the lines in the Processors cell array property of the manager. It is constructed at
instantiation of the processors. Conceptually, if there are N instantiated processors, the
processChunk method of the manager mObj will call the initiateProcessing method of
each processor following this loop:

1 for ii = 1: n_proc
2 % Get index of current processor
3 jj = mObj.Map(ii);
4
5 % Perform the processing by calling initiateProcessing
6 mObj.Processors{jj ,1}. initiateProcessing;
7
8 if size(mObj.Processors ,2) == 2 && ~isempty(mObj.Processors{jj ,2})
9 mObj.Processors{jj ,2}. initiateProcessing;

10 end
11 end

Note

Note the difference between indexes ii which relate to the processing order
(processing first ii=1 and last ii=n_proc) and jj = mObj.Map(ii) which relate
the processing order with the actual position of the processors in the cell array
mObj.Processors.

36



4 Available processors

This chapter presents a detailed description of all processors that are currently supported
by the AFE framework. Each processor can be controlled by a set of parameters, which
will be explained and all default settings will be listed. Finally, a demonstration will be
given, showing the functionality of each processor. The corresponding Matlab files are
contained in the AFE folder /test and can be used to reproduce the individual plots. A
summary of all demo scripts can be found in appendix A. A full list of available processors
can be displayed by using the command requestList. An overview of the commands for
instantiating processors is given in Sec. 2.3.

4.1 Pre-processing (preProc.m)

Prior to computing any of the supported auditory representations, the input signal stored in
the data object can be pre-processed with one of the following elements:

1. Direct current (DC) bias removal

2. Pre-emphasis

3. Root mean square (RMS) normalization using an automatic gain control (AGC)

4. Level scaling to a pre-defined sound pressure level (SPL) reference

5. Middle ear filtering

The order of processing is fixed. However, individual stages can be activated or deactivated,
depending on the requirement of the user. The output is a time domain signal representation
that is used as input to the next processors. Moreover, a list of adjustable parameters is
listed in Tab. 4.1.

The influence of each individual pre-processing stage except for the level scaling is illustrated
in Fig. 4.1, which can be reproduced by running the script DEMO_PreProcessing.m. Panel
1 shows the left and the right ears signals of two sentences at two different levels. The
ear signals are then mixed with a sinusoid at 0.5Hz to simulate an interfering humming
noise. This humming can be effectively removed by the DC removal filter, as shown in

37



4 Available processors

Table 4.1: List of parameters related to the auditory representation ’time’.
Parameter Default Description
pp_bRemoveDC false Activate DC removal filter
pp_cutoffHzDC 20 Cut-off frequency in Hz of the high-pass filter
pp_bPreEmphasis false Activate pre-emphasis filter
pp_coefPreEmphasis 0.97 Coefficient of first-order high-pass filter
pp_bNormalizeRMS false Activate RMS normalization
pp_intTimeSecRMS 2 Time constant in s used for RMS estimation
pp_bBinauralRMS true Link RMS normalization across both ear sig-

nals
pp_bLevelScaling false Apply level scaling to the given reference
pp_refSPLdB 100 Reference dB SPL to correspond to the input

RMS of 1
pp_bMiddleEarFiltering false Apply middle ear filtering
pp_middleEarModel ’jepsen’ Middle ear filter model

panel 3. Panel 4 shows the influence of the pre-emphasis stage. The AGC can be used to
equalize the long-term RMS level difference between the two sentences. However, if the
level difference between both ear signals should be preserved, it is important to synchronize
the AGC across both channels, as illustrated in panel 5 and 6. Panel 7 shows the influence
of the level scaling when using a reference value of 100 dB SPL. Panel 8 shows the signals
after middle ear filtering, as the stapes motion velocity. Each individual pre-processing
stage is described in the following subsections.

4.1.1 DC removal filter

To remove low-frequency humming, a DC removal filter can be activated by using the flag
pp_bRemoveDC = true. The DC removal filter is based on a fourth-order IIR butterworth
filter with a cut-off frequency of 20Hz, as specified by the parameter pp_cutoffHzDC =
20.

4.1.2 Pre-emphasis

A common pre-processing stage in the context of automatic speech recognition (ASR)
includes a signal whitening. The goal of this pre-processing stage is to roughly compensate
for the decreased energy at higher frequencies (e.g. due to lip radiation). Therefore, a
first-order FIR high-pass filter is employed, where the filter coefficient pp_coefPreEmphasis
determines the amount of pre-emphasis and is typically selected from the range between 0.9

38



4.1 Pre-processing (preProc.m)

 

 

A
m

pl
it

ud
e

Time (s)

1. Ears signals sampled at 16000 Hz

0 1 2

-1

0

1

 

 

A
m

pl
it

ud
e

Time (s)

2. Ear signals + sinus at 0.5 Hz

0 1 2

-1

0

1

 

 

A
m

pl
it

ud
e

Time (s)

3. After DC removal

0 1 2

-1

0

1

 

 

A
m

pl
it

ud
e

Time (s)

4. After pre-emphasis

0 1 2

-1

0

1

 

 

A
m

pl
it

ud
e

Time (s)

5. After monaural AGC

0 1 2

-10

0

10

 

 

A
m

pl
it

ud
e

Time (s)

6. After binaural AGC

0 1 2

-10

0

10

 

 

A
m

pl
it

ud
e

Time (s)

7. After level scaling

0 1 2

-10

0

10

 

 

A
m

pl
it

ud
e

Time (s)

8. After middle ear filtering

0 1 2
-2

-1

0

1

2

Figure 4.1: Illustration of the individual pre-processing steps. 1) Ear signals consisting of two
sentences recorded at different levels, 2) ear signals mixed with a 0.5Hz humming 3), ear signals
after DC removal filter, 4) influence of pre-emphasis filter, 5) monaural RMS normalization, 6)
binaural RMS normalization, 7) level scaling and 8) middle ear filtering.

and 1. Here, we set the coefficient to pp_coefPreEmphasis = 0.97 by default according
to (Young et al., 2006). This pre-emphasis filter can be activated by setting the flag
pp_bPreEmphasis = true.

4.1.3 RMS normalization

A signal level normalization stage is available which can be used to equalize long-term
level differences (e.g. when recording two speakers at two different distances). For some
applications, such as ASR and speaker identification systems, it can be advantageous to
maintain a constant signal power, such that the features extracted by subsequent processors
are invariant to the overall signal level. To achieve this, the input signal is normalized
by its RMS value that has been estimated by a first-order low-pass filter with a time

39



4 Available processors

constant of pp_intTimeSecRMS = 2. Such a normalization stage has also been suggested
in the context of amplitude modulation spectrogram (AMS) feature extraction (Tchorz
and Kollmeier, 2003), which are described in Sec. 4.13. The choice of the time constant is
a balance between maintaining the level fluctuations across individual words and allowing
the normalization stage to follow sudden level changes.

The normalization can be either applied independently for the left and the right ear signal
by setting the parameter pp_bBinauralRMS = false, or the processing can be linked across
ear signals by setting pp_bBinauralRMS = true. When being used in the binaural mode,
the larger RMS value of both ear signals is used for normalization, which will preserve the
binaural cues (e.g. ITDs and ILDs) that are encoded in the signal. The RMS normalizaion
can be activated by the parameter pp_bNormalizeRMS = true.

4.1.4 Level reference and scaling

This stage is designed to implement the effect of calibration, in which the amplitude of
the incoming digital signal is matched to sound pressure in the physical domain. This
operation is necessary when any of the AFE models requires the input to be represented
in physical units (such as pascals, see the middle ear filtering stage below). Within
the current AFE framework, the dual-resonance non-linear (DRNL) filterbank model
requires this signal representation (see Sec. 4.2.2). The request for this is given by setting
pp_bApplyLevelScaling = true, with a reference value pp_refSPLdB in dB SPL which
should correspond to the input RMS of 1. Then the input signal is scaled accordingly, if it
had been calibrated to a different reference. The default value of pp_refSPLdB is 100, which
corresponds to the convention used in the work of Jepsen et al. (2008). The implementation
is adopted from the AMToolbox (Søndergaard and Majdak, 2013).

4.1.5 Middle ear filtering

This stage corresponds to the operation of the middle ear where the vibration from
the eardrum is transformed into the stapes motion. The filter model is based on the
findings from the measurement of human stapes displacement by Goode et al. (1994).
Its implementation is adopted from the AMToolbox (Søndergaard and Majdak, 2013),
which derives the stapes velocity as the output (Lopez-Poveda and Meddis, 2001, Jepsen
et al., 2008). The input is assumed to be the eardrum pressure represented in pascals
which in turn assumes prior calibration. This input-output representation in physical
units is required particularly when the DRNL filterbank model is used for the basilar
membrane (BM) operation, because of its level-dependent nonlinearity, designed based on
that representation (see Sec. 4.2.2). When including the middle-ear filtering in combination
with the linear gammatone filter, only the simple band-pass characteristic of this model is

40

http://amtoolbox.sourceforge.net/
http://amtoolbox.sourceforge.net/


4.2 Auditory filterbank

needed without the need for input calibration or consideration of the input/output units.
The middle ear filtering can be applied by setting pp_bMiddleEarFiltering = true. The
filter data from Lopez-Poveda and Meddis (2001) or from Jepsen et al. (2008) can be
used for the processing, by specifying the model pp_middleEarModel = ’lopezpoveda’
or pp_middleEarModel = ’jepsen’ respectively.

4.2 Auditory filterbank

One central processing element of the AFE is the separation of incoming acoustic signals
into different spectral bands, as it happens in the human inner ear. In psychoacoustic
modeling, two different approaches have been followed over the years. One is the simulation
of this stage by a linear filterbank composed of gammatone filters. This linear gammatone
filterbank can be considered a standard element for auditory models and has therefore
been included in the Two!Ears framework. A computationally more challenging, but at
the same time physiologically more plausible simulation of this process can be realized
by a nonlinear BM model, and we have implemented the DRNL model, as developed by
Meddis et al. (2001). The filterbank representation is requested by using the nametag
’filterbank’. The filterbank type can be controlled by the parameter fb_type. To
select a gammatone filterbank, fb_type should be set to ’gammatone’ (which is the
default), whereas the DRNL filterbank is used when setting fb_type = ’drnl’. Some
of the parameters are common to the two filterbank, while some are specific, in which
case their value is disregarded if the other type of filterbank was requested. Table 4.2
summarizes all parameters corresponding to the ’filterbank’ request. Parameters specific
to a filterbank type are separated by a horizontal line. The two filterbank implementations
are described in detail in the following two subsections, along with their corresponding
parameters.

4.2.1 Gammatone (gammatoneProc.m)

The time domain signal can be processed by a bank of gammatone filters that simulates
the frequency selective properties of the human BM. The corresponding Matlab function
is adopted from the AMToolbox (Søndergaard and Majdak, 2013). The gammatone filters
cover a frequency range between fb_lowFreqHz and fb_highFreqHz and are linearly spaced
on the ERB scale (Glasberg and Moore, 1990). In addition, the distance between adjacent
filter center frequencies on the ERB scale can be specified by fb_nERBs, which effectively
controls the frequency resolution of the gammatone filterbank. There are three different ways
to control the center frequencies of the individual gammatone filters:

1. Define a vector with center frequencies, e.g. fb_cfHz = [100 200 500 ...]. In this

41

http://amtoolbox.sourceforge.net/


4 Available processors

Table 4.2: List of parameters related to the auditory representation ’filterbank’.
Parameter Default Description
fb_type ’gammatone’ Filterbank type, ’gammatone’ or ’drnl’
fb_lowFreqHz 80 Lowest characteristic frequency in Hz
fb_highFreqHz 8000 Highest characteristic frequency in Hz
fb_nERBs 1 Distance between adjacent filters in ERB
fb_nChannels [] Number of frequency channels
fb_cfHz [] Vector of characteristic frequencies in Hz

fb_nGamma 4 Filter order, ’gammatone’-only
fb_bwERBs 1.01859 Filter bandwidth in ERB, ’gammatone’-only
fb_lowFreqHz 80 Lowest characteristic frequency in Hz, ’gammatone’-

only
fb_mocIpsi 1 Ipsilateral MOC factor (0 to 1). Given as a scalar

(across all frequency channels) or a vector (individual
per frequency channel), ’drnl’-only

fb_mocContra 1 Contralateral MOC factor (0 to 1). Same format as
fb_mocIpsi, ’drnl’-only

fb_model ’CASP’ DRNL model (reserved for future extension), ’drnl’-
only

case, the parameters fb_lowFreqHz, fb_highFreqHz, fb_nERBs and fb_nChannels
are ignored.

2. Specify fb_lowFreqHz, fb_highFreqHz and fb_nChannels. The requested number
of filters fb_nChannels will be spaced between fb_lowFreqHz and fb_highFreqHz.
The center frequencies of the first and the last filter will match with fb_lowFreqHz
and fb_highFreqHz, respectively. To accommodate an arbitrary number of filters,
the spacing between adjacent filters fb_nERBs will be automatically adjusted. Note
that this changes the overlap between neighboring filters.

3. It is also possible to specify fb_lowFreqHz, fb_highFreqHz and fb_nERBs. Starting
at fb_lowFreqHz, the center frequencies will be spaced at a distance of fb_nERBs on
the ERB scale until the specified frequency range is covered. The center frequency of
the last filter will not necessarily match with fb_highFreqHz.

The filter order, which determines the slope of the filter skirts, is set to fb_nGamma = 4
by default. The bandwidths of the gammatone filters depend on the filter order and the
center frequency, and the default scaling factor for a forth-order filter is approximately
fb_bwERBs = 1.01859. When adjusting the parameter fb_bwERBs, it should be noted
that the resulting filter shape will deviate from the original gammatone filter as measured
by Glasberg and Moore (1990). For instance, increasing fb_bwERBs leads to a broader

42



4.2 Auditory filterbank

filter shape. A full list of parameters is shown in Tab. 4.2.

The gammatone filterbank is illustrated in Fig. 4.2, which has been produced by the script
DEMO_Gammatone.m. The speech signal shown in the left panel is passed through a bank of
16 gammatone filters spaced between 80 and 8000Hz. The output of each individual filter
is shown in the right panel.

A
m

pl
it

ud
e

Time (s)

Time domain signal

0 0.5 1

-1

-0.5

0

0.5

1

Fr
eq

ue
nc

y
(H

z)

Time (s)

Gammatone filterbank output

0 0.5 1

80

266

564

1040

1798

3008

4934

8000

Figure 4.2: Time domain signal (left panel) and the corresponding output of the gammatone
processor consisting of 16 auditory filters spaced between 80 and 8000Hz (right panel).

4.2.2 Dual-resonance non-linear filterbank (drnlProc.m)

The DRNL filterbank models the nonlinear operation of the cochlear, in addition to the
frequency selective feature of the BM. The DRNL processor was motivated by attempts
to better represent the nonlinear operation of the BM in the modelling, and allows for
testing the performance of peripheral models with the BM nonlinearity and medial olivo-
cochlear (MOC) feedback in comparison to that with the conventional linear BM model.
All the internal representations that depend on the BM output can be extracted using
the DRNL processor in the dependency chain in place of the gammatone filterbank. This
can reveal the implication of the BM nonlinearity and MOC feedback for activities such
as speech perception in noise (see Brown et al. (2010) for example) or source localisation.
It is expected that the use of a nonlinear model, together with the adaptation loops (see
Sec. 4.4), will reduce the influence of overall level on the internal representations and
extracted features. In this sense, the use of the DRNL model is a physiologically motivated
alternative for a linear BM model where the influence of level is typically removed by the
use of a level normalization stage (see AGC in Sec. 4.1 for example).

The structure of DRNL filterbank is based on the work of Meddis et al. (2001). The
frequencies corresponding to the places along the BM, over which the responses are to be
derived and observed, are specified as a list of characteristic frequencies fb_cfHz. For each

43



4 Available processors

characteristic frequency channel, the time domain input signal is passed through linear
and nonlinear paths, as seen in Fig. 4.3. Currently the implementation follows the model
defined as computational auditory signal-processing and perception (CASP) by Jepsen
et al. (2008), in terms of the detailed structure and operation, which is specified by the
default argument ’CASP’ for fb_model.

Linear gain
2X 

gammatone 
filters

4X 
low-pass 

filters

Nonlinear 
gain (MOC 

attenuation)

2X 
gammatone 

filters

Broken stick 
nonlinearity

2X
gammatone 

filters

1X
 low-pass 

filter

+

DRNL filterbank channel

Ipsi- and contra-lateral 
MOC factor

Input BM
velocity

Figure 4.3: DRNL filterbank channel structure, following the CASP model specification (Jepsen
et al., 2008) as default, with an additional nonlinear gain stage to receive feedback.

In the CASP model, the linear path consists of a gain stage, two cascaded gammatone
filters, and four cascaded low-pass filters; the nonlinear path consists of a gain (atten-
uation) stage, two cascaded gammatone filters, a ’broken stick’ nonlinearity stage, two
more cascaded gammatone filters, and a low-pass filter. The outputs at the two paths
are then summed as the BM output motion. These sub-modules and their individual
parameters (e.g., gammatone filter center frequencies) are specific to the model and hidden
to the users. Details regarding the original idea behind the parameter derivation can be
found in (Lopez-Poveda and Meddis, 2001), which the CASP model slightly modified to
provide a better fit of the output to physiological findings from human cochlear research
works.

The MOC feedback is implemented in an open-loop structure within the DRNL filterbank
model as the gain factor to be applied to the nonlinear path. This approach is used
by Ferry and Meddis (2007), where the attenuation caused by the MOC feedback at
each of the filterbank channels is controlled externally by the user. Two additional input
arguments are introduced for this feature: fb_mocIpsi and fb_mocContra. These represent
the amount of reflexive feedback through the ipsilateral and contralateral paths, in the
form of a factor from 0 to 1 that the nonlinear path input signal is multiplied by in
conjunction. Conceptually, fb_mocIpsi = 1 and fb_mocContra = 1 would mean that no
attenuation is applied to the nonlinear path input, and fb_mocIpsi = 0 and fb_mocContra
= 0 would mean that the nonlinear path is totally eliminated. Tab. 4.2 summarizes the
parameters for the DRNL processor that can be controlled by the user. Note that fb_cfHz
corresponds to the characteristic frequencies and not the centre frequencies as used in the

44



4.2 Auditory filterbank

gammatone filterbank, although they can have the same values for comparison. Otherwise,
the characteristic frequencies can be generated in the same way as the center frequencies
for the gammatone filterbank.

Figure 4.4 shows the BM stage output at 1 kHz characteristic frequency using the DRNL
processor (on the right hand side), compared to that using the gammatone filterbank (left
hand side), based on the right ear input signal shown in panel 1 of Fig. 4.1 (speech excerpt
repeated twice with a level difference), scaled down by 10 dB. The plots can be generated
by running the script DEMO_DRNL.m. It should be noted that the CASP model of DRNL
filterbank expects the input signal to be transformed into the middle ear stapes velocity
before processing. Therefore, for direct comparison of the outputs in this example, the
same pre-processing was applied for the gammatone filterbank (stapes velocity was used
as the input, through the level scaling and middle ear filtering). It is seen that the level
difference between the initial speech component and its repetition is reduced with the
nonlinearity incorporated, compared to the gammatone filterbank output, which shows the
compressive nature of the nonlinear model responding to input level changes as described
earlier.

A
m

pl
it

ud
e

(x
1E

−
5
)

Time (s)

Gammatone filterbank output at 1000 Hz

0.5 1 1.5 2 2.5
−600

−400

−200

0

200

400

600

A
m

pl
it

ud
e

Time (s)

DRNL filterbank output at 1000 Hz

0.5 1 1.5 2 2.5
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Figure 4.4: The gammatone processor output (left panel) compared to the output of the DRNL
processor (right panel), based on the right ear signal shown in panel 1 of Fig. 4.1 scaled down by
10 dB, at 1 kHz center or characteristic frequency. Note that the input signal is converted to the
stapes velocity before entering both processors for direct comparison. The level difference between
the two speech excerpts is reduced in the DRNL response, showing its compressive nature to input
level variations.

45



4 Available processors

4.3 Inner hair-cell (ihcProc.m)

The IHC functionality is simulated by extracting the envelope of the output of individual
gammatone filters. The corresponding IHC function is adopted from the AMToolbox (Søn-
dergaard and Majdak, 2013). Typically, the envelope is extracted by combining half-wave
rectification and low-pass filtering. The low-pass filter is motivated by the loss of phase-
locking in the auditory nerve at higher frequencies (Bernstein and Trahiotis, 1996, Bernstein
et al., 1999). Depending on the cut-off frequency of the IHC models, it is possible to control
the amount of fine-structure information that is present in higher frequency channels. The
cut-off frequency and the order of the corresponding low-pass filter vary across methods
and a complete overview of supported IHC models is given in Tab. 4.3. A particular model
can be selected by using the parameter ihc_method.

Table 4.3: List of supported IHC models related to the auditory representation ’innerhaircell’.
ihc_method Description
’hilbert’ Hilbert transform
’halfwave’ Half-wave rectification
’fullwave’ Full-wave rectification
’square’ Squared
’dau’ Half-wave rectification and low-pass filtering at 1000Hz (Dau et al.,

1996)
’joergensen’ Hilbert transform and low-pass filtering at 150Hz (Jørgensen and Dau,

2011)
’breebart’ Half-wave rectification and low-pass filtering at 770Hz (Breebaart et al.,

2001)
’bernstein’ Half-wave rectification, compression and low-pass filtering at

425Hz (Bernstein et al., 1999)

The effect of the IHC processor is demonstrated in Fig. 4.5, where the output of the
gammatone filterbank is compared with the output of an IHC model by running the script
DEMO_IHC.m. Whereas individual peaks are resolved in the lowest channel of the IHC
output, only the envelope is retained at higher frequencies.

46

http://amtoolbox.sourceforge.net/


4.4 Adaptation (adaptationProc.m)

Fr
eq

ue
nc

y
(H

z)

Time (s)

Gammatone filterbank output

0 0.5 1

80

266

564

1040

1798

3008

4934

8000

Fr
eq

ue
nc

y
(H

z)

Time (s)

IHC signal

0 0.5 1

80

266

564

1040

1798

3008

4934

8000

Figure 4.5: Illustration of the envelope extraction processor. BM output (left panel) and the
corresponding IHC model output using ihc_method = ’dau’ (right panel).

4.4 Adaptation (adaptationProc.m)

This processor corresponds to the adaptive response of the auditory nerve fibers, in which
abrupt changes in the input result in emphasised overshoots followed by gradual decay to
compressed steady-state level (Smith, 1977, Smith et al., 1983). The function is adopted
from the AMToolbox (Søndergaard and Majdak, 2013). The adaptation stage is modelled
as a chain of five feedback loops in series. Each of the loops consists of a low-pass filter
with its own time constant, and a division operator (Püschel, 1988, Dau et al., 1996, 1997a).
At each stage, the input is divided by its low-pass filtered version. The time constant
affects the charging / releasing state of the filter output at a given moment, and thus
affects the amount of attenuation caused by the division. This implementation realises the
characteristics of the process that input variations which are rapid compared to the time
constants are linearly transformed, whereas stationary input signals go through logarithmic
compression.

The adaptation processor uses three parameters to generate the output from the IHC
representation: adpt_lim determines the maximum ratio of the onset response amplitude
against the steady-state response, which sets a limit to the overshoot caused by the loops.
adpt_mindB sets the lowest audible threshold of the input signal. adpt_tau are the time
constants of the loops. Though the default model uses five loops and thus five time
constants, variable number of elements of adpt_tau is supported which can vary the
number of loops. Some specific sets of these parameters, as used in related studies, are
also supported optionally with the adpt_model parameter. This can be given instead of
the other three parameters, which will set them as used by the respective researchers.
Tab. 4.4 lists the parameters and their default values, and Tab. 4.5 lists the supported
models. The output signal is expressed in model units (MU) which deviates the input-

47

http://amtoolbox.sourceforge.net/


4 Available processors

output relation from a perfect logarithmic transform, such that the input level increment
at low level range results in a smaller output level increment than the input increment
at higher level range. This corresponds to a smaller just-noticeable level change at high
levels than at low levels (Dau et al., 1996). Jepsen et al. (2008), with the use of DRNL
model for the BM stage, introduces an additional squaring expansion process between the
IHC output and the adaptation stage, which transforms the input that comes through the
DRNL - IHC processors into an intensity-like representation to be compatible with the
adaptation implementation originally designed based on the use of gammatone filterbank.
The adaptation processor recognises whether DRNL or gammatone processor is used in
the chain and adjusts the input signal accordingly.

The effect of the adaptation processor - the exaggeration of rapid variations - is demonstrated
in Fig. 4.6, where the output of the IHC model from the same input as used in the example
of Sec. 4.3 (the right panel of Fig. 4.5) is compared to the adaptation output by running
the script DEMO_Adaptation.m.

Table 4.4: List of parameters related to the auditory representation ’adaptation’.
Parameter Default Description
adpt_lim 10 Overshoot limiting ratio
adpt_mindB 0 Lowest audible threshold of the sig-

nal (in dB SPL)
adpt_tau [0.005 0.050 0.129 0.253

0.500]
Time constants of feedback loops

adpt_model ” (empty) Implementation model
(’adt_dau’, ’adt_puschel’,
or ’adt_breebart’): can be
used instead of the above three
parameters (See Tab. 4.5)

48



4.5 Auto-correlation (autocorrelationProc.m)

Table 4.5: List of supported models related to the auditory representation ’adaptation’.
adpt_model Description
’adt_dau’ Choose the parameters as in the models of Dau et al. (1996, 1997a).

This consists of 5 adaptation loops with an overshoot limit of 10
and a minimum level of 0 dB. This is a correction in regard to the
model described in Dau et al. (1996), which did not use overshoot
limiting. The adaptation loops have an exponentially spaced time
constants (adpt_tau=[0.005 0.050 0.129 0.253 0.500])

’adt_puschel’ Choose the parameters as in the original model (Püschel, 1988).
This consists of 5 adaptation loops without overshoot limiting
(adpt_lim=0). The adapation loops have a linearly spaced time
constants (adpt_tau=[0.0050 0.1288 0.2525 0.3762 0.5000]).

’adt_breebaart’ As ’adt_puschel’, but with overshoot limiting

Fr
eq

ue
nc

y
(H

z)

Time (s)

IHC signal

0 0.5 1

80

266

564

1040

1798

3008

4934

8000

Fr
eq

ue
nc

y
(H

z)

Time (s)

Adaptation loop output

0 0.5 1

80

266

564

1040

1798

3008

4934

8000

Figure 4.6: Illustration of the adaptation processor. IHC output (left panel) as the input to the
adaptation processor and the corresponding output using adpt_model=’adt_dau’ (right panel).

4.5 Auto-correlation (autocorrelationProc.m)

Auto-correlation is an important computational concept that has been extensively studied
in the context of predicting human pitch perception (Licklider, 1951, Meddis and Hewitt,
1991). To measure the amount of periodicity that is present in individual frequency
channels, the auto-correlation function (ACF) is computed in the fast Fourier transform
(FFT) domain for short time frames based on the IHC representation. The unbiased ACF
scaling is used to account for the fact that fewer terms contribute to the ACF at longer time
lags. The resulting ACF is normalized by the ACF at lag zero to ensure values between
minus one and one. The window size ac_wSizeSec determines how well low-frequency
pitch signals can be reliably estimated and common choices are within the range of 10ms –

49



4 Available processors

30ms.

For the purpose of pitch estimation, it has been suggested to modify the signal prior to
correlation analysis in order to reduce the influence of the formant structure on the resulting
ACF (Rabiner, 1977). This pre-processing can be activated by the flag ac_bCenterClip
and the following nonlinear operations can be selected for ac_ccMethod: center clip and
compress ’clc’, center clip ’cc’, and combined center and peak clip ’sgn’. The percentage
of center clipping is controlled by the flag ac_ccAlpha, which sets the clipping level to a
fixed percentage of the frame-based maximum signal level.

A generalized ACF has been suggested by Tolonen and Karjalainen (2000), where the
exponent ac_K can be used to control the amount of compression that is applied to the
ACF. The conventional ACF function is computed using a value of ac_K = 2, whereas
the function is compressed when a smaller value than 2 is used. The choice of this
parameter is a trade-off between sharpening the peaks in the resulting ACF function
and amplifying the noise floor. A value of ac_K = 2/3 has been suggested as a good
compromise (Tolonen and Karjalainen, 2000). A list of all ACF-related parameters is
given in Tab. 4.6. Note that these parameters will influence the pitch processor, which is
described in Sec. 4.11.

Table 4.6: List of parameters related to the auditory representation ’autocorrelation’.
Parameter Default Description
ac_wname ’hann’ Window type
ac_wSizeSec 0.02 Window duration (s)
ac_hSizeSec 0.01 Window step size (s)
ac_bCenterClip false Activate center clipping
ac_clipMethod ’clp’ Center clipping method (’clc’, ’clp’, or ’sgn’)
ac_clipAlpha 0.6 Center clipping threshold within [0, 1]
ac_K 2 Exponent in ACF

A demonstration of the ACF processor is shown in Fig. 4.7, which has been produced by
the scrip DEMO_ACF.m. It shows the IHC output in response to a 20ms speech signal for 16
frequency channels (left panel). The corresponding ACF is presented in the upper right
panel, whereas the summary auto-correlation function (SACF) is shown in the bottom
right panel. Prominent peaks in the SACF indicate lag periods which correspond to integer
multiples of the fundamental frequency of the analyzed speech signal. This relationship is
exploited by the pitch processor, which is described in Sec. 4.11.

50



4.6 Ratemap (ratemapProc.m)

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

IHC signal

0.095 0.1 0.105 0.11

80

266

564

1040

1798

3008

4934

8000

SA
C

F

Lag period (ms)

C
en

te
r

fr
eq

ue
nc

y
(H

z)

ACF

0 5 10 15

0 5 10 15

0
0.5

1

80
266
564

1040
1798
3008
4934
8000

Figure 4.7: IHC representation of a speech signal shown for one time frame of 20ms duration
(left panel) and the corresponding ACF (right panel). The SACF summarizes the ACF across all
frequency channels (bottom right panel).

4.6 Ratemap (ratemapProc.m)

The ratemap represents a map of auditory nerve firing rates (Brown and Cooke, 1994) and is
frequently employed as a spectral feature in computational auditory scene analysis (CASA)
systems (Wang and Brown, 2006), ASR (Cooke et al., 2001) and speaker identification
systems (May et al., 2012). The ratemap is computed for individual frequency channels by
smoothing the IHC signal representation with a leaky integrator that has a time constant
of typically rm_decaySec = 8ms. Then, the smoothed IHC signal is averaged across all
samples within a time frame and thus the ratemap can be interpreted as an auditory
spectrogram. Depending on whether the ratemap scaling rm_scaling has been set to
’magnitude’ or ’power’, either the magnitude or the squared samples are averaged within
each time frame. The temporal resolution can be adjusted by the window size rm_wSizeSec
and the step size rm_hSizeSec. Moreover, it is possible to control the shape of the window
function rm_wname, which is used to weight the individual samples within a frame prior to
averaging. The default ratemap parameters are listed in Tab. 4.7.

Table 4.7: List of parameters related to the auditory representation ’ratemap’.
Parameter Default Description
rm_wname ’hann’ Window type
rm_wSizeSec 0.02 Window duration (s)
rm_hSizeSec 0.01 Window step size (s)
rm_scaling ’power’ Ratemap scaling (’magnitude’ or ’power’)
rm_decaySec 0.008 Leaky integrator time constant (s)

The ratemap is demonstrated by the script DEMO_Ratemap and the corresponding plots are

51



4 Available processors

presented in Fig. 4.8. The IHC representation of a speech signal is shown in the left panel,
using a bank of 64 gammatone filters spaced between 80 and 8000Hz. The corresponding
ratemap representation scaled in dB is presented in the right panel.

Fr
eq

ue
nc

y
(H

z)

Time (s)

IHC signal

0 0.5 1
80

265

560

1032

1787

2992

4920

8000

 

 

Fr
eq

ue
nc

y
(H

z)
Time (s)

Ratemap

0 0.5 1

-100

-90

-80

-70

-60

-50

-40

-30

100

250

500

1000

2000

4000

8000

Figure 4.8: IHC representation of s speech signal using 64 auditory filters (left panel) and the
corresponding ratemap representation (right panel).

4.7 Spectral features (spectralFeaturesProc.m)

In order to characterize the spectral content of the ear signals, a set of spectral features is
available that can serve as a physical correlate to perceptual attributes, such as timbre
and coloration (Peeters et al., 2011). All spectral features summarize the spectral content
of the ratemap representation across auditory filters and are computed for individual time
frames. The following 14 spectral features are available:

1. ’centroid’ : The spectral centroid represents the center of gravity of the ratemap
and is one of the most frequently-used timbre parameters (Tzanetakis and Cook,
2002, Jensen and Andersen, 2004, Peeters et al., 2011). The centroid is normalized
by the highest ratemap center frequency to reduce the influence of the gammatone
parameters.

2. ’spread’ : The spectral spread describes the average deviation of the ratemap
around its centroid, which is commonly associated with the bandwidth of the signal.
Noise-like signals have usually a large spectral spread, while individual tonal sounds
with isolated peaks will result in a low spectral spread. Similar to the centroid, the
spectral spread is normalized by the highest ratemap center frequency, such that the
feature value ranges between zero and one.

3. ’brightness’ : The brightness reflects the amount of high frequency information
and is measured by relating the energy above a pre-defined cutoff frequency to the

52



4.7 Spectral features (spectralFeaturesProc.m)

total energy. This cutoff frequency is set to sf_br_cf = 1500Hz by default (Jensen
and Andersen, 2004, Peeters et al., 2011). This feature might be used to quantify
the sensation of sharpness.

4. ’high-frequency content’ : The high-frequency content is another metric that
measures the energy associated with high frequencies. It is derived by weighting
each channel in the ratemap by its squared center frequency and integrating this
representation across all frequency channels (Jensen and Andersen, 2004). To reduce
the sensitivity of this feature to the overall signal level, the high-frequency content
feature is normalized by the ratemap integrated across-frequency.

5. ’crest’ : The spectral crest measure (SCM) is defined as the ratio between the
maximum value and the arithmetic mean and can be used to characterize the peakiness
of the ratemap. The feature value is low for signals with a flat spectrum and high for
a ratemap with a distinct spectral peak (Peeters et al., 2011, Lerch, 2012).

6. ’decrease’ : The spectral decrease describes the average spectral slope of the
ratemap representation, putting a stronger emphasis on the low frequencies. (Peeters
et al., 2011)

7. ’entropy’ : The entropy can be used to capture the peakiness of the spectral
representation (Misra et al., 2004). The resulting feature is low for a ratemap with
many distinct spectral peaks and high for a flat ratemap spectrum.

8. ’flatness’ : The spectral flattness measure (SFM) is defined as the ratio of the
geometric mean to the arithmetic mean and can be used to distinguish between
harmonic (SFM is close to zero) and a noisy signals (SFM is close to one) (Peeters
et al., 2011).

9. ’irregularity’ : The spectral irregularity quantifies the variations of the logarithmically-
scaled ratemap across frequencies (Jensen and Andersen, 2004).

10. ’kurtosis’ : The excess kurtosis measures whether the spectrum can be charac-
terized by a Gaussian distribution (Lerch, 2012). This feature will be zero for a
Gaussian distribution.

11. ’skewness’ : The spectral skewness measures the symmetry of the spectrum around
its arithmetic mean (Lerch, 2012). The feature will be zero for silent segments and
high for voiced speech where substantial energy is present around the fundamental
frequency.

12. ’roll-off’ : Determines the frequency in Hz below which a pre-defined percent-
age sf_ro_perc of the total spectral energy is concentrated. Common values for
this threshold are between sf_ro_perc = 0.85 (Tzanetakis and Cook, 2002) and

53



4 Available processors

sf_ro_perc = 0.95 (Scheirer and Slaney, 1997, Peeters et al., 2011). The roll-off
feature is normalized by the highest ratemap center frequency and ranges between
zero and one. This feature can be useful to distinguish voiced from unvoiced signals.

13. ’flux’ : The spectral flux evaluates the temporal variation of the logarithmically-
scaled ratemap across adjacent frames (Lerch, 2012). It has been suggested to be
useful for the distinction of music and speech signals, since music has a higher rate
of change (Scheirer and Slaney, 1997).

14. ’variation’ : The spectral variation is defined as one minus the normalized correla-
tion between two adjacent time frames of the ratemap (Peeters et al., 2011).

A list of all parameters is presented in Tab. 4.8.

Table 4.8: List of parameters related to the auditory representation ’spectral_features’.
Parameter Default Description
sf_requests ’all’ List of requested spectral features (e.g. ’flux’). Type

help spectralFeaturesProc in the Matlab command win-
dow to display the full list of supported spectral features.)

sf_br_cf 1500 Cut-off frequency in Hz for brightness feature
sf_ro_perc 0.85 Threshold (re. 1) for spectral roll-off feature

The extraction of spectral features is demonstrated by the script Demo_SpectralFeatures.m,
which produces the plots shown in Fig. 4.9. The complete set of 14 spectral features is
computed for the speech signal shown in the top left panel. Whenever the unit of the
spectral feature was given in frequency, the feature is shown in black in combination with
the corresponding ratemap representation.

54



4.7 Spectral features (spectralFeaturesProc.m)

A
m

pl
it

ud
e

Time (s)

Time domain signal

0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Time (s)

Spectral centroid

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Time (s)

Spectral spread

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Time (s)

Spectral rolloff

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Time (s)

Spectral brightness

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Time (s)

Spectral flatness

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Time (s)

Spectral variation

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

A
m

pl
it

ud
e

Time (s)

Spectral crest measure

0.2 0.4 0.6 0.8 1 1.2
0

10

20

30
A

m
pl

it
ud

e

Time (s)

Spectral entropy

0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

A
m

pl
it

ud
e

(×
1E

6)

Time (s)

Spectral high frequency content

0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

A
m

pl
it

ud
e

Time (s)

Spectral decrease

0.2 0.4 0.6 0.8 1 1.2
-0.1

0

0.1

0.2

0.3

A
m

pl
it

ud
e

Time (s)

Spectral flux

0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

A
m

pl
it

ud
e

Time (s)

Spectral kurtosis

0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

A
m

pl
it

ud
e

Time (s)

Spectral skewness

0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

A
m

pl
it

ud
e

Time (s)

Spectral irregularity

0.2 0.4 0.6 0.8 1 1.2
1

2

3

4

5

Figure 4.9: Speech signal and 14 spectral features that were extracted based on the ratemap
representation.

55



4 Available processors

4.8 Onset strength (onsetProc.m)

According to Bregman (1990), common onsets and offsets across frequency are important
grouping cues that are utilized by the human auditory system to organize and integrate
sounds originating from the same source. The onset processor is based on the ratemap
representation, and therefore, the choice of the ratemap parameters, as listed in Tab. 4.7,
will influence the output of the onset processor. The temporal resolution is controlled by
the window size rm_wSizeSec and the step size rm_hSizeSec, respectively. The amount of
temporal smoothing can be adjusted by the leaky integrator time constant rm_decaySec,
which reduces the amount of temporal fluctuations in the ratemap. Onset are detected
by measuring the frame-based increase in energy of the ratemap representation. This
detection is performed based on the logarithmically-scaled energy, as suggested by Kla-
puri (1999). It is possible to limit the strength of individual onsets to an upper limit,
which is by default set to ons_maxOnsetdB = 30. A list of all parameters is presented in
Tab. 4.9.

Table 4.9: List of parameters related to the auditory representation ’onset_strength’.
Parameter Default Description
ons_maxOnsetdB 30 Upper limit for onset strength in dB

The resulting onset strength expressed in dB, which is a function of time frame and
frequency channel, is shown in Fig. 4.10. The two figures can be replicated by running the
script DEMO_OnsetStrength.m. When considering speech as an input signal, it can be seen
that onsets appear simultaneously across a broad frequency range and typically mark the
beginning of an auditory event.

 

 

Fr
eq

ue
nc

y
(H

z)

Time (s)

Ratemap

0 0.5 1

-100

-90

-80

-70

-60

-50

-40

-30

100

250

500

1000

2000

4000

8000

 

 

Fr
eq

ue
nc

y
(H

z)

Time (s)

Onset strength

0 0.5 1
0

5

10

15

20

25

30

100

250

500

1000

2000

4000

8000

Figure 4.10: Ratemap representation (left panel) of speech and the corresponding onset strength
in dB (right panel).

56



4.9 Offset strength (offsetProc.m)

4.9 Offset strength (offsetProc.m)

Similarly to onsets, the strength of offsets can be estimated by measuring the frame-based
decrease in logarithmically-scaled energy. As discussed in the previous section, the selected
ratemap parameters as listed in Tab. 4.7 will influence the offset processor. Similar to the on-
set strength, the offset strength can be constrained to a maximum value of ons_maxOffsetdB
= 30. A list of all parameters is presented in Tab. 4.10.

Table 4.10: List of parameters related to the auditory representation ’offset_strength’.
Parameter Default Description
ofs_maxOffsetdB 30 Upper limit for offset strength in dB

The offset strength is demonstrated by the script DEMO_OffsetStrength.m and the corre-
sponding figures are depicted in Fig. 4.11. It can be seen that the overall magnitude of the
offset strength is lower compared to the onset strength. Moreover, the detected offsets are
less synchronized across frequency.

 

 

Fr
eq

ue
nc

y
(H

z)

Time (s)

Ratemap

0 0.5 1

-100

-90

-80

-70

-60

-50

-40

-30

100

250

500

1000

2000

4000

8000

 

 

Fr
eq

ue
nc

y
(H

z)

Time (s)

Offset strength

0 0.5 1
0

2

4

6

8

10

100

250

500

1000

2000

4000

8000

Figure 4.11: Ratemap representation (left panel) of speech and the corresponding offset strength
in dB (right panel).

4.10 Binary onset and offset maps (transientMapProc.m)

The information about sudden intensity changes, as represented by onsets or offsets, can
be combined in order to organize and group the acoustic input according to individual
auditory events. The required processing is similar for both onsets and offsets, and is
summarized by the term transient detection. To apply this transient detection based on
the onset strength or offset strength, the user should use the request name ’onset_map’
or ’offset_map’, respectively. Based on the transient strength which is derived from the

57



4 Available processors

corresponding onset strength and offset strength processor (described in Sec. 4.8 and 4.9), a
binary decision about transient activity is formed, where only the most salient information
is retained. To achieve this, temporal and across-frequency constraints are imposed for
the transient information. Motivated by the observation that two sounds are perceived
as separated auditory events when the difference in terms of their onset time is in the
range of 20ms – 40ms (Turgeon et al., 2002), transients are fused if they appear within
a pre-defined time context. If two transients appear within this time context, only the
stronger one will be considered. This time context can be adjusted by trm_fuseWithinSec.
Moreover, the minimum across-frequency context can be controlled by the parameters
trm_minSpread. To allow for this selection, individual transients which are connected
across multiple time-frequency (T-F) units are extracted using Matlab’s image labeling
tool bwlabel . The binary transient map will only retain those transients which consists of
at least trm_minSpread connected T-F units. The salience of the cue can be specified by
the detection thresholds trm_minStrengthdB. Whereas this thresholds control the required
relative change, a global threshold excludes transient activity if the corresponding ratemap
level is below a pre-defined threshold, as determined by trm_minValuedB. A summary of
all parameters is given in Tab. 4.11.

Table 4.11: List of parameters related to the auditory representation ’onset_map’ and
’offset_map’.

Parameter Default Description
trm_fuseWithinSec 30E-3 Time constant below which transients are fused
trm_minSpread 5 Minimum number of connected T-F units
trm_minStrengthdB 3 Minimum onset strength in dB
trm_minValuedB -80 Minimum ratemap level in dB

To illustrate the benefit of selecting onset and offset information, a ratemap representation
is shown in Fig. 4.12 (left panel), where the corresponding onsets and offsets detected by the
transientMapProc, through two individual requests ’onset_map’ and ’offset_map’, and
without applying any temporal or across-frequency constraints are overlaid (respectively
in black and white). It can be seen that the onset and offset information is quite noisy.
When only retaining the most salient onsets and offsets by applying temporal and across-
frequency constraints (right panel), the remaining onsets and offsets can be used as
temporal markers, which clearly mark the beginning and the end of individual auditory
events.

58



4.11 Pitch (pitchProc.m)

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)
0.2 0.4 0.6 0.8 1 1.2 1.4

80

265

560

1032

1787

2992

4920

8000

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)
0.2 0.4 0.6 0.8 1 1.2 1.4

80

265

560

1032

1787

2992

4920

8000

Figure 4.12: Detected onsets and offsets indicated by the black and white vertical bars. The
left panels shows all onset and offset events, whereas the right panel applies temporal and across-
frequency constraints in order to retain the most salient onset and offset events.

4.11 Pitch (pitchProc.m)

Following Slaney and Lyon (1990), Meddis et al. (2001), Meddis and O’Mard (1997), the
subband periodicity analysis obtained by the ACF can be integrated across frequency by
giving equal weight to each frequency channel. The resulting SACF reflects the strength of
periodicity as a function of the lag period for a given time frame, as illustrated in Fig. 4.7.
Based on the SACF representation, the most salient peak within the plausible pitch
frequency range p_pitchRangeHz is detected for each frame in order to obtain an estimation
of the fundamental frequency. In addition to the peak position, the corresponding amplitude
of the SACF is used to reflect the confidence of the underlying pitch estimation. More
specifically, if the SACF magnitude drops below a pre-defined percentage p_confThresPerc
of its global maximum, the corresponding pitch estimate is considered unreliable and set
to zero. The estimated pitch contour is smoothed across time frames by a median filter of
order p_orderMedFilt, which aims at reducing the amount of octave errors. A list of all
parameters is presented in Tab. 4.12. In the context of pitch estimation, it will be useful
to experiment with the settings related to the non-linear pre-processing of the ACF, as
described in Sec. 4.5.

Table 4.12: List of parameters related to the auditory representation ’pitch’.
Parameter Default Description
p_pitchRangeHz [80 400] Plausible pitch frequency range in Hz
p_confThresPerc 0.7 Confidence threshold related to the SACF magnitude
p_orderMedFilt 3 Order of the median filter

The task of pitch estimation is demonstrated by the script DEMO_Pitch and the correspond-

59



4 Available processors

ing plots are presented in Fig. 4.13. The pitch is estimated for an anechoic speech signal
(top left panel). The corresponding SACF is presented in the top right panel, where each
black cross represents the most salient lag period per time frame. The plausible pitch range
is indicated by the two white dashed lines. The confidence measure of each individual
pitch estimates is shown in the bottom left panel, which is used to set the estimated pitch
to zero if the magnitude of the SACF is below the threshold. The final pitch contour is
post-processed with a median filter and shown in the bottom right panel. Unvoiced frames,
where no pitch frequency was detected, are indicated by NaN’s.

A
m

pl
it

ud
e

Time (s)

Time domain signal

0 0.2 0.4 0.6 0.8 1 1.2

-1

-0.5

0

0.5

1

 

 

La
g

pe
ri

od
(s

)

Time (s)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.005

0.01

0.015

0.02

 

 

confidence threshold
global maximum
SACF magnitude

M
ag

ni
tu

de

Time (s)

Confidence measure

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y
(H

z)

Time (s)

Estimated pitch contour

0 0.2 0.4 0.6 0.8 1 1.2

100

150

200

250

300

350

400

Figure 4.13: Time domain signal (top left panel) and the corresponding SACF (top right panel).
The confidence measure based on the SACF magnitude is used to select reliable pitch estimates
(bottom left panel). The final pitch estimate is post-processed by a median filter (bottom right
panel).

60



4.12 Medial Olivo-Cochlear (MOC) feedback (mocProc.m)

4.12 Medial Olivo-Cochlear (MOC) feedback (mocProc.m)

It has now been a well known fact that in the auditory system, an efferent pathway of fibers
exists, originating from the auditory neurons in the olivary complex to the outer hair cells
(Guinan, 2006). This operates as a top-down feedback path, as opposed to the bottom-up
peripheral signal transmission towards the brain, affecting the movement of the basilar
membrane in response to the input stimulus. The MOC processor mimics this feedback,
particularly originating from the medial part of the olivary complex. In AFE, this feedback
is realised by monitoring the output from the ratemap processor which corresponds to the
auditory neurons’ firing rate, and by controlling accordingly the nonlinear path gain of
the DRNL processor which corresponds to the basilar membrane’s nonlinear operation.
This approach is based on the work of Clark et al. (2012), except that the auditory nerve
processing model is simplified as the ratemap processor in AFE.

The input to the MOC processor is the time frame-frequency representation from the
ratemap processor. This is then converted into an attenuation factor per each frequency
channel. The constants for this rate-to-attenuation conversion are internal parameters
of the processor, which can be set in accordance with various physiological findings such
as those of Liberman (1988). The amplitude relationship was adopted from the work
of Clark et al. (2012). The time course and delay of the feedback activity, such as in
the work of Backus and Guinan (2006), can be approximated by adjusting the leaky
integrator time constant rm_decaySec and the window step size rm_hSizeSec of the
ratemap processor.

In addition to this so-called reflexive feedback, realised as a closed-loop operation, the
reflective feedback is realised by means of additional control parameters that can be
modified externally in an open-loop manner. The two parameters moc_mocIpsi and
moc_mocContra are included for this purpose. Depending on applications, these two
can be accessed and adjusted via the Blackboard system, and applied jointly with the
reflexive feedback to the DRNL nonlinear path as the final multiplicative gain factor.
Tab. 4.13 lists the parameters for the MOC processor, including the above-mentioned two.
The other two parameters moc_mocThresholdRatedB and moc_mocMaxAttenuationdB are
specified such that the input level-MOC attenuation relationship is fitted best to the
data of Liberman (1988) which is scaled within a range of 0 to 40 dB by Clark et al.
(2012).

Fig. 4.14 shows, firstly on the left panel, the input-output characteristics of the MOC
processor, using on-frequency stimulation from tones at 520Hz and 3980Hz, same as in
the work of Liberman (1988). As mentioned above, the relationship between the input
level and the MOC attenuation activity through the ratemap representation was derived
through curve fitting to the available data set of Liberman (1988), which is also shown on
the plot. An example of input signal-DRNL output pair at 40dB input level is shown on

61



4 Available processors

Table 4.13: List of parameters related to the auditory representation ’moc’.
Parameter Default Description
moc_mocIpsi 1 Ipsilateral MOC feedback factor (0 to 1)
moc_mocContra 1 Contralateral MOC feedback factor (0 to 1)
moc_mocThresholdRatedB -180 Threshold ratemap value for MOC activation in dB
moc_mocMaxAttenuationdB 40 Maximum possible MOC attenuation in dB

the right panel. The feedback applies an attenuation at the later part of the tone. These
plots can be generated by running the script DEMO_MOC.m.

 

 

Liberman 3980Hz
Liberman 520Hz
3980Hz
520Hz

M
ax

im
um

M
O

C
ac

ti
vi

ty
(d

B
)

Input tone level (dB SPL)

Input-output characteristics of mocProc

0 20 40 60 80 100
0

10

20

30

40

A
m

pl
it

ud
e

(x
1E

−
3
)

Time (s)

Input signal, 40dB SPL, 520Hz

0 0.02 0.04 0.06 0.08 0.1
−2

0

2

A
m

pl
it

ud
e

(x
1E

−
3
)

Time (s)

DRNL output with reflexive MOC feedback

0 0.02 0.04 0.06 0.08 0.1
−5

0

5

Figure 4.14: Left panel: input-output characteristics of the MOC processor for on-frequency
tone stimulus at 520 and 3980Hz. The data set of Liberman (1988), scaled as in the work of Clark
et al. (2012), is also shown for comparison. Right panel: DRNL processor output (bottom) from a
50-ms tone at 40dB SPL and 520Hz (top), with the reflexive MOC feedback operating.

4.13 Amplitude modulation spectrogram (modulationProc.m)

The detection of envelope fluctuations is a very fundamental ability of the human auditory
system which plays a major role in speech perception. Consequently, computational models
have tried to exploit speech- and noise specific characteristics of amplitude modulations by
extracting so-called amplitude modulation spectrogram (AMS) features with linearly-scaled
modulation filters (Kollmeier and Koch, 1994, Tchorz and Kollmeier, 2003, Kim et al., 2009,
May and Dau, 2013, May and Gerkmann, 2014, May and Dau, 2014a, May et al., 2015). The
use of linearly-scaled modulation filters is, however, not consistent with psychoacoustic data
on modulation detection and masking in humans (Bacon and Grantham, 1989, Houtgast,
1989, Dau et al., 1997a,b, Ewert and Dau, 2000). As demonstrated by Ewert and Dau

62



4.13 Amplitude modulation spectrogram (modulationProc.m)

(2000), the processing of envelope fluctuations can be described effectively by a second-
order band-pass filterbank with logarithmically-spaced center frequencies. Moreover,
it has been shown that an AMS feature representation based on an auditory-inspired
modulation filterbank with logarithmically-scaled modulation filters substantially improved
the performance of computational speech segregation in the presence of stationary and
fluctuating interferers (May and Dau, 2014b). In addition, such a processing based on
auditory-inspired modulation filters has recently also been successful in speech intelligibility
prediction studies (Jørgensen and Dau, 2011, Jørgensen et al., 2013). To investigate the
contribution of both AMS feature representations, the amplitude modulation processor
can be used to extract linearly- and logarithmically-scaled AMS features. Therefore, each
frequency channel of the IHC representation is analyzed by a bank of modulation filters.
The type of modulation filters can be controlled by setting the parameter ams_fbType
to either ’lin’ or ’log’. To illustrate the difference between linear linearly-scaled and
logarithmically-scaled modulation filters, the corresponding filterbank responses are shown
in Fig. 4.15. The linear modulation filterbank is implemented in the frequency domain,
whereas the logarithmically-scaled filterbank is realized by a band of second-order IIR
butterworth filters with a constant-Q factor of 1. The modulation filter with the lowest
center frequency is always implemented as a low-pass filter, as illustrated in the right panel
of Fig. 4.15.

Fi
lt

er
at

te
nu

at
io

n
d
B

Modulation frequency fc (Hz)
0 50 100 150 200 250 300 350 400

-40

-35

-30

-25

-20

-15

-10

-5

0

Fi
lt

er
at

te
nu

at
io

n
d
B

Modulation frequency fc (Hz)
1 10 100 1000

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 4.15: Transfer functions of 15 linearly-scaled (left panel) and 9 logarithmically-scaled
(right panel) modulation filters.

Similarly to the gammatone processor described in Sect 4.2.1, there are different ways to
control the center frequencies of the individual modulation filters, which depend on the
type of modulation filters

• ams_fbType = ’lin’

1. Specify ams_lowFreqHz, ams_highFreqHz and ams_nFilter. The requested
number of filters ams_nFilter will be linearly-spaced between ams_lowFreqHz

63



4 Available processors

and ams_highFreqHz. If ams_nFilter is omitted, the number of filters will be
set to 15 by default.

• ams_fbType = ’log’

1. Directly define a vector of center frequencies, e.g. ams_cfHz = [4 8 16
...]. In this case, the parameters ams_lowFreqHz, ams_highFreqHz, and
ams_nFilter are ignored.

2. Specify ams_lowFreqHz and ams_highFreqHz. Starting at ams_lowFreqHz, the
center frequencies will be logarithmically-spaced at integer powers of two, e.g.
22, 23, 24 . . . until the higher frequency limit ams_highFreqHz is reached.

3. Specify ams_lowFreqHz, ams_highFreqHz and ams_nFilter. The requested
number of filters ams_nFilter will be spaced logarithmically as power of two
between ams_lowFreqHz and ams_highFreqHz.

The temporal resolution at which the AMS features are computed is specified by the window
size ams_wSizeSec and the step size ams_hSizeSec. The window size is an important
parameter, because it determines how many periods of the lowest modulation frequencies
can be resolved within one individual time frame. Moreover, the window shape can be
adjusted by ams_wname. Finally, the IHC representation can be downsampled prior to
modulation analysis by selecting a downsampling ratio ams_dsRatio larger than 1. A full
list of AMS feature parameters is shown in Tab. 4.14.

Table 4.14: List of parameters related to the auditory representation ’ams_features’.
Parameter Default Description
ams_fbType ’log’ Filterbank type (’lin’ or ’log’)
ams_nFilter [] Number of modulation filters (integer)
ams_lowFreqHz 4 Lowest modulation filter center frequency in Hz
ams_highFreqHz 1024 Highest modulation filter center frequency in Hz
ams_cfHz [] Vector of modulation filter center frequencies in Hz
ams_dsRatio 4 Downsampling ratio of the IHC representation
ams_wSizeSec 32E-3 Window duration in s
ams_hSizeSec 16E-3 Window step size in s
ams_wname ’rectwin’ Window name

The functionality of the AMS feature processor is demonstrated by the script DEMO_AMS
and the corresponding four plots are presented in Fig. 4.16. The time domain speech
signal (top left panel) is transformed into a IHC representation (top right panel) using 23
frequency channels spaced between 80 and 8000Hz. The linear and the logarithmic AMS
feature representations are shown in the bottom panels. The response of the modulation

64



4.14 Spectro-temporal modulation spectrogram

filters are stacked on top of each other for each IHC frequency channel, such that the
AMS feature representations can be read like spectrograms. It can be seen that the linear
AMS feature representation is more noisy in comparison to the logarithmically-scaled AMS
features. Moreover, the logarithmically-scaled modulation pattern shows a much higher
correlation with the activity reflected in the IHC representation.

A
m

pl
it

ud
e

Time (s)

Time domain signal

0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

Fr
eq

ue
nc

y
(H

z)

Time (s)

IHC signal

0 0.5 1 1.5 2 2.5
80

265

562

1036

1792

3000

4926

8000

 

 
2323
2222
2121
2020
1919
1818
1717
1616
1515
1414
1313
1212
1111
1010
99
88
77
66
55
44
33
22
11

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

linear AMS features

0 0.5 1 1.5 2 2.5
80

527

1365

3674

8000

 

 
2323
2222
2121
2020
1919
1818
1717
1616
1515
1414
1313
1212
1111
1010
99
88
77
66
55
44
33
22
11

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

logarithmic AMS features

0 0.5 1 1.5 2 2.5
80

527

1365

3674

8000

Figure 4.16: Speech signal (top left panel) and the corresponding IHC representation (top right
panel) using 23 frequency channels spaced between 80 and 8000Hz. Linear AMS features (bottom
left panel) and logarithmic AMS features (bottom right panel). The response of the modulation
filters are stacked on top of each other for each IHC frequency channel, and each frequency channel
is visually separated by a horizontal black line. The individual frequency channels, ranging from 1
to 23, are labels at the left hand side.

4.14 Spectro-temporal modulation spectrogram

Neuro-physiological studies suggest that the response of neurons in the primary auditory
cortex of mammals are tuned to specific spectro-temporal patterns (Theunissen et al., 2001,
Qiu et al., 2003). This response characteristic of neurons can be described by the so-called

65



4 Available processors

spectro-temporal receptive field (STRF). As suggested by Qiu et al. (2003), the STRF can
be effectively modeled by two-dimensional (2D) Gabor functions. Based on these findings,
a spectro-temporal filterbank consisting of 41 Gabor filters has been designed by Schädler
et al. (2012). This filterbank has been optimized for the task of ASR, and the respective
real parts of the 41 Gabor filters is shown in Fig. 4.17.

The input is a log-compressed ratemap with a required resolution of 100Hz, which cor-
responds to a step size of 10ms. To reduce the correlation between individual Gabor
features and to limit the dimensionality of the resulting Gabor feature space, a selection
of representative ratemap frequency channels will be automatically performed for each
Gabor filter (Schädler et al., 2012). For instance, the reference implementation based on 23
frequency channels produces a 311 dimensional Gabor feature space.

S
pe

ct
ra

l3m
od

ul
at

io
n3

fr
eq

u
en

cy
3[c

yc
le

s/
ch

an
ne

l]

0.0 6.2 9.9 15.7 25.0

−0.25

−0.12

−0.06

−0.03

0.00

0.03

0.06

0.12

0.25

Temporal3modulation3freq.3[Hz]

Figure 4.17: Real part of 41 spectro-temporal Gabor filters.

The Gabor feature processor is demonstrated by the script DEMO_GaborFeatures.m, which
produces the two plots shown in Fig. 4.18. A log-compressed ratemap with 25ms time
frames and 23 frequency channels spaced between 124 and 3657Hz is shown in the left

66



4.15 Cross-correlation (crosscorrelationProc.m)

panel for a speech signal. These ratemap parameters have been adjusted to meet the
specifications as recommended in the European telecommunications standards institute
(ETSI) standard (ETSI ES 201 108 v1.1.3, 2003). The corresponding Gabor feature space
with 311 dimension is presented in the right panel, where vowel transition (e.g. at time
frames around 0.2 s) are well captured. This aspect might be particularly relevant for the
task of ASR.

 

 

#
ch

an
ne

ls

Time (s)

Ratemap

0 0.5 1
-110

-100

-90

-80

-70

-60

-50

-40

5

10

15

20

 

 

#
fe

at
ur

e
di

m
en

si
on

s

Time (s)

Gabor features

0 0.5 1

-4

-2

0

2

4

50

100

150

200

250

300

Figure 4.18: Ratemap representation of a speech signal (left panel) and the corresponding output
of the Gabor feature processor (right panel).

4.15 Cross-correlation (crosscorrelationProc.m)

The IHC representations of the left and the right ear signals is used to compute the
normalized cross-correlation function (CCF) in the FFT domain for short time frames of
cc_wSizeSec duration with a step size of cc_hSizeSec. The CCF is normalized by the
auto-correlation sequence at lag zero. This normalized CCF is then evaluated for time lags
within cc_maxDelaySec (e.g., [−1ms, 1ms]) and is thus a three-dimensional function of
time frame, frequency channel and lag time. An overview of all CCF parameters is given
in Tab. 4.15. Note that the choice of these parameters will influence the computation of
the ITD and the interaural coherence (IC) processors, which are described in Sec. 4.16 and
Sec. 4.18, respectively.

Table 4.15: List of parameters related to the auditory representation ’crosscorrelation’.
Parameter Default Description
cc_wname ’hann’ Window type
cc_wSizeSec 0.02 Window duration (s)
cc_hSizeSec 0.01 Window step size (s)
cc_maxDelaySec 0.0011 Maximum delay (s) considered in CCF computation

67



4 Available processors

The script DEMO_Crosscorrelation.m demonstrates the functionality of the CCF function
and the resulting plots are shown in Fig. 4.19. The left panel shows the ear signals for a
speech source that is located closer to the right ear. As result, the left ear signal is smaller
in amplitude and is delayed in comparison to the right ear signal. The corresponding CCF
is shown in the right panel for 32 auditory channels, where peaks are centered around
positive time lags, indicating that the source is closer to the right ear. This is even more
evident by looking at the summary cross-correlation function (SCCF), as shown in the
bottom right panel.

 

 

Right ear
Left ear

A
m

pl
it

ud
e

Time (s)

Time domain signals

0.095 0.1 0.105 0.11

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

SC
C

F

Lag period (ms)

C
en

te
r

fr
eq

ue
nc

y
(H

z)

CCF

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

0.6
0.8

1

80
265
561

1034
1789
2995
4927
8000

Figure 4.19: Left and right ear signals shown for one time frame of 20ms duration (left panel)
and the corresponding CCF (right panel). The SCCF summarizes the CCF across all auditory
channels (bottom right panel).

4.16 Interaural time differences (itdProc.m)

The ITD between the left and the right ear signal is estimated for individual frequency
channels and time frames by locating the time lag that corresponds to the most prominent
peak in the normalized CCF. This estimation is further refined by a parabolic interpo-
lation stage (May et al., 2011, 2013). The ITD processor does not have any adjustable
parameters, but it relies on the CCF described in Sec. 4.15 and its corresponding param-
eters (see Tab. 4.15). The ITD representation is computed by using the request entry
’itd’.

The ITD processor is demonstrated by the script DEMO_ITD.m, which produces two plots
as shown in Fig. 4.20. The ear signals for a speech source that is located closer to the
right ear are shown in the left panel. The corresponding ITD estimation is presented
for each individual T-F unit (right panel). Apart from a few estimation errors, the
estimated ITD between both ears is in the range of 0.5ms for the majority of T-F
units.

68



4.17 Interaural level differences (ildProc.m)

 

 

Left ear
Right ear

A
m

pl
it

ud
e

Time (sec)

Time domain signals

0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

 

 

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

ITD

0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

80

265

561

1034

1789

2995

4927

8000

Figure 4.20: Binaural speech signal (left panel) and the estimated ITD in ms shown as a function
of time frames and frequency channels.

4.17 Interaural level differences (ildProc.m)

The ILD is estimated for individual frequency channels by comparing the frame-based
energy of the left and the right-ear IHC representations. The temporal resolution can be
controlled by the frame size ild_wSizeSec and the step size ild_hSizeSec. Moreover,
the window shape can be adjusted by the parameter ild_wname. The resulting ILD is
expressed in dB and negative values indicate a sound source positioned at the left-hand
side, whereas a positive ILD corresponds to a source located at the right-hand side. A full
list of parameters is shown in Tab. 4.16.

Table 4.16: List of parameters related to the auditory representation ’ild’.
Parameter Default Description
ild_wSizeSec ’20E-3’ Window duration in s
ild_hSizeSec 10E-3 Window step size in s
ild_wname ’hann’ Window name

The ILD processor is demonstrated by the script DEMO_ILD.m and the resulting plots
are presented in Fig. 4.21. The ear signals are shown for a speech source that is more
closely located to the right ear (left panel). The corresponding ILD estimates are pre-
sented for individual T-F units. It is apparent that the ILDs change considerably as a
function of the center frequency. Whereas hardly any ILDs are observed for low frequen-
cies, a strong influence can be seen at higher frequencies where ILDs can be as high as
30 dB.

69



4 Available processors

 

 

Left ear
Right ear

A
m

pl
it

ud
e

Time (sec)

Time domain signals

0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

 

 

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

ILD

0.2 0.4 0.6 0.8 1 1.2 1.4
-10

0

10

20

30

80

265

561

1034

1789

2995

4927

8000

Figure 4.21: Binaural speech signal (left panel) and the estimated ILD in dB shown as a function
of time frames and frequency channels.

4.18 Interaural coherence (icProc.m)

The IC is estimated by determining the maximum value of the normalized CCF. It has
been suggested that the IC can be used to select T-F units where the binaural cues (ITDs
and ILDs) are dominated by the direct sound of an individual sound source, and thus, are
likely to reflect the true location of one of the active sources (Faller and Merimaa, 2004).
The IC processor does not have any controllable parameters itself, but it depends on the
settings of the CCF processor, which is described in Sec. 4.15. The IC representation is
computed by using the request entry ’ic’.

The application of the IC processor is demonstrated by the script DEMO_IC, which produces
the following four plots shown in Fig. 4.22. The top left and bottom left panels show the
anechoic and reverberant speech signal, respectively. It can be seen that the time domain
signal is smeared due to the influence of the reverberation. The IC for the anechoic signal
is close to one for most of the individual T-F units, which indicates that the corresponding
binaural cues are reliable. In contrast, the IC for the reverberant signal is substantially
lower for many T-F units, suggesting that the corresponding binaural cues might be
unreliable due to the impact of the reverberation.

70



4.19 Precedence effect (precedenceProc.m)

 

 

Left ear
Right ear

A
m

pl
it

ud
e

Time (sec)

Time domain signals (anechoic)

0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

 

 

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

IC (anechoic)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

80

265

561

1034

1789

2995

4927

8000

 

 

Left ear
Right ear

A
m

pl
it

ud
e

Time (sec)

Time domain signals (reverberant)

0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

 

 

C
en

te
r

fr
eq

ue
nc

y
(H

z)

Time (s)

IC (reverberant)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

80

265

561

1034

1789

2995

4927

8000

Figure 4.22: Time domain signals and the corresponding interaural coherence as a function of time
frames and frequency channels estimated for a speech signal in anechoic and reverberant conditions.
Anechoic speech (top left panel) and the corresponding IC (top right panel). Reverberant speech
(bottom left panel) and the corresponding IC (bottom right panel).

4.19 Precedence effect (precedenceProc.m)

The precedence effect describes the ability of humans to fuse and localize the sound based
on the first-arriving parts, in the presence of its successive version with a time delay below
an echo-generating threshold (Wallach et al., 1949). The effect of the later-arriving sound
is suppressed by the first part in the localization process. The precedence effect processor
in AFE models this, with the strategy based on the work of Braasch (2013). The processor
detects and removes the lag from a binaural input signal with a delayed repetition, by
means of an autocorrelation mechanism and deconvolution. Then it derives the ITD and
ILD based on these lag-removed signals.

The input to the precedence effect processor is a binaural time-frequency signal chunk
from the gammatone filterbank. Then for each chunk a pair of ITD and ILD values is

71



4 Available processors

calculated as the output, by integrating the ITDs and ILDs across the frequency channels
according to the weighted-image model (Stern et al., 1988), and through amplitude-weighted
summation. Since these ITD/ILD calculation methods of the precedence effect processor
are different from what are used for the AFE ITD and ILD processors, the AFE ITD and
ILD processors are not connected to the precedence effect processor. Instead the steps for
the correlation analyses and the ITD/ ILD calculation are coded inside the processor as its
own specific techniques. Tab. 4.17 lists the parameters needed to operate the precedence
effect processor.

Table 4.17: List of parameters related to the auditory representation ’precedence’.
Parameter Default Description
prec_wSizeSec 20E-3 Window duration in s
prec_hSizeSec 10E-3 Window step size in s
prec_maxDelaySec 10E-3 Maximum delay in s for autocorrelation computation

Fig. 4.23 shows the output from a demonstration script DEMO_precedence.m. The input
signal is a 800-Hz wide bandpass noise of 400 ms length, centered at 500 Hz, mixed with a
reflection that has a 2-ms delay, and made binaural with an ITD of 0.4 ms and a 0-dB
ILD. During the processing, windowed chunks are used as the input, with the length of 20
ms. It can be seen that after some initial confusion, the processor estimates the intended
ITD and ILD values as more chunks are analyzed.

 

 

left ear
right ear

A
m

pl
it

ud
e

Time (s)

Time domain signals

0 0.01 0.02 0.03 0.04 0.05

−0.5

0

0.5

IT
D

[m
s]

Iteration steps / number of analyzed windows

Accumulated ITD

0 10 20 30 40
0

0.5

1

IL
D

[d
B

]

Iteration steps / number of analyzed windows

Accumulated ILD

0 10 20 30 40
−10

0

10

Figure 4.23: Left panel: band-pass input noise signal, 400 ms long (only the first 50 ms is shown),
800 Hz wide, centered at 500 Hz, mixed with a reflection of a 2-ms delay, and made binaural with
an ITD of 0.4 ms and ILD of 0 dB. Right panel: estimated ITD ILD shown as a function of time
frames.

72



5 Add your own processors

The auditory front-end (AFE) framework has been designed in such a way that it can be
easily upgraded. To add a new processor, write its class definition in a new .m file and add it
to the /src/Processors folder. If correctly written, the processor should be automatically
detected by the framework and be ready to use. This section documents in details how
to correctly write the class definition of a new processor. It is highly recommended to
look into the definition of existing processors to get a grasp of how classes are defined
and written in Matlab. In the following, we will sometimes refer to a particular existing
processor to illustrate some aspects of the implementation.

Note

• The following descriptions are exhaustive, and adding a processor to the
framework is actually easier than the length of this page suggests!

• This tutorial is written assuming limited knowledge about object-oriented
programming using Matlab. Hence most object-orientated programming
(OOP) concepts involved are briefly explained.

• You can base your implementation on the available templateProc.m file which
contains a pre-populated list of properties and methods. Simply copy the file,
rename it to your processor name, and follow the instructions.

5.1 Check-list for adding a new processor

To write the class definition for a new processor such that it will be recognised and properly
integrated, one has to follow these steps:

1. Set up the specific properties of the processor class

2. Implement the processor’s static methods

3. Implementing parameters “getter” methods

73



5 Add your own processors

4. Implement the processor constructor

5. Take a break and test your implementation

6. Implement the core processing method

7. Override parent methods (optional)

8. Allowing alternative processing options (optional)

9. Add a new type of signal (optional)

10. Final testing

5.2 Getting started and setting up processor properties

The properties of an object are a way to store data used by the object. There are two
types of properties for processors, those which:

• store all the parameters needed to integrate the processor into the framework (e.g.,
the sampling frequency on which it operates, the number of inputs/outputs, ...)

• store parameter values which are used in the actual processing

When writing the class definition for a new processor, it is only necessary to implement the
latter: parameters which are needed in the computation. All parameters needed for the
integration of the processor in the framework are already defined in the parent Processor
class. Your new processor should inherit this parent class in order to automatically have
access to the properties and methods of the parent class. Inheritance in Matlab is indicated
by the command < nameOfParentClass following the name of your new class in the first
line of its definition.

The new processor class definition should be saved in a .m file that has the same name as the
defined class. In the example below, that would be myNewProcessor.m.

There are usually two categories of properties to be implemented for a new processor:
external (user-controlled) parameters and internal parameters necessary for the processor
but which do not need to be known to the “outside world”.

Note

Only the two types of properties below have been used so far in every processor
implementation. However, it is fine to add more if needed for your new processor.

74



5.2 Getting started and setting up processor properties

5.2.1 External parameters controllable by the user

External parameters are directly related to the parameters the user can access and change.
The actual values for these are stored in a specific object accessible via the .parameters
property of the processor. Defining them as individual properties seems redundant, and is
therefore optional. However it can be very convenient in order to simplify the access to the
parameter value and to make your code more readable.

Instead of storing an actual value, the corresponding processor property should only point to
a value in the .parameters object. This will avoid having two different values for the same
parameter. To do this, external parameters should be defined as a set of dependent proper-
ties. This is indicated by the Dependent = true property attribute. If a property is set to
Dependent, then a corresponding “getter” method has to be implemented for it. This will
be developed in a following section. For example, if your new processor has two parameters,
parA and parB, you can define these as properties as follow:

1 classdef myNewProcessor < Processor
2
3 properties (Dependent = true)
4 parA;
5 parB;
6 end
7
8 %...
9

10 end

This will allow easier access to these values in your code. For example, myNewProcessor.parA
will always give the same output as

myNewProcessor.parameters.map(’xx_nameTagOfParameterA’),

even if the parameter value changes due to feedback. This simplifies greatly the code,
particularly when many parameters are involved.

5.2.2 Internal parameters

Internal parameters are sometimes (not always) needed for the functioning of the processor.
They are typically used to store internal states of the processor (e.g., to allow continuity
in block-based processing), filter instances (if your processor involves filtering), or just
intermediate parameter values used to make code more readable.

Because they are “internal” to the processor, these parameters are usually stored as a set of
private properties by using the GetAccess = private property attributes. This will virtu-

75



5 Add your own processors

ally make the property invisible and inaccessible to all other objects.

5.3 Implementing static methods

Static methods are methods that can be called without an existing instance of an object.
In the implementation of processors, they are used to store all the hard-coded information.
This can be for example the processor name, the type of signal it accepts as input, or the
names and default values of its external parameters. A static method is implemented by
defining it in a method block with the (Static) method attribute:

1 classdef myNewProcessor < Processor
2
3 % ... Properties and other methods definition
4
5 methods (Static)
6
7 function out = myStaticMethod_1(in)
8 %...
9 end

10
11 function out = myStaticMethod_2(in)
12 %...
13 end
14
15 end
16
17 end

Static methods share the same structure and names across processors, so they can easily
be copy/pasted from an existing processor and then modified to reflect your new processor.
The following three methods have to be implemented.

• .getDependency(): Returns the type of input signal by its user request name

• .getParameterInfo(): Returns names, default values, and descriptions of external
parameters

• .getProcessorInfo(): Returns information about the processor as a Matlab struc-
ture

As they are used to hard-code and return information, none of these methods accept input
arguments.

76



5.3 Implementing static methods

5.3.1 getDependency

This method returns the type of input signal your processor should accept:

1 function name = getDependency ()
2 name = 'requestNameOfInputSignal ';
3 end

where ’requestNameOfInputSignal’ is the request name of the signal that should be used
as input. “Request name” corresponds to the request a user would place in order to obtain
a particular signal. For example, the inner hair-cell envelope processor requires as input the
output of e.g., a gammatone filterbank. The request name for this signal is ’filterbank’
which should therefore be the output of the static method ihcProc.getDependency().
You can also check the list of currently valid request names by typing requestList in
Matlab’s command window.

If you are unsure about which name should be used, consider which processor would come di-
rectly before your new processor in a processing chain (i.e., the processor your new processor
depends on). Say it is named dependentProc. Then typing:

1 dependentProc.getProcessorInfo.requestName

in Matlab’s command window will return the corresponding request name you should
output in your getDependency method.

5.3.2 getParameterInfo

This method hard-codes all information regarding the (external) parameters used by your
processor, i.e., lists of their names, default values, and description. These are used to
populate the output of the helper script parameterHelper and to give a default value to
parameters when your processor is instantiated.

The lists are returned as cell arrays of strings (or any other type for the default parameter
values). They should follow the same order, such that the n-th member of each of the three
lists relate to the same parameter.

Parameter names need not be the same as the parameter property name you defined earlier.
This will become apparent in the next section. In fact, names should be changed to at
least include a two or three letters prefix that is unique to your new processor. You can
make sure it is not already in use by browsing through the output of the parameterHelper
script.

The method should look like this:

77



5 Add your own processors

1 function [names ,defValues ,description] = getParameterInfo ()
2
3 names = {'xx_par1 ','xx_par2 ','xx_par3 '};
4
5 defValues = {0.5, ...
6 [1 2 3 4], ...
7 'someStringValue '};
8
9 description = {'Tuning factor of dummy example (s)',...

10 'Vector of unused frequencies (Hz)',...
11 'Model name (''someStringValue '' or ''anotherValue '')'}
12
13 end

This dummy example illustrates the following important points:

• Use a unique prefix in the name of the parameters (xx_ above) that abbreviates the
name or task of the processor.

• Find a short, but self-explanatory parameter name (not like parX above). If it makes
sense, you can re-use the same name as a parameter involved in another processor.
The prefix will make the name unique.

• Default values can be of any type (e.g., float number, array, strings,...)

• Descriptions should be as short as possible while still explanatory. Mention if
applicable the units or the different alternatives.

5.3.3 getProcessorInfo

This method stores the properties of the processor that are needed to integrate it in the
framework. It outputs a structure with the following fields:

• .name: A short, self-explanatory name for the processor

• .label: A name for the processor that is used as a label. It can be the same as
.name if that is sufficient, or a bit longer if needed.

• .requestName: The name tag of the request that a user should input when calling
the .addProcessor method of the manager. This has to be a valid Matlab name
(e.g., it cannot include spaces).

• .requestLabel: A longer name for the signal this processor produces, used e.g., as
plot labels.

78



5.4 Implementing parameters “getter” methods

• outputType: The type of signal object (name of the class) this processor produces. If
none of the existing signals in the framework are suitable, you will need to implement
a new one.

• isBinaural: Set to 0 if your processor operates on a single channel (e.g., an auditory
filterbank) or to 1 if it needs a binaural input (e.g., the inter-aural level differences
processor). If your processor can operate on both mono and stereo signals (such as
the pre-processor preProc.m), set it to 2.

Your method should initialise the structure that will be returned as output and give a
value to all of the above-mentioned fields:

1 %...
2
3 function pInfo = getProcessorInfo
4
5 pInfo = struct;
6
7 pInfo.name = 'MyProcessor ';
8 pInfo.label = 'Processor doing things ';
9 % etc ...

10
11 end

5.4 Implementing parameters “getter” methods

As described in an earlier section, external parameters of the processor, i.e., those that
can be modified by the user, are implemented as Dependent properties of your processor
class. For your implementation to be valid, a “getter” method needs to be implemented
for each of these parameters. If not, Matlab will generate an error when trying to access
that parameter value. If a property is set as Dependent, then its getter method will be
called whenever the program tries to access that property. In general, this can be useful
for a property that depends on others and that need to be recomputed whenever accessed.
In the present case, we will set the getter method to read the corresponding parameter
value in the parameter object associated with your processor. If the value of the parameter
has changed throughout the processing (e.g., in response to feedback), then we are sure to
always get the updated value.

“Getter” methods for parameters are implemented without any method attribute and always
follow the same structure. Hence they can easily be copy/pasted and adjusted:

1 methods
2
3 function value = get.parName(pObj)

79



5 Add your own processors

4 value = pObj.parameters.map('xx_parNameTag ')
5 end
6
7 % ... implement one get. method for each parameter
8
9 end

In the above example, parName is the name of the parameter as a dependent property
of your processor class, and xx_parNameTag is the name of the parameter defined in the
static .getParameterInfo method. pObj represents an instance of your processor class, it
does not need to be changed across methods.

5.5 Implement the processor constructor

For any possible application, every class should implement a very specific method: a class
constructor. A class constructor is a function that has the exact same name as your class.
It can take any combination of input arguments but can return only a single output: an
“instance” of your class.

In the AFE architecture however, the input arguments to the constructor of all processors
have been standardised, such that all processor constructors can be called using the exact
same arguments. The input arguments should be (in this order) the sampling frequency of
the input signal to the processor and an instance of a parameter object returned e.g. by the
script genParStruct.m. The constructor’s role is then to create an object of the class, and
often to initialise all its properties. Most of this initialisation step is the same across all
processors (e.g., setting input/output sampling frequencies, indicating the type of processor,
...). Hence all processor constructors rely heavily on the constructor of their parent class
(or super-constructor), Processor(...) which defines these across-processors operations.
This allows to have all this code in one place which reduces the code you have to write for
your processor, as well as reducing chances for bugs and increasing maintainability. This
concept of “inheritance” will be discussed in a further section.

In practice, this means that the constructor for your processor will be very short:

1 function pObj = myNewProcessor(fs,parObj)
2 %myNewProcessor ... Provide some help here ...
3
4 if nargin <2|| isempty(parObj); parObj = Parameters; end
5 if nargin <1; fs = []; end
6
7 % Call super -constructor
8 pObj = pObj@Processor(fs, fsOut ,'myNewProcessor ',parObj);
9

10 % Additional code depending on your processor

80



5.5 Implement the processor constructor

11 % ...
12
13 end

Note

The constructor method should be placed in a “method” block with no method
attributes.

Let us break down the constructor structure line by line:

• Line 1: As stated earlier, all processor constructors take two input and return a single
output, your processor instance pObj. Matlab restricts all constructors to return a
single output. If for any reason you need additional outputs, you would have to place
them in a property of your processor instead of a regular output. Input arguments
are the input sampling frequency, i.e., the sampling frequency of the signal at the
input of the processor, and a parameter object parObj.

• Line 2: This is where you will place help regarding how to call this constructor.
Because they have a generic form across all processors, you can easily copy/paste it
from another processor.

• Lines 4 and 5: An important aspect in this implementation is that the constructor
should be called with no input argument and still return a valid instance of the
processor, without any error. Hence these two lines define default values for inputs if
none were specified.

• Line 8: This line generates a processor instance by calling the class super-constructor.
The super-constructor takes four inputs:

– the input sampling frequency fs

– the output sampling frequency. If your processor does not modify the sampling
rate, then you can replace fsOut with fs. If the output sampling rate of your
processor if fixed, i.e., not depending on external parameters, then you can
specify it here, in place of fsOut. Lastly, if the output sampling rate depends
on some external parameters (i.e., susceptible to change via feedback from the
user), then you should leave the fsOut field empty: []. The output sampling
rate will be defined in another method that is called every time feedback is
involved.

– the name of the children processor, here myNewProcessor.

– the parameter object parObj already provided as input.

81



5 Add your own processors

• Line 11: Your processor might need additional initialisation. All extra code should
go there. To ensure that no error is generated when calling the constructor with no
arguments (which Matlab sometimes does implicitly), the code should be embedded
in a if nargin > 0 ... end block. Here you can for example initialise buffers or
internal properties.

Warning

The initialisation of anything that depends on external parameters (e.g., filters,
framing windows, ...) is not performed here on line 11. When parameters change
due to feedback, these properties need to be re-initialised. Hence their initialisation
is performed in another method that will be described in a following section.

5.6 Preliminary testing

At this stage of the implementation, your processor should be correctly instantiated and
recognised by the framework. In some cases (e.g., your processor is a simple single input
/ single output processor), it might even be correctly integrated and routed to other
processors. In any case, now is a good time to take a break from writing code and do
some preliminary testing. We will go through a few example tests you can run, describe
which problems could arise and suggest how to solve them. Try to run these tests in the
order they are listed below, as this will help troubleshooting. They should run as expected
before you go further in your implementation.

Note

You will not be able to instantiate your processor before you have written a concrete
implementation to Processor abstract methods. To carry out the tests below,
just write empty processChunk and reset methods. In this way, Matlab will not
complain about trying to instantiate a class that contains abstract methods. The
actual implementation of these methods will be described in later sections.

5.6.1 Default instantiation

As mentioned when implementing the constructor, you should be able to get a valid instance
of your processor by calling its constructor without any input arguments:

>> p = myNewProcessor

82



5.6 Preliminary testing

If this line returns an error, then you have to revise your implementation of the constructor.
The error message should indicate where the problem is located, so that you can easily
correct it. If your processor cannot be instantiated with no arguments, then it will not be
listed as a valid processor.

If on the other hand this line executed without error, then there are two things you should
control:

1. The line above (if not ended by a semicolon) should display the visible, public
properties of the processor. Check that this list corresponds to the properties you
defined in your implementation. The property values should be the default values
you have defined in your getParameterInfo static method. If a property is missing,
then you forgot to list it in the beginning of your class definition (or you defined it
as Hidden or Private). If a value is incorrect, or empty, then it is a mistake in your
getParameterInfo method. In addition, the Type property should refer to the name
field returned by getProcessorInfo static method.

2. Inspect the external parameters of the processor by typing p.parameters. This
should return a list of all external parameters. Control that all parameters are there
and that their default value is correct.

To test that your external properties are indeed dependent, you can change the value of
one or more of them directly in your parameter processor property and see if that change
is reflected in the dependent property. For example if you type:

p.parameters.map('xx_par1 ') = someRandomValue

then this should be reflected in the property associated with that parameter.

Note

The input and output frequency properties of your processor, FsHzIn and FsHzOut
are probably incorrect, but that is normal as you did not specify the sampling
frequency when calling the constructor with no arguments.

5.6.2 Is it a valid processor?

To test whether your processor is recognised as a valid processor, run the requestList
script. The signal request name corresponding to your processor should appear in the list
(i.e., the name defined in getProcessorInfo.requestName). If not (and the previous test
did work), then maybe your class definition file is not located in the correct folder. Move
it to the src/Processors folder. Another possibility is that you made your processor

83



5 Add your own processors

hidden (which should not happen if you followed these instructions). Setting explicitly the
bHidden property of your processor to 1 will hide it from the framework. This is used in
order to allow “sub-processors” in the framework, but it is probably not the case for you
here so you should not enable this option.

5.6.3 Are parameters correctly described?

If your processor is properly recognised, then you can call the parameterHelper script
from the command window. There you should see a new category corresponding to your
processor. Clicking on it will display a list of user-controllable parameters for your processor,
as well as their descriptions. Feel free to adjust your getParameterInfo static method to
have a more suitable description.

5.7 Implementing the core processing method

At this stage, and if the previous tests were successfully passed, your processor should be
correctly detected by the AFE framework. However, there is still some work to do. In
particular, the core of your processor has to be implemented, which performs the processing
of the input signal and returns a corresponding output.

This section will provide guidelines as to how to implement that method. However, this
task is very dependent on the functionality of a particular processor. You can get insights as
to how to perform the signal processing task by looking at the code of the .processChunk
methods of existing processors.

Note

Some of the challenges in implementing the processing method were already presented
in a section of the technical description. It is recommended at that stage to go back
and read that section again.

5.7.1 Input and output arguments

The processing method should be called processChunk and be placed in a block of methods
with no attributes (e.g., following the class constructor). The function takes a single
effective input argument, a chunk of input signal and returns a single output argument, the
corresponding chunk of output signal. Because it is a non-static method of the processor,

84



5.7 Implementing the core processing method

an instance of the processor is passed as first input argument. Hence the method definition
looks something like this for a monaural single-output processor:

1 function out = processChunk(pObj ,in)
2
3 % The signal processing to obtain out from in is written here
4 %
5 % ...
6
7 end

Or, for a binaural single-output processor (such as ildProc):

1 function out = processChunk(pObj ,in_left ,in_right)
2
3 % The signal processing to obtain out from in is written here
4 %
5 % ...
6
7 end

If your processor is not of one of the two kinds described above, then you are free to use
a different signature for your processChunk method (i.e., different number of input or
output arguments). However, you will then have to override the initiateProcessing
method.

Given an instance of your processor, say p, this allows you to call this method (and
in general all methods taking an object instance as first argument) in two different
ways:

• processChunk(p,in)

• p.processChunk(in)

The two calls will of course return the same output.

Note

Having an instance of the processor as an argument means that you can access all
of its properties to carry out the processing. In particular, the external and internal
parameter properties you have defined earlier. For example, the processing method
of a simple “gain” processor could read as out = in * p.gain

The arguments in and out are arrays containing “pure” data. Although signal-related data
is stored as specific signal objects in the Auditory front-end, only the data is passed around
when it comes to processing. It is done internally to avoid unnecessary copies. So it is

85



5 Add your own processors

not something that has to be addressed in the implementation of your processing method.
Your input is an array whose dimensionality depends on the type of signal. Dimensions
are ordered in the same way as in the data-storing buffer of the signal object. For example,
the input in in the gammatoneProc.processChunk is a one-dimensional array indexing
time. Similarly, the output should be arranged in the same way than in its corresponding
output signal object. For example, the output out of modulationProc.processChunk is a
three-dimensional array where the first dimension indexes time, the second refers to audio
frequency and the third corresponds to modulation frequency. Just like the way data is
stored in the modulationSignal.Data buffer.

Note

The first dimension for all signals used in the AFE is always indexing time.

5.7.2 Chunk-based and signal-based processing

As the name of the method processChunk suggests, you should implement the processing
method such that it can process consecutive chunks of input signal, as opposed to the entire
signal at once. This enables “online” processing, and eventually “real-time” processing once
the software has been sufficiently optimised. This has two fundamental consequences on
your implementation:

1. The input data to the processing method can be of arbitrary duration.

2. The processing method needs to maintain continuity between input chunks. In other
words, when concatenating the outputs obtained by processing individual consecutive
chunks of input, one need to obtain the same output as if all the consecutive input
were concatenated and processed at once.

Point 1. above implies that depending on the type of processing you are carrying out, it
might be necessary to buffer the input signal. For example, processors involving framing of
the signal, such as ratemapProc or ildProc, need to put the segment of the input signal
that went out of bound of the framing operation in a buffer. This buffer is then appended
to the beginning of the next input chunk. This is illustrated in a section of the technical
description of the framework. This also means that for some processor (those which lower
the sampling rate in general), an input that is too short in time might produce an empty
output. But this input will still be considered in the next chunk.

Point 2. is the most challenging one because it very much depends on the processing
carried out by the processor. Hence there are no general guidelines. However, the
AFE comes with some building blocks to help with this task. It features for instance

86



5.8 Override parent methods

filter objects that can be used for processing. All filters manage their internal states
themselves, such that output continuity is ensured. For an example on how to use filters,
see e.g. gammatoneProc.processChunk. Sometimes however, one need more than simple
filtering operations. One can often find a workaround by using some sort of “overlap-
save” method using smart buffering of the input or output as described in the technical
description. A good example of using buffering for output continuity can be found in e.g.,
ildProc.processChunk.

5.7.3 Reset method

To ensure continuity between output chunks, your new processor might include “internal
states” (e.g., built-in filter objects or internal buffers). Normally, incoming chunks of input
are assumed to be consecutive segments of a same signal. However, the user can decide to
process an entirely new signal as input at any time. In this case, your processor should be
able to reset its internal states.

This is performed by the reset method. This method should be implemented in a
method block with no method attributes, just like the constructor. It should simply reset
the filters (if any) by calling all the filters reset methods, and/or empty all internal
buffers.

If your processor does not need any internal state storage, then the reset method should
still be implemented (as it is an abstract method of the parent class) but can be left empty
(see, e.g., itdProc.reset).

5.8 Override parent methods

The AFE framework was developed to maximise code reusing. Many of the existing
processors, although they carry out different processing tasks, have common attributes in
terms of e.g., number of inputs, number of outputs, how to call their processing methods,
... Hence all aspects of initialisation (and re-initialisation following a response to feedback)
and input/output routing have been implemented for common-cases as methods of the
parent Processor class. If your processor does not behave similarly to others in one of
these regards, then this approach allows you to redefine the specific method in your new
children processor class definition. In the object oriented jargon, this procedure is called
method overriding.

In the following, we list the methods that might need overriding and how to do so.
Subsections for each methods will start with a description of what the method does and
a note explaining in which cases the method needs to be overridden, such that you can

87



5 Add your own processors

quickly identify if this is necessary for your processor. Some examples of existing processors
that override a given method will also be given so they can be used as examples. Note that
all non- static methods from the parent Processor class can be overridden if necessary.
The following list only concerns methods that were written with overriding in mind to deal
with particular cases.

Note

Overridden methods need to have the same method attribute(s) as the parent
method they are overriding.

5.8.1 Initialisation methods

verifyParameters

This method is called at the end of the Processor super-constructor. It ensures that
user-provided parameters are valid. The current implementation of the AFE relies on the
user being responsible and aware of which type or values are suitable for a given parameter.
Therefore, we do not perform a systematic check of all parameters. Sometimes though,
you might want to verify that user-provided parameters are correct in order to avoid
Matlab returning an error at a later stage. For example, ihcProc.verifyParameters will
check that the inner hair-cell model name entered by the user is part of the list of valid
names.

Another use for the verifyParameters method is to solve conflicts between parameters.
For example, the auditory filterbank in gammatoneProc can be instantiated in three different
ways (e.g., by providing a range of frequency and a number of channels, or directly a vector
of centre frequencies). The user- provided parameters for this processor are therefore poten-
tially “over-determining” the position of centre frequencies. To make sure that there is no con-
flict, some priority rules are defined in gammatoneProc.verifyParameters to ensure that a
unique and non-ambiguous vector of centre frequencies is generated.

Note

This method does nothing by default. Override it if you need to perform specific
checks on external parameters (i.e., the user-provided parameters extended by the
default values) before instantiating your processor.

To override this method, place it in a methods block with the Access=protected attribute.
The method takes only an instance of the processor object (say, pObj) as input argument,

88



5.8 Override parent methods

and does not return any output.

If you are checking that parameters have valid values, replace those which are invalid with
their default value in pObj.parameters.map (see e.g., ihcProc.verifyParameters). It is
a good practice here to inform the user by returning a warning, so that he/she knows that
the default value is used instead.

If you are solving conflicts between parameters, set up a priority rule and only re-
tain user-provided parameters that have higher priority according to this rule (see e.g.,
gammatoneProc.verifyParameters). Mention explicitly this rule in the help line of your
processor constructor.

prepareForProcessing

This method performs the remaining initialisation steps that we purposely did not include
in the constructor as they initialise properties that are susceptible to change when receiving
feedback. It also includes initialisation steps that can be performed only once processors
have been linked together in a “processing tree”. For example, ildProc needs to know the
original sampling frequency of the signal before its cross-correlation was computed to provide
lag values in seconds. But to access the cross-correlation processor and request that value,
the two processors need to be linked together already, which does not happen at the level
of instantiation but later. Hence this method will be called for each processors once they
all have been inter-linked, but also whenever feedback is received.

Note

Override this method if your processor has properties or internal parameters that
can be changed via user feedback or that comes directly from preceding processors
in the processing tree.

This method should have the Hidden=true method attribute. Hidden methods are some-
times used in the AFE when we need public access to it (i.e., other objects than the
processor itself should be able to call the method) but when it is not deemed necessary to
have the user call it. The user can still call the method by explicitly writing its name, but
the method will not appear in the list of methods returned by Matlab script methods(.)
nor by Matlab’s automatic completion.

The method only takes an instance of the processor as input argument and does not return
outputs. In the method, you should initialise all internal parameters that are susceptible
to changes from user feedback. Note that this includes the processor’s output sampling
frequency FsHzOut if this frequency depends on the processor parameters. A good example
is ratemapProc.prepareForProcessing, which initialises internal parameters (framing

89



5 Add your own processors

windows), the output sampling frequency and some filters.

instantiateOutput

This method is called just after a processor has been instantiated to create a signal
object that will contain the output of this new processor and add the signal to the data
object.

Note

Override this method if your output signal object constructor needs additional input
arguments (e.g., for a FeatureSignal), if your processor generates more than one
type of output, or if your processor can generate either mono or stereo output (e.g.,
the current preProc). There is no processor in the current implementation that
generates two different outputs. However, the pre- processor can generate either
mono or stereo outputs depending on the number of channels in the input signal
(see preProc.instantiateOutput for an example).

This method should have the Hidden=true method attribute. It takes as input an instance
of your processor and a instance of a data object to add the signal to. It returns the
output signal object(s) as a cell array with the usual convention that first column is left
channel (or mono) and right column is right channel. Different lines are for different types
of signals.

Warning

Because there is no such processor at the moment, creating a new processor that
returns two different types of output (and not just left/right channels) might involve
additional changes. This is left to the developers responsibility to test and adjust
existing code.

5.8.2 Input/output routing methods

When the manager creates a processing “tree”, it also populates the Input and Output
properties of each processors with handles to their respective input and output signal
objects. The methods defined in the parent Processor should cover most cases already,
and it is unlikely that you will have to override them for your own processor. For these two
methods, it is important to remember the internal convention when storing multiple signals
in a cell array: columns are for audio channels (first column is left or mono and second

90



5.8 Override parent methods

column is right). Different lines are for different types of signals.

The way Input and Output properties are routed should be in accordance with how
they are used in the initiateProcessing method, which will be described in the next
subsection.

addInput

This method takes an instance of the processor and a cell array of handles to dependent
processors (i.e., processors one level below in the processing tree) and does not return
any arguments. Instead, it will populate the Input property of your processor with a
cell array of handles to the signals that are outputs to the dependent processors. The
current implementation of Processor.addInput works for three cases, which overall cover
all currently existing processors in the AFE:

• There is a single dependent processor which has a single output.

• There are two dependent processors each with single output corresponding to the
left and right channels of a same input signal.

• There is a single dependent processor which produces two outputs: a left and a right
channel (such as preProc for stereo signals).

Note

Override this method if your processor input signals are related to its dependent
processors in a different way than the three scenarios listed above.

This method should have the Hidden=true attribute. You should just route the output
of your dependent processors to the input of your new processor adequately. Again, it
was not necessary thus far to override this method, hence no examples can be provided
here. Additionally, this functionality has not been tested, so it might imply some minor
reworking of other code components.

addOutput

This method adds a signal object (or a cell array of signals) to the Output property of
your processor.

91



5 Add your own processors

Note

Override this method if your processor has multiple outputs of different types. If your
processor returns two outputs as the left and right channel of a same representation,
it is not necessary to override this method.

This method should have the Hidden=true method attribute. It takes as input an instance
of the processor and a single or a cell array of signal objects.

5.8.3 Processing method

initiateProcessing

This method is closely linked to the addInput, addOutput and processChunk methods.
It is a wrapper to the actual processing method that routes elements of the cell arrays
Input and Output to actual inputs and outputs of the processChunk method and call
that method. It also appends the new chunk(s) of output to the corresponding output
signal(s).

The parent implementation considers two cases: monaural and binaural (i.e., a “left” and a
“right” inputs) which produce single outputs.

Note

Override this method if your processor is not part of the two cases above or if your
implementation of the processChunk has a different signature than the standard.

A good example of an overridden initiateProcessing method can be found inside the
pre-processor code: preProc.initiateProcessing, as the processing method of the pre-
processor does not have a standard signature as it returns two outputs (left and right
channels).

5.9 Allowing alternative processing options

Sometimes, two different processors (implemented as two different classes) can perform
the same operation. The choice between such alternative processors is made depending
on a given user-provided (or default) request parameter value. This is the case for ex-
ample for the auditory filterbank, which can be performed by either a Gammatone filterbank
(gammatoneProc.m) or a dual-resonance non- linear filterbank (drnlProc.m).

92



5.10 Implement a new signal type

As can be seen when browsing parameterHelper, the two processors should be listed
under the same request name, and one of the parameters (’fb_type’ in the example
above) should allow to switch between the two (or more) alternatives. When the manager
instantiates the processors and notices that a given representation has alternative ways of
being computed, it will call the methods isSuitableForRequest of each alternatives to
know which one should be used.

Therefore, if your processor represents an alternative way of carrying out a given operation,
you should implement its isSuitableForRequest method, as well as for its alternative, if
it was not already existing.

This method takes as unique input an instance of a processor and will look into its
parameters property to determine if it is the suitable alternative. It will return a boolean in-
dicating if it is suitable (true) or not (false). Note that this method is called internally, not
from an actual processor instance that would be used afterwards, but from a dummy, empty
processor generated using the user-provided request and parameters.

See gammatoneProc.isSuitableForRequest and drnlProc.isSuitableForRequest for
examples.

5.10 Implement a new signal type

The AFE supports already a wide range of signal types:

• TimeDomainSignal: used for single-dimensional signal

• TimeFrequencySignal: used for two-dimension signals (time and frequency)

• CorrelationSignal: used for three-dimension signals (time, frequency and lags)

• ModulationSignal: used for three-dimension signals (time, audio frequency and
modulation frequency).

• FeatureSignal: used for a labelled collection of time-domain signals

• BinaryMask: used for two-dimensional (time and frequency) binary signals (0 or 1).

If your new processor generates a new type of signal that is not currently supported, you
might have to add your own implementation of a new signal. This tutorial will not go in
details on how to implement new signal types. However, the following aspects should be
considered:

• Your signal class should inherit the parent Signal class.

93



5 Add your own processors

• It should implement the abstract plot method. If there is no practical way of plotting
your signal, this method could be left empty.

• Its constructor should take as argument a handle to your new processor (that
generates this signal as output), a buffer size in seconds, and a vector of size
across the other dimensions ([size_dim2, size_dim3,...]). If more arguments are
needed (as is the case for FeatureSignal), then this signature can be changed, but
the instantiateOutput of your processor should also be overridden.

5.11 Recommendations for final testing

Now the implementation of your new processor should be finalised, and it is important to test
it thoroughly. Below are some recommendations with regard to testing:

• Make sure that all aspects of your implementation work. Test for mono as well as
stereo input signals, vary your processor parameters and check that the change is
reflected accordingly in the output.

• If you have based your implementation on another existing implementation (even
better, one that is documented in the literature), then compare your new implemen-
tation with the reference implementation and control that both provide the same
output up to a reasonable error. A reasonable error, for a processor that does not
involve stochastic processes should be around quantisation error, assuming that your
new implementation is exactly as the reference.

• Test the online capability of your processor (i.e., maintaining the continuity of its
output) by processing a whole signal and the same signal cut into chunks. Both runs
should provide the same output (up to a “reasonable error”). You can use the test
script test_onlineVSoffline to perform that task.

94



6 Conclusions

This supplementary document to Deliverable D2.3 has been created as an extensive
instruction manual of the up-to-date version of AFE framework, such that the users can
understand the fundamentals of its architecture and operation, and can make use of its
range of capabilities.

The overall objective of the AFE is to transform the listeners’ ear signals into multi-
dimensional auditory representations. The software architecture is based on an object-
oriented approach, resulting in a highly modular and flexible framework. This enables the
AFE to be usable not only as a stand-alone software toolkit, but also in connection with
other software/hardware platforms, such as the blackboard system of WP3 (see description
in D3.2), and furthermore the robotics platform of WP5 (ROS/GenoM3, via a dedicated
Matlab bridge - see description in D5.2).

One of the key functionalities of the AFE is its ability to adjust the bottom-up signal
processing via feedback mechanisms. The AFE framework has been re-factored to allow
on-the-fly parameter changes of individual processors. Consequently, peripheral prop-
erties can be modified during runtime and additional auditory feature representations
can be requested, allowing the AFE to dynamically respond to changes in the acoustic
environment.

95





A List of DEMO files

For the sake of reproducible research, source code to reproduce all the plots in the
present document is provided as individual demo scripts. Table A.1 lists all the indi-
vidual demo scripts, with a reference to the corresponding section in the report and a
short description. These scripts can be found in the /test folder of the AFE software
package.

Table A.1: List of demo scripts reproducing all the Matlab plots in this document.
Filename Section Description
DEMO_Adaptation.m 4.4 Adaptation loops
DEMO_AMS.m 4.13 Amplitude modulation spectrogram
DEMO_Autocorrelation.m 4.5 Autocorrelation
DEMO_ChunkBased.m 2.4 Chunk-based use of the AFE
DEMO_Crosscorrelation.m 4.15 Cross-correlation
DEMO_DRNL.m 4.2.2 Dual-resonance non-linear auditory filterbank
DEMO_GaborFeatures.m 4.14 Spectro-temporal modulation spectrogram
DEMO_Gammatone.m 4.2.1 Gammatone auditory filterbank
DEMO_IC.m 4.18 Interaural coherence
DEMO_IHC.m 4.3 Inner hair-cell modeling
DEMO_ILD.m 4.17 Interaural level difference
DEMO_ITD.m 4.16 Interaural time difference
DEMO_MOC.m 4.12 Medial Olivo-Cochlear feedback
DEMO_OffsetStrength.m 4.9 Offset strength detection
DEMO_OnsetOffsetMaps.m 4.10 Onset and offset mapping
DEMO_OnsetStrength.m 4.8 Onset strength detection
DEMO_Pitch.m 4.11 Pitch estimation
DEMO_Precedence.m 4.19 Precedence effect
DEMO_PreProcessing.m 4.1 Pre-processing of input signal
DEMO_Ratemap.m 4.6 Ratemap extraction
DEMO_SpectralFeatures.m 4.7 Spectral features extraction

97





List of Acronyms

Acronyms

2D two-dimensional

ACF auto-correlation function

AFE auditory front-end

AGC automatic gain control

AMS amplitude modulation spectrogram

ASR automatic speech recognition

BM basilar membrane

CASA computational auditory scene analysis

CASP computational auditory signal-processing and perception

CCF cross-correlation function

DC direct current

DOW description of work

DRNL dual-resonance non-linear

ETSI European telecommunications standards institute

FFT fast Fourier transform

FIFO first in, first out

FIR finite impulse response

IC interaural coherence

99



List of Acronyms

IHC inner hair-cell

IIR infinite impulse response

ILD interaural level difference

ITD interaural time difference

MOC medial olivo-cochlear

MU model units

OOP object-orientated programming

RMS root mean square

SACF summary auto-correlation function

SCCF summary cross-correlation function

SCM spectral crest measure

SFM spectral flattness measure

SPL sound pressure level

STRF spectro-temporal receptive field

T-F time-frequency

100



Bibliography

Backus, B. C. and Guinan, J. J. (2006), “Time-course of the human medial olivocochlear
reflex,” The Journal of the Acoustical Society of America 119(5 Pt 1), pp. 2889–2904.
(Cited on page 61)

Bacon, S. P. and Grantham, D. W. (1989), “Modulation masking: Effects of modulation
frequency, depths, and phase,” Journal of the Acoustical Society of America 85(6), pp.
2575–2580. (Cited on page 62)

Bernstein, L. R. and Trahiotis, C. (1996), “The normalized correlation: Accounting for
binaural detection across center frequency,” Journal of the Acoustical Society of America
100(6), pp. 3774–3784. (Cited on page 46)

Bernstein, L. R., van de Par, S., and Trahiotis, C. (1999), “The normalized interaural
correlation: Accounting for NoSπ thresholds obtained with Gaussian and “low-noise”
masking noise,” Journal of the Acoustical Society of America 106(2), pp. 870–876.
(Cited on page 46)

Braasch, J. (2013), “A precedence effect model to simulate localization dominance using
an adaptive, stimulus parameter-based inhibition process.” The Journal of the Acoustical
Society of America 134(1), pp. 420–35. (Cited on page 71)

Breebaart, J., van de Par, S., and Kohlrausch, A. (2001), “Binaural processing model
based on contralateral inhibition. I. Model structure,” Journal of the Acoustical Society
of America 110(2), pp. 1074–1088. (Cited on page 46)

Bregman, A. S. (1990), Auditory scene analysis: The perceptual organization of sound,
The MIT Press, Cambridge, MA, USA. (Cited on page 56)

Brown, G. J. and Cooke, M. P. (1994), “Computational auditory scene analysis,” Computer
Speech and Language 8(4), pp. 297–336. (Cited on page 51)

Brown, G. J., Ferry, R. T., and Meddis, R. (2010), “A computer model of auditory efferent
suppression: implications for the recognition of speech in noise.” The Journal of the
Acoustical Society of America 127(2), pp. 943–54. (Cited on page 43)

Clark, N. R., Brown, G. J., Jürgens, T., and Meddis, R. (2012), “A frequency-selective

101



Bibliography

feedback model of auditory efferent suppression and its implications for the recognition
of speech in noise.” Journal of the Acoustical Society of America 132(3), pp. 1535–1541.
(Cited on pages 61 and 62)

Cooke, M., Green, P., Josifovski, L., and Vizinho, A. (2001), “Robust automatic speech
recognition with missing and unreliable acoustic data,” Speech Communication 34(3),
pp. 267–285. (Cited on page 51)

Dau, T., Püschel, D., and Kohlrausch, A. (1996), “A quantitative model of the “effective”
signal processing in the auditory system. I. Model structure,” Journal of the Acoustical
Society of America 99(6), pp. 3615–3622. (Cited on pages 46, 47, 48, and 49)

Dau, T., Püschel, D., and Kohlrausch, A. (1997a), “Modeling auditory processing of am-
plitude modulation. I. Detection and masking with narrow-band carriers,” Journal of the
Acoustical Society of America 102(5), pp. 2892–2905. (Cited on pages 47, 49, and 62)

Dau, T., Püschel, D., and Kohlrausch, A. (1997b), “Modeling auditory processing of
amplitude modulation. II. Spectral and temporal integration,” Journal of the Acoustical
Society of America 102(5), pp. 2906–2919. (Cited on page 62)

ETSI ES 201 108 v1.1.3 (2003), “Speech processing, transmission and quality aspects (STQ);
distributed speech recognition; front-end feature extraction algorithm; compression
algorithms,” URL www.etsi.org. (Cited on page 67)

Ewert, S. D. and Dau, T. (2000), “Characterizing frequency selectivity for envelope
fluctuations,” Journal of the Acoustical Society of America 108(3), pp. 1181–1196.
(Cited on page 62)

Faller, C. and Merimaa, J. (2004), “Source localization in complex listening situations:
Selection of binaural cues based on interaural coherence,” Journal of the Acoustical
Society of America 116(5), pp. 3075–3089. (Cited on page 70)

Ferry, R. T. and Meddis, R. (2007), “A computer model of medial efferent suppression
in the mammalian auditory system,” The Journal of the Acoustical Society of America
122(6), pp. 3519. (Cited on page 44)

Glasberg, B. R. and Moore, B. C. J. (1990), “Derivation of auditory filter shapes from
notched-noise data,” Hearing Research 47(1-2), pp. 103–138. (Cited on pages 41 and 42)

Göbbert, J. H. (2014), “Circular double buffered vector buffer (circVBuf.m),” Mat-
lab file exchange URL http://www.mathworks.com/matlabcentral/fileexchange/
47025-circvbuf, accessed: 2014-10-30. (Cited on page 22)

Goode, R. L., Killion, M., Nakamura, K., and Nishihara, S. (1994), “New knowledge about
the function of the human middle ear: development of an improved analog model.” The

102

www.etsi.org
http://www.mathworks.com/matlabcentral/fileexchange/47025-circvbuf
http://www.mathworks.com/matlabcentral/fileexchange/47025-circvbuf


Bibliography

American journal of otology 15(2), pp. 145–154. (Cited on page 40)

Guinan, J. J. (2006), “Olivocochlear efferents: anatomy, physiology, function, and the
measurement of efferent effects in humans.” Ear and hearing 27(6), pp. 589–607, URL
http://www.ncbi.nlm.nih.gov/pubmed/17086072. (Cited on page 61)

Houtgast, T. (1989), “Frequency selectivity in amplitude-modulation detection,” Journal
of the Acoustical Society of America 85(4), pp. 1676–1680. (Cited on page 62)

Jensen, K. and Andersen, T. H. (2004), “Real-time beat estimation using feature extraction,”
in Computer Music Modeling and Retrieval, edited by U. K. Wiil, Springer, Berlin–
Heidelberg, Lecture Notes in Computer Science, pp. 13–22. (Cited on pages 52 and 53)

Jepsen, M. L., Ewert, S. D., and Dau, T. (2008), “A computational model of human
auditory signal processing and perception.” Journal of the Acoustical Society of America
124(1), pp. 422–438. (Cited on pages 40, 41, 44, and 48)

Jørgensen, S. and Dau, T. (2011), “Predicting speech intelligibility based on the signal-to-
noise envelope power ratio after modulation-frequency selective processing,” Journal of
the Acoustical Society of America 130(3), pp. 1475–1487. (Cited on pages 46 and 63)

Jørgensen, S., Ewert, S. D., and Dau, T. (2013), “A multi-resolution envelope-power based
model for speech intelligibility,” Journal of the Acoustical Society of America 134(1),
pp. 1–11. (Cited on page 63)

Kim, G., Lu, Y., Hu, Y., and Loizou, P. C. (2009), “An algorithm that improves speech
intelligibility in noise for normal-hearing listeners,” Journal of the Acoustical Society of
America 126(3), pp. 1486–1494. (Cited on page 62)

Klapuri, A. (1999), “Sound onset detection by applying psychoacoustic knowledge,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3089–3092. (Cited on page 56)

Kollmeier, B. and Koch, R. (1994), “Speech enhancement based on physiological and
psychoacoustical models of modulation perception and binaural interaction,” Journal of
the Acoustical Society of America 95(3), pp. 1593–1602. (Cited on page 62)

Lerch, A. (2012), An Introduction to Audio Content Analysis: Applications in Sig-
nal Processing and Music Informatics, John Wiley & Sons, Hoboken, NJ, USA.
(Cited on pages 53 and 54)

Liberman, M. C. (1988), “Response properties of cochlear efferent neurons: monau-
ral vs. binaural stimulation and the effects of noise,” Journal of Neurophysiol-
ogy 60(5), pp. 1779–1798, URL http://jn.physiology.org/content/60/5/1779.
(Cited on pages 61 and 62)

103

http://www.ncbi.nlm.nih.gov/pubmed/17086072
http://jn.physiology.org/content/60/5/1779


Bibliography

Licklider, J. C. R. (1951), “A duplex theory of pitch perception,” Experientia 7(4), pp.
128–134. (Cited on page 49)

Lopez-Poveda, E. A. and Meddis, R. (2001), “A human nonlinear cochlear fil-
terbank,” Journal of the Acoustical Society of America 110(6), pp. 3107–3118.
(Cited on pages 40, 41, and 44)

May, T., Bentsen, T., and Dau, T. (2015), “The role of temporal resolution in modulation-
based speech segregation,” in Proceedings of the Annual Conference of the International
Speech Communication Association, pp. 170–174. (Cited on page 62)

May, T. and Dau, T. (2013), “Environment-aware ideal binary mask estimation using
monaural cues,” in IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), pp. 1–4. (Cited on page 62)

May, T. and Dau, T. (2014a), “Requirements for the evaluation of computational speech
segregation systems,” Journal of the Acoustical Society of America 136(6), pp. EL398–
EL404. (Cited on page 62)

May, T. and Dau, T. (2014b), “Computational speech segregation based on an auditory-
inspired modulation analysis,” Journal of the Acoustical Society of America 136(6), pp.
3350–3359. (Cited on page 63)

May, T. and Gerkmann, T. (2014), “Generalization of supervised learning for binary
mask estimation,” in International Workshop on Acoustic Signal Enhancement, Antibes,
France. (Cited on page 62)

May, T., van de Par, S., and Kohlrausch, A. (2011), “A probabilistic model for robust
localization based on a binaural auditory front-end,” IEEE Transactions on Audio,
Speech, and Language Processing 19(1), pp. 1–13. (Cited on page 68)

May, T., van de Par, S., and Kohlrausch, A. (2012), “Noise-robust speaker recognition com-
bining missing data techniques and universal background modeling,” IEEE Transactions
on Audio, Speech, and Language Processing 20(1), pp. 108–121. (Cited on page 51)

May, T., van de Par, S., and Kohlrausch, A. (2013), “Binaural Localization and Detec-
tion of Speakers in Complex Acoustic Scenes,” in The technology of binaural listening,
edited by J. Blauert, Springer, Berlin–Heidelberg–New York NY, chap. 15, pp. 397–425.
(Cited on page 68)

Meddis, R. and Hewitt, M. J. (1991), “Virtual pitch and phase sensitivity of a computer
model of the auditory periphery. I: Pitch identification,” Journal of the Acoustical Society
of America 89(6), pp. 2866–2882. (Cited on page 49)

Meddis, R. and O’Mard, L. (1997), “A unitary model of pitch perception,” Journal of the

104



Bibliography

Acoustical Society of America 102(3), pp. 1811–1820. (Cited on page 59)

Meddis, R., O’Mard, L. P., and Lopez-Poveda, E. A. (2001), “A computational algorithm
for computing nonlinear auditory frequency selectivity,” Journal of the Acoustical Society
of America 109(6), pp. 2852–2861. (Cited on pages 41, 43, and 59)

Misra, H., Ikbal, S., Bourlard, H., and Hermansky, H. (2004), “Spectral entropy based fea-
ture for robust ASR,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 193–196. (Cited on page 53)

Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., and McAdams, S. (2011), “The
timbre toolbox: Extracting audio descriptors from musical signals.” Journal of the
Acoustical Society of America 130(5), pp. 2902–2916. (Cited on pages 52, 53, and 54)

Püschel, D. (1988), “Prinzipien der zeitlichen Analyse beim Hören,” Ph.D. thesis, University
of Göttingen. (Cited on pages 47 and 49)

Qiu, A., Schreiner, C. E., and Escabì, M. A. (2003), “Gabor analysis of auditory midbrain
receptive fields: Spectro-temporal and binaural composition.” Journal of Neurophysiology
90(1), pp. 456–476. (Cited on pages 65 and 66)

Rabiner, L. R. (1977), “On the use of autocorrelation analysis for pitch detection,”
IEEE Transactions on Audio, Speech, and Language Processing 25(1), pp. 24–33.
(Cited on page 50)

Schädler, M. R., Meyer, B. T., and Kollmeier, B. (2012), “Spectro-temporal modulation
subspace-spanning filter bank features for robust automatic speech recognition,” Journal
of the Acoustical Society of America 131(5), pp. 4134–4151. (Cited on page 66)

Scheirer, E. and Slaney, M. (1997), “Construction and evaluation of a robust multifeature
speech/music discriminator,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1331–1334. (Cited on page 54)

Slaney, M. and Lyon, R. F. (1990), “A perceptual pitch detector,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 357–360. (Cited on page 59)

Smith, R. L. (1977), “Short-term adaptation in single auditory nerve fibers: some post-
stimulatory effects,” J Neurophysiol 40(5), pp. 1098–1111. (Cited on page 47)

Smith, R. L., Brachman, M. L., and Goodman, D. a. (1983), “Adaptation in the Auditory
Periphery,” Annals of the New York Academy of Sciences 405(1 Cochlear Pros), pp.
79–93. (Cited on page 47)

Søndergaard, P. L. and Majdak, P. (2013), “The auditory modeling toolbox,” in The

105



Bibliography

Technology of Binaural Listening, edited by J. Blauert, Springer, Heidelberg–New York
NY–Dordrecht–London, chap. 2, pp. 33–56. (Cited on pages 40, 41, 46, and 47)

Stern, R. M., Zeiberg, A. S., and Trahiotis, C. (1988), “Lateralization of complex binaural
stimuli: A weighted-image model,” The Journal of the Acoustical Society of America
84(1), pp. 156–165, URL http://scitation.aip.org/content/asa/journal/jasa/
84/1/10.1121/1.396982. (Cited on page 72)

Tchorz, J. and Kollmeier, B. (2003), “SNR estimation based on amplitude modulation
analysis with applications to noise suppression,” IEEE Transactions on Audio, Speech,
and Language Processing 11(3), pp. 184–192. (Cited on pages 40 and 62)

Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., and Gallant, J. L.
(2001), “Estimating spatio-temporal receptive fields of auditory and visual neurons from
their responses to natural stimuli,” Network: Computation in Neural Systems 12, pp.
289–316. (Cited on page 65)

Tolonen, T. and Karjalainen, M. (2000), “A computationally efficient multipitch analysis
model,” IEEE Transactions on Audio, Speech, and Language Processing 8(6), pp. 708–716.
(Cited on page 50)

Turgeon, M., Bregman, A. S., and Ahad, P. A. (2002), “Rhythmic masking release:
Contribution of cues for perceptual organization to the cross-spectral fusion of concurrent
narrow-band noises,” Journal of the Acoustical Society of America 111(4), pp. 1819–1831.
(Cited on page 58)

Tzanetakis, G. and Cook, P. (2002), “Musical genre classification of audio signals,”
IEEE Transactions on Audio, Speech, and Language Processing 10(5), pp. 293–302.
(Cited on pages 52 and 53)

Wallach, H., Newman, E. B., and Rosenzweig, M. R. (1949), “The Precedence Effect in
Sound Localization,” The American Journal of Psychology 62(3), pp. 315–336, URL
http://www.jstor.org/stable/1418275. (Cited on page 71)

Wang, D. L. and Brown, G. J. (Eds.) (2006), Computational Auditory Scene Analysis:
Principles, Algorithms and Applications, Wiley / IEEE Press. (Cited on page 51)

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell,
J., Ollason, D., Povey, D., Valtchev, V., and Woodland, P. (2006), The HTK Book
(for HTK Version 3.4), Cambridge University Engineering Department, URL http:
//htk.eng.cam.ac.uk. (Cited on page 39)

106

http://scitation.aip.org/content/asa/journal/jasa/84/1/10.1121/1.396982
http://scitation.aip.org/content/asa/journal/jasa/84/1/10.1121/1.396982
http://www.jstor.org/stable/1418275
http://htk.eng.cam.ac.uk.
http://htk.eng.cam.ac.uk.

	1 Executive summary
	2 The auditory front-end framework
	2.1 Framework functionality
	2.2 Getting started
	2.3 Computation of an auditory representation
	2.3.1 Using default parameters
	2.3.2 Input/output signals dimensionality
	2.3.3 Changing parameters used for computation
	2.3.4 Compute multiple auditory representations
	2.3.5 How to plot the result

	2.4 Chunk-based processing
	2.5 Feedback inclusion
	2.5.1 Placing a new request
	2.5.2 Modifying a processor parameter
	2.5.3 Deleting a processor

	2.6 List of commands
	2.7 Acknowledgment

	3 Technical description
	3.1 Overview
	3.2 Data handling
	3.2.1 Circular buffer
	3.2.2 Signal objects
	3.2.3 Data objects

	3.3 Processors
	3.3.1 General considerations
	3.3.2 Properties
	3.3.3 Feedback handling
	3.3.4 Abstract and shared methods
	3.3.5 Potentially overridden methods
	3.3.6 processChunk method and chunk-based compatibility

	3.4 Manager
	3.4.1 Processors and signals instantiation
	3.4.2 Carrying out the processing


	4 Available processors
	4.1 Pre-processing (preProc.m)
	4.1.1 DC removal filter
	4.1.2 Pre-emphasis
	4.1.3 RMS normalization
	4.1.4 Level reference and scaling
	4.1.5 Middle ear filtering

	4.2 Auditory filterbank
	4.2.1 Gammatone (gammatoneProc.m)
	4.2.2 Dual-resonance non-linear filterbank (drnlProc.m)

	4.3 Inner hair-cell (ihcProc.m)
	4.4 Adaptation (adaptationProc.m)
	4.5 Auto-correlation (autocorrelationProc.m)
	4.6 Ratemap (ratemapProc.m)
	4.7 Spectral features (spectralFeaturesProc.m)
	4.8 Onset strength (onsetProc.m)
	4.9 Offset strength (offsetProc.m)
	4.10 Binary onset and offset maps (transientMapProc.m)
	4.11 Pitch (pitchProc.m)
	4.12 Medial Olivo-Cochlear (MOC) feedback (mocProc.m)
	4.13 Amplitude modulation spectrogram (modulationProc.m)
	4.14 Spectro-temporal modulation spectrogram
	4.15 Cross-correlation (crosscorrelationProc.m)
	4.16 Interaural time differences (itdProc.m)
	4.17 Interaural level differences (ildProc.m)
	4.18 Interaural coherence (icProc.m)
	4.19 Precedence effect (precedenceProc.m)

	5 Add your own processors
	5.1 Check-list for adding a new processor
	5.2 Getting started and setting up processor properties
	5.2.1 External parameters controllable by the user
	5.2.2 Internal parameters

	5.3 Implementing static methods
	5.3.1 getDependency
	5.3.2 getParameterInfo
	5.3.3 getProcessorInfo

	5.4 Implementing parameters ``getter'' methods
	5.5 Implement the processor constructor
	5.6 Preliminary testing
	5.6.1 Default instantiation
	5.6.2 Is it a valid processor?
	5.6.3 Are parameters correctly described?

	5.7 Implementing the core processing method
	5.7.1 Input and output arguments
	5.7.2 Chunk-based and signal-based processing
	5.7.3 Reset method

	5.8 Override parent methods
	5.8.1 Initialisation methods
	5.8.2 Input/output routing methods
	5.8.3 Processing method

	5.9 Allowing alternative processing options
	5.10 Implement a new signal type
	5.11 Recommendations for final testing

	6 Conclusions
	A List of DEMO files
	List of Acronyms
	Bibliography

